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We consider production and service systems that consist of parallel lines of two types:

(i) M/M/1 lines and (ii) lines that have no buffers (loss systems). Each line is assumed to

be controlled by a dedicated supervisor. The management measures the effectiveness of the

supervisors by the long run expected cost of their line. Unbalanced lines cause congestion

and bottlenecks, large variation in output, unnecessary wastes and, ultimately, high operat-

ing costs. Thus, the supervisors are expected to join forces and reduce the cost of the whole

system by applying line-balancing techniques, possibly combined with either strategic out-

sourcing or capacity reduction practices. By solving appropriate mathematical programming

formulations, the policy that minimizes the long run expected cost of each of the parallel-

lines system, is identified. The next question to be asked is how to allocate the new total cost

of each system among the lines’ supervisors so that the cooperation’s stability is preserved.

For that sake we associate a cooperative game to each system and we investigate its core.

We show that the cooperative games are reducible to market games and therefore they are

totally balanced, i.e., their core and the core of their subgames are non-empty. For each

game a core cost allocation based on competitive equilibrium prices is identified.
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1 Introduction

Unbalanced lines in manufacturing systems and service systems cause congestion and bottlenecks

that result in large variation in output, unnecessary wastes and, ultimately, high operating costs.

Various line-balancing practices that help improving the efficiency of the system are known where

the most common one is pooling certain inner resources and redistributing them optimally. A line-

balancing policy, which is based solely on pooling inner resources is called a domestic processing

policy. In other words, a line-balancing policy that uses all its capacity in-house, and all its demand

is satisfied by activities that are performed in-house using this capacity, is a domestic processing

policy. However, in the few last decades, contracting out some activities by manufacturers and

service providers has also become widespread. Strategic outsourcing enables firms to maintain
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control of critical core production or service competencies by releasing some inner capacity and

resources towards the performance of tasks in which the firm specializes in and where it has a

competitive advantage over its rivals. Another practice that is often used by firms at times when

the demand for their products declines is to reduce the capacity as maintenance of a too high

capacity is expensive. By applying such practices, firms have achieved competitive edge and have

substantially increased their productivity.

In the sequel we describe the service/production systems considered here, and the motivation

behind this research. The service systems consist of parallel servers where each server is responsible

for serving a certain group of customers. The role of a server may be played by an individual

person, a team of workers or by an automated mechanism. Examples for such services include a

medical examination such as clinical breast exams for women, MRI screening, renewal of professional

licences, etc. In the context of manufacturing, the systems consist of parallel production units. For

the sake of generality we refer to parallel lines rather than servers or machines. Each line is assumed

to be a separate cost unit for accounting purposes and therefore it is assigned a dedicated supervisor

who is responsible for the effectiveness of the line. At the end of each fiscal year, the management

distributes bonuses to the supervisors based on their performance, where their performance is

evaluated by the cost of their line so that the lower the cost is, the higher the bonus is. Suppose

that the management is interested in improving the system by using a certain combination of

practices such as pooling and redistributing some resources, (for example, demands or capacities),

shutting off certain ineffective lines, outsourcing some demand or reducing some surplus capacity.

Such practices may reduce the total cost, but they also affect the characteristics and the cost of the

individual lines. For example, suppose that the lines are evaluated by their respective congestion

cost and one of the supervisors prior the change improved her line by increasing its capacity and

reducing its congestion, and now she is asked to transfer some of her surplus capacity to some other

lines. By doing so, the total cost may go down while her direct congestion cost may go up. How

will she be compensated for contributing her share to lower the total cost of the system while her

own cost has increased? Without an appropriate compensation she might refuse to contribute her

resources to the team. This is the type of questions that we ask in this paper. Given a system,

first we minimize its total cost by line-balancing techniques in an optimal way, and then we look
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for a fair scheme that allocates the total cost to the individual lines.

We consider systems that operate a number of non-identical parallel lines, where each line is

associated with its own exponential processing time, its own Poisson demand process and its own

cost parameter. Units that arrive to a line whose buffer is full are discarded and lost forever. We

consider systems that share the same size of buffers for all the lines, and in this research we focus

on the two extreme cases where either all buffers are infinitely large or all buffers have a zero size.

Processing of a unit by a line starts immediately if upon its arrival the line is idle. Otherwise, the

units queue up in the line’s buffer as long as the buffer is not full. Units are processed one-by-one

by the lines according to a First Come First Served (FCFS) policy. Initially, the system on hand

is assumed to use a domestic processing policy, i.e., each line operates at its full capacity while

servicing its demand. Thus we get two types of systems: The first consists of parallel M/M/1 lines

where the cost of a line is its long run expected congestion cost. The second consists of parallel

M/M/1/1 lines, where no buffers exist, and the cost of a line is its long run expected cost due to

discarded units. In both cases, it is assumed that the cost of the whole system is additive in the

costs of the individual lines.

M/M/1 lines are quite common in modeling both in service and manufacturing systems as,

on one hand, they approximate numerous real models well and, on the other hand, there exists

a wide body of knowledge that sheds light on their properties. In an M/M/1 line all demand is

eventually satisfied and the line is evaluated by its congestion cost. However, in practice, it is

often the case that lines have finite buffers and therefore their long run expected cost should take

into consideration both the congestion and the rate of discarded units. As a first step toward the

study of parallel lines with general buffer size, we consider here systems of M/M/1/1 lines where

no queues are accumulated and their cost is directly associated with the expected number of loss

units.

The line-balancing techniques that we consider here are: (i) unobservable routing where units in

the pooled arrival streams can be rerouted among all lines and (ii) capacity sharing where the total

capacity is pooled and can be reassigned among the lines. Unobservable routing may be coupled

with outsourcing, i.e., some of the demand can be outsourced while the rest is routed optimally

among the lines. The total cost of such a system is the cost of the balanced lines (congestion cost in
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parallel M/M/1 systems and cost of discarded units in parallel loss systems), plus the outsourcing

cost. Capacity sharing may be coupled with reduction of capacity, so that the capacity that is left

for in-house activities is optimally reassigned among the lines. In such a case, the total cost is the

cost of the balanced lines, as described above, minus the savings due to capacity reduction.

The problem of minimizing the cost of a system by line-balancing, outsourcing and capacity

reduction, can be formulated as a mathematical programming problem. The solution of such a

problem generates both the optimal policy and the optimal cost. However, in many cases this

is just the first step in a successful implementation of the optimal policy as the management

might be interested in allocation of the total cost of the system among the lines as, for example,

for the sake of applying a bonus scheme to the lines’ dedicated supervisors. In order to achieve

full cooperation while implementing the optimal line-balancing policy, the management needs to

specify an allocation scheme of the optimal cost among the lines so that it will be accepted by all

the supervisors. This is exactly the subject of the theory of cooperative games with transferable

utilities. In Section 2, some of the main concepts of this theory are presented, where here we briefly

explain the general approach.

A cooperative game is defined by a given set of players and a characteristic function. The

characteristic function is a set function that returns the cost of each coalition, e.g., subset of

players. In our context, we regard the lines (or their dedicated supervisors) as the players, and

the characteristic function returns the expected long run average cost for any coalition of players.

Initially, the cost of the system is the sum of the costs of the individual players. If the set of

players is partitioned into disjoint coalitions, then the cost of the system is the sum of the costs

of all coalitions in the partition. Under certain conditions on the characteristic function, players

may be better off cooperating. In all the games that we consider, the form of the characteristic

function ensures full cooperation among the players, so that any bargaining process among the

players would probably end up in full cooperation, and in the formation of the grand-coalition,

i.e., the coalition that consists of all players. Once that the grand-coalition is formed, the next

natural question is how to fairly allocate the total cost among the players in order to ensure the

stability of the grand-coalition in view of the fact that some players have a greater contribution to

the grand-coalition than others. Several concepts of fairness have been proposed in the literature.
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The most appealing one that we adopt here, is the core: A cost allocation vector is in the core of

the game if it is efficient, i.e., the sum of its entries equals the cost of the grand-coalition, and if, in

addition, for any coalition of players, the total cost allocated to its players is bounded from above

by the cost of the coalition if its players would join forces and abandon the grand-coalition. That

means, that a cost vector is in the core if and only if no coalition has an incentive to defect and

play by itself. We note here that a cost allocation vector is not necessarily non-negative, i.e., there

may exist players that are allocated a negative cost. This may occur in games where ”valuable”

players exist (in our context, lines that have a large capacity and a low arrival rate) and the other

players may agree to pay the ”valuable” players in order to convince them to cooperate, as they

may help reducing substantially the total cost. In general, the core is either empty, or infinitely

large or it consists of a single cost allocation. Though, the definition of the core sounds reasonable,

characterizing the core may be an intricate task. Indeed, this issue coupled with the possibility that

the core is empty, makes the problem of finding a core allocation a real challenge in some games,

let alone characterizing the whole core.

In this paper we consider the problems of line-balancing by unobservable routing jointly with

outsourcing, and of line-balancing by capacity sharing and capacity reduction, in parallel M/M/1

and M/M/1/1 systems. For each problem the optimal policy and the long run average cost are

identified. The problems are then formulated as cooperative games and for each game a core cost

allocation is identified.

The rest of the paper is organized as follows: In Section 2 we state the main definitions and

prerequisites on cooperative games, and we present the class of market games. In Section 3 we

consider parallel M/M/1 lines: we find the optimal domestic processing policy for each of the two

versions of the problem and we define the respective line-balancing games for an extended version

of the problem where either demand can be outsourced or capacity can be reduced. In Section 4

we consider the same questions on parallel M/M/1/1 lines. All the four games are shown to be

reducible to market games, proving that they are totally balanced. A core allocation for each game

based on competitive equilibrium pricing is found. Section 5 concludes the paper.
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2 Review on cooperative games

A general cooperative game with transferable utility is defined by a pair G = (N, c), where the set

N = {1, 2, . . . , n} consists of n players, any subset S of N , ∅ ⊆ S ⊆ N , is called a coalition, where

N itself is called the grand-coalition and each coalition S is associated with a real value denoted by

c(S), where c(∅) = 0. The value c(S) is the total cost inflicted on the members of coalition S if its

members, and only its members, cooperate. The set function c : 2N → ℜ is called a characteristic

function. The total cost incurred by all players of N that partition into m disjoint coalitions, i.e.,

S1 ∪ S2 ∪ . . . ∪ Sm = N, 1 ≤ m ≤ n, is
∑m

i=1 c(Si). Note that in general cooperative games with

transferable utility, the total cost is not necessarily additive in the coalitions but the additive form

is the most conventional form that used in the literature. In the line-balancing games considered

here, the individual lines play the role of the players and the characteristic function maps each

coalition to its long run expected total cost, as obtained by applying the line-balancing procedure

on its members.

Next we review the main concepts in cooperative games that are relevant to this paper. Given a

game, the first question is whether the grand-coalition is the socially optimal formation of coalitions,

i.e., whether c(N) ≤
∑m

i=1 c(Si) for any partition to disjoint coalitions S1 ∪ S2 ∪ . . . ∪ Sm = N,

1 ≤ m ≤ n. A sufficient condition for full cooperation is subadditivity of its characteristic function:

A game G = (N, c) is called subadditive if for any two coalitions S and T , c(S ∪ T ) ≤ c(S) + c(T ).

Subadditive games bear the concept of economies of scope, i.e., when each player, or set of players,

contributes its own skills and resources, the total cost is no greater than the sum of the costs of

the individual parts. On top of forming the grand-coalition, it is necessary to establish a way that

allocates the cost c(N) among the players, so that no group of players may resist the cooperation

and decide to act alone. Several concepts of stability have been proposed in the literature. The

most appealing is the core: A vector x ∈ ℜn is said to be efficient if
∑n

i=1 xi = c(N), and it is

said to be a core cost allocation of the game if it is efficient and if it satisfies the 2n−2 stand-alone

inequalities, namely,
∑

i∈S xi ≤ c(S) for any S ⊂ N .

The collection of all core allocations, called the core of the game, forms a polyhedron in ℜn as it

is defined by a set of linear constraints with n decision variables. As the number of constraints that
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define the core is exponential in n, finding a core allocation for a given game may be, in general,

an intricate task. Indeed, this issue coupled with the possibility that the core is empty, makes the

problem of finding a core allocation a real challenge in some games. Moreover, even if one can

prove the non-emptiness of the core, the question of finding a cost allocation in the core may be

non-trivial, let alone characterizing the whole core.

A cooperative game G = (N, c) is said to be balanced if its core is non-empty, and totally balanced

if its core and the cores of all its subgames are non-empty. Subadditivity is a necessary condition for

total balancedness as if there existed disjoint coalitions S and T for which c(S) + c(T ) < c(S ∪ T ),

the subgame (S ∪ T, V ) would have an empty core since any efficient allocation of c(S ∪ T ) among

the players of S ∪ T will be objected by at least one of the coalitions, S or T .

Some papers have considered resource pooling in the context of cooperative games, see e.g. Anily

and Haviv (2010), Karsten (2013), Chakravarthy (2016), Karsten et al. (2009, 2011), Timmer

and Sheindhardt (2013) and Yu et al. (2015). Directly related to this paper is Timmer and

Sheindhardt (2013), which proves that the domestic processing capacity sharing game with identical

cost parameters across all lines, is totally balanced and it identifies a specific cost allocation in the

core. We generalize the game by allowing line-dependent cost parameters in addition to capacity

reduction.

The literature provides two main general conditions that are sufficient in order establish the

total balancedness of a game.

• Condition 1. A game G = (N, c) is a concave game if its characteristic function is concave,

meaning that for any two coalitions S, T ⊆ N , c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T ). Concave

games are, clearly, subadditive but not the other way around. It was shown in Shapley (1971)

that the core of a concave game possesses n! extreme points, each of which being the vector

of marginal contribution of the players for a different permutation of the players.

• Condition 2. A market game, see e.g., Chapter 13 in Osborne and Rubinstein (1994), is

defined as follows: Suppose there are ℓ types of inputs. An input vector is a non-negative

vector in ℜℓ
+. Each of the n players possesses an initial commitment vector wi ∈ ℜℓ

+,

1 ≤ i ≤ n, which states a nonnegative quantity for each input. Moreover, each player is
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associated with a continuous and convex cost function gi : ℜℓ
+ → ℜ+, 1 ≤ i ≤ n. A profile

(zi)i∈N of input vectors for which
∑

i∈N zi =
∑

i∈N wi is an allocation. The game is such

that a coalition S of players looks for an optimal way to redistribute its members’ total

commitments among its members in order to get a profile (zi)i∈S of input vectors so as the

sum of the costs across the members of S is minimized. Formally, for any ∅ ⊆ S ⊆ N ,

c(S) = min {
∑
i∈S

gi(zi) : zi ∈ ℜℓ
+, i ∈ S and

∑
i∈S

zi =
∑
i∈S

wi} (1)

Market games are not necessarily concave, but they are well-known to be totally balanced, see

Peleg and Sudholter (2007), Corollary 3.2.4. Unlike concave games whose core is fully characterized

and has a closed form (see Condition 1), just a single core allocation (x1, . . . , xn), given in (2) below,

which is based on competitive equilibrium prices, is known for a general market game, (see Osborne

and Rubinstein (1994), p. 266):

xi = gi(z
∗
i )−Θ(z∗i − zi) for i ∈ N, (2)

where Θ is the Lagrange multiplier of the constraint in (1), and (z∗i )
n
i=1 signifies the optimal input

to each player in (1).

In fact, Shapley and Shubik (1969) proves that a game is a market game if and only if it is

totally balanced. In particular, any concave game is a market game. However, if a game is not

naturally formulated as a market game (see (1)), then the task of reformulating it as a market

game (or showing that such a formulation does not exist), may be as intricate as proving directly

that it is totally balanced (or that it is not). Thus, it seems that except for games that are either

originally stated as market games, or are easily transformed to market games, this approach has its

limits. We show that each of the line-balancing games described here, is transformable to a market

game, enabling us to derive the cost allocation that is based on competitive equilibrium prices.

Anily and Haviv (2010) analyzes the most basic M/M/1 service pooling game, where cooper-

ation among M/M/1 lines generates a new M/M/1 line whose arrival stream is the union of the

individual streams, its capacity is the sum of the individual capacities and the characteristic func-
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tion returns the long run expected congestion. The game is proved to be totally balanced though

it is neither concave nor monotone, and the nonnegative part of its core is fully characterized.

Anily and Haviv (2014) defines a large class of games, called regular games, that contains most

cooperative games in service and operations management including the above mentioned M/M/1

service pooling game and the line-balancing games considered in this paper. Anily (2017) proposes

a sufficient condition for total balancedness of a sub-class of subadditive homogenous of degree 0

regular games that is applicable to the M/M/1 service pooling game. Anily and Haviv (2014)

proves that a subadditive and homogenous of degree 1 regular game is totally balanced, a result

that is applicable to all the line-balancing games considered here. Unlike Conditions 1 and 2, that

not only provide sufficient conditions for the non-emptiness of the core but they also indicate a

methodology to compute a core allocation, no core allocation is known for games that satisfy the

two sufficient conditions regarding regular homogenous of degree 1 (0) described above.

3 Line balancing games of parallel M/M/1 line systems

In this section we discuss line balancing models that consist of n non-identical parallel lines, N =

{1, . . . , n}, with infinite buffer where each line is associated with its own Poisson arrival process of

demands, and its service time, which is exponentially distributed. Line i ∈ N is associated with

a mean service rate µi > 0, and a mean arrival rate λi ≥ 0, where λi < µi. In such a system the

congestion cost is of concern. The cost per unit of congestion per unit of time on line i ∈ N is

αi > 0, implying that its long run average congestion cost is αiλi
µi−λi

. The total cost is additive in the

cost of the lines. In the following, we use the notation λ(S) =
∑

i∈S λi and µ(S) =
∑

i∈S µi for any

subset ∅ ⊆ S ⊆ N.

Within the class of domestic processing policies, i.e., where the total capacity µ(N) is used to

serve the total demand rate λ(N) in-house without using outsourcing or capacity reduction, two

possible improvement schemes of parallel M/M/1 line systems have been proposed in the literature:

(i) the capacities of the individual lines are preserved at their original levels, but the pull of the

arrival streams of rate λ(N), can be rerouted among the lines. Such a situation may occur in

a production system where the lines are identical machines whose production rate is fixed and
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machine dependent, but the lines’ input rates are decision variables. This version of the problem

is called the unobservable routing problem. (ii) the individual streams of arrivals are kept as given,

but the total pooled capacity µ(N) can be reassigned among the lines. Such a case may occur,

for example, if the last production stage of identical parallel machines is painting components in

different colors, where one machine paints in blue, another one in red, etc. The input rate to each

machine is the given demand rate for components of a certain color. The capacities of the machines

can be adjusted by the corresponding demand rates. This version of the problem, given that the

total capacity µ(N) is reassigned among the machines, is called the capacity sharing problem. We

consider a more general class of line balancing policies that contains the class of domestic processing

policies, where unobservable routing can be coupled with outsourcing some demand, and capacity

sharing can be coupled with capacity reduction.

In each of the next two subsections we consider the parallelM/M/1 line balancing optimal policy

and the respective cooperative game under unobservable routing and under capacity sharing. Each

subsection introduces the corresponding optimal domestic processing policy. Then we extend the

class of policies to allow either outsourcing some demand at a linear cost, if demands are pooled,

or reducing some capacity for linear savings, if capacities are pooled. For each model we formulate

and solve a mathematical programming problem that balances the lines optimally by generating

for the unobservable routing problems the demand to be outsourced and the demand directed to

each line, and for the capacity sharing problems, the excess capacity that is reduced as well as the

capacity that is assigned to each line. The optimal solutions demonstrate the dependence of the

optimal cost in the various parameters of the systems. Then, we consider the question of how to

fairly allocate the optimal cost among the supervisors of the lines, given that each line is assigned

its own dedicated supervisor, so that no individual supervisor or set of supervisors has an incentive

to defect from the full cooperation. Note that usually the supervisors that have an incentive to

break away from full cooperation, are the ones that seem to subsidize the others. Usually, those are

the most efficient supervisors that the outcome of cooperation makes them regarded as less efficient

as they are asked to bear a greater portion of the total load of the system in order to optimize the

efficiency of the whole system.
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3.1 The unobservable routing with outsourcing game

The optimal domestic processing policy for the unobservable routing problem for parallel M/M/1

lines for the case where the cost per unit of congestion is the same for all lines, has been derived in

Bell and Stidham (1983) (see also Hassin and Haviv (2003), p.65), while the case of line-dependent

congestion cost parameters, that we present next, has been solved in Altman et al. (2011). There-

after, we derive the optimal policy for the line-dependent congestion cost parameters with the

option of outsourcing demand.

Assume that the lines are indexed in a non-decreasing order of αi
µi
, i.e., α1/µ1 ≤ α2/µ2.... ≤

αn/µn. As we are going to see, the structure of the optimal solution is such that a consecutive set

of the highest indexed lines, might be idle, i.e., no demand will be directed to these lines.

Let denote the arrival rate to be assigned to line i by zi, 0 ≤ zi < µi. Let τi(z) represent the

congestion cost of line i for arrival rate z < µi, where

τi(z) =
αiz

µi − z
. (3)

The corresponding optimal domestic processing policy problem is defined by:

c(N) = min{
n∑

i=1

τi(z) :
n∑

i=1

zi = λ(N) and zi ≥ 0 for i = 1, . . . , n}. (4)

The function τi(z) is an increasing and convex function of z. The marginal cost of directing

an infinitesimal demand to line i is dτi(z)
dz |z=0+ = αi

µi
. Thus, the optimal policy can be obtained by

gradually increasing, starting from zero, the demand directed to the first line until the marginal

congestion cost on this line reaches the marginal congestion cost of directing an infinitesimal demand

to the second line. Subsequently, the demands on the two first lines are gradually increased until

the marginal costs on these two lines reach the marginal cost of directing an infinitesimal demand

to the third line. The assignment process continues until all the total demand λ(N) is assigned

to lines. The assignment process may end while some of the highest indexed lines are not used.

Denote the index of the last open line by i∗. Let z∗i be the optimal arrival rate directed to line i,

where z∗i = 0 for i > i∗. The Lagrange multiplier of the equality constraint in (4) is denoted by Ψ.
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Thus, for i ≤ i∗, dτi(z)
dz |z=z∗i

= Ψ, and for i > i∗, dτi(z)
dz |z=z∗i =0 =

αi
µi

≥ Ψ, where

i∗ = min

{
i ∈ N :

αi+1

µi+1
≥

(
∑i

j=1
√
αjµj)

2

(
∑i

j=1 µj − λ(N))2

}
, (5)

Ψ =
(
∑i∗

j=1
√
αjµj)

2

(
∑i∗

j=1 µj − λ(N))2
, (6)

and the optimal congestion level is shown by minimal algebra to equal

c(N) =
(
∑i∗

i=1
√
αiµi)

2∑i∗
i=1 µi − λ(N)

−
i∗∑

k=1

αi. (7)

The optimal routing rate to any open line is

z∗i = µi − (
i∗∑
j=1

µj − λ(N))

√
αiµi∑i∗

j=1
√
αjµj

, 1 ≤ i ≤ i∗. (8)

Next, we generalize the above problem, by allowing to outsource some or all of the demand while

applying a line balancing policy. The unit outsourcing cost rate is set to 1, and the line-dependent

congestion cost parameters are scaled accordingly. Define a game G = (N, c̃) where each coalition

∅ ⊆ S ⊆ N is associated with a cost c̃(S) that represents the optimal expected long run congestion

and outsourcing cost incurred by a demand rate of λ(S) that is met by a policy that combines

outsourcing and processing by the lines of S where line i ∈ S is associated with a capacity µi.

In order to prove that the unobservable routing with outsourcing game G = (N, c̃) in parallel

M/M/1 lines is totally balanced, we reduce it to a market game. For that sake, let the function

ϕi(λ), for λ ≥ 0, given by (9), represent the optimal expected long run congestion and outsourcing

cost of line i ∈ N that faces a demand a rate of λ.

ϕi(λ) = min{τi(z) + λ− z| 0 ≤ z ≤ λ}. (9)

Line i, i ∈ N, is better off processing units than outsourcing as long as its marginal cost is

smaller than 1. Thus, let z̄i for lines i ∈ N, whose marginal cost at zi = 0 is smaller than 1, to be

the rate at which the marginal cost is 1. Otherwise, let z̄i = 0.
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Proposition 1 The optimal policy that minimizes the sum of congestion and outsourcing costs of

an M/M/1 line i, i ∈ N, with capacity µi > 0, and congestion cost rate αi, is unique: The line

processes a demand rate of at most z̄i, and the rest, if positive, is outsourced, where

z̄i = max{0, µi −
√
αiµi}. (10)

Proof: The solution to the equation dτi(z)
dz = αiµi

(µi−zi)2
= 1 is µi −

√
αiµi. If this value is positive

then z̄i = µi −
√
αiµi. Otherwise, it is zero. The uniqueness of the policy is due to the fact that

the function τi(z), see (3), is strictly convex in (0, z̄i).

Proposition 1 implies that any line i ∈ N with αi
µi

≥ 1, is closed at optimality, and its demand is

either processed by other, cheaper, lines of N or it is outsourced. In particular, if line i with αi
µi

≥ 1,

is a single line system, ϕi(λi) = λi. Otherwise, namely if αi
µi

< 1, line i processes a number of units

that does not exceed z̄i and if line i is a single line system, the remaining demand, if positive, is

outsourced. To summarize, ϕi(λi) = τi(min{λi, z̄i}) + max{λi − z̄i, 0}. However, when optimizing

the total cost of a multi line system, it is possible that some lines with αi
µi

< 1, are also closed as it

might be possible to process the total demand rate λ(N) on cheaper lines.

The optimal unobservable routing with ousourcing cost in parallel M/M/1 lines of any coalition

∅ ⊆ S ⊆ N , c̃(S), is defined by

c̃(S) = min{
∑
i∈S

ϕi(zi) :
∑
i∈S

zi = λ(S) and zi ≥ 0 for i ∈ S}. (11)

The cost of the grand-coalition, c̃(N), is obtained by substituting S by N in (11).

Theorem 1 The unobservable routing with outsourcing game G = (N, c̃), on parallel M/M/1 lines

system, where the characteristic function c̃ is defined in (11), is a market game.

Proof: The characteristic function c̃ : 2N → ℜ obeys the requirements of a market game, see (1),

as the functions ϕi(z), z ≥ 0, 1 ≤ i ≤ n, are convex.

In view of Theorem 1 and Condition 2, the unobservable routing with outsourcing game

G = (N, c̃), on parallel M/M/1 lines system, is totally balanced and the cost allocation based

on competitive equilibrium prices is in its core.
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In the following we investigate structural properties of the optimal solution of the grand-coalition

cost c̃(N), see (11) for S = N, and we derive the core cost allocation based on competitive equilib-

rium prices for the game G = (N, c̃). Let Θ be the Lagrange multiplier of the equality constraint,

and z∗i , i ∈ N, be the optimal solution of the optimization problem (11) for S = N. Clearly, Θ ≤ 1

as the marginal cost of increasing λ(N) is bounded by the outsorcing cost rate that equals 1. In

fact,

Θ = min{Ψ, 1}, (12)

where Ψ is the Lagrange multiplier of the equality constraint in (4), i.e., the Lagrange multiplier

for the routing problem without the outsourcing option. Recall that the lines are indexed in a

non-decreasing order of the ratio between the cost rate and the capacity. The set of open lines for

problem c̃(N), see (11) by substituting S by N , is of the form {1, . . . , io}, where

io = min

{
i ∈ N :

αi+1

µi+1
≥ min{1,

(
∑i

j=1
√
αjµj)

2

(
∑i

j=1 µj − λ(N))2
}
}

(13)

By definition, io ≤ i∗ where i∗ is defined in (5). If outsourcing is not used by N, then io = i∗. The

following lemma proves that the optimal number of units routed to each line is unique.

Lemma 1 An optimal solution (z∗1 , . . . , z
∗
n) to problem (11) for S = N, satisfies one of the following

two cases:

• for all i ∈ N, z∗i < z̄i or z∗i = 0. Or,

• for all i ∈ N, z∗i ≥ z̄i.

In addition, there exists a unique optimal routing of units to the lines, where the routing rate to

line i ∈ N is min{z∗i , z̄i}, and the outsourcing rate is λ(N)−
∑

i∈N min{z∗i , z̄i}.

Proof: The convexity of the functions ϕi, i ∈ N, in (11), implies that at optimality c̃(N) satisfies

the following properties: (i) the marginal cost of all lines with z∗i > 0 is the same; (ii) the marginal

cost of all lines with z∗i = 0 is at least as high as the cost of the former group of lines; and (iii)

the marginal cost of all lines is bounded from above by 1, which is the outsourcing cost rate. The

Lagrange multiplier Θ of the equality constraint in (11) where S = N is, in fact, the marginal cost
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of lines having z∗i > 0. If there exists j ∈ N such that 0 < z∗j < z̄j , then Θ < 1, and the marginal

congestion cost of all lines with z∗i > 0, is Θ, where the marginal cost of lines with z∗i = 0, is at

least Θ. In such a case ousourcing is not used by N, and for each line i = 1, . . . , n, z∗i is the optimal

rate of units processed by line i, i.e., z∗i < z̄i or z∗i = 0. In this case, the strict convexity of the

functions ϕi(λ) in the range λ ∈ [0, z̄i) implies a unique vector (z∗1 , . . . , z
∗
n), which coincides with

(8).

On the other hand, if there exists a line j ∈ N such that z∗j ≥ z̄j , then Θ = 1, implying that

z∗j − z̄j units out of z∗j are outsourced. Therefore, the marginal cost of increasing z∗i for all lines

i ∈ N , is also equal to Θ = 1, meaning that z∗i ≥ z̄i for all i ∈ N. At optimality, this solution means

that each open line i ≤ io receives a rate of exactly z̄i units of demand, and the total remaining

rate of λ(N)−
∑n

i=1 z̄i, is outsourced. Thus, in a case the option of outsourcing is actually realized,

the vector (z∗1 , . . . , z
∗
n) that solves c̃(N) is not unique but the optimal routing of units to the lines

is unique.

The next theorem specifies explicitly the core cost allocation (xi)
n
i=1 based on competitive

equilibrium prices, see (2). One of the interesting properties characterizing market games is that

the form of the competitive equilibrium prices core allocation depends only on c̃(N), rather than

c̃(S) for all coalitions ∅ ⊆ S ⊆ N. In the context of the unobservable routing and outsourcing

games, the vector (xi)
n
i=1 depends only on whether or not the grand-coalition outsources, and not

on whether or not any of the other 2n − 2 sub-coalitions outsources. Recall that Θ is the Lagrange

multiplier of the equality constraint in (11) for S = N.

Theorem 2 The optimal solution of the grand-coalition and the competitive equilibrium prices core

allocation (xi)
n
i=1 of the unobservable routing with outsourcing game (N, c̃) are:

• If Θ < 1 or if Θ = 1 and λ(N) −
∑io

i=1 z̄i = 0, then outsourcing is not used by N. The last

open line is io = i∗, where i∗ is defined in (5), the optimal routing z∗i to line i ∈ N is given

in (8), and the optimal cost c̃(N) is given in (7). Finally, for i ≤ i∗:

xi = −(µi − λi)
(
∑i∗

k=1
√
αkµk)

2

(
∑i∗

k=1 µk − λ(N))2
+ 2

√
αiµi

∑i∗
k=1

√
αkµk∑i∗

k=1 µk − λ(N)
− αi , 1 ≤ i ≤ i∗
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and

xi = λi
(
∑i∗

k=1
√
αkµk)

2

(
∑i∗

k=1 µk − λ(N))2
, i∗ + 1 ≤ i ≤ n.

• Otherwise, outsourcing is utilized by N. The last open line io is defined in (13), the optimal

routing to lines i ∈ N is z∗i = z̄i, see Proposition 1, and the optimal cost is c̃(N) = λ(N) −∑
i≤io(

√
µi −

√
αi)

2. Finally, the competitive equilibrium prices core allocation is

xi = λi − (
√
µi −

√
αi)

2, 1 ≤ i ≤ io,

and

xi = λi, io + 1 ≤ i ≤ n.

Proof: The form of the competitive equilibrium prices core allocation is given in (2), where Θ is

the Lagrange multiplier of the equality constraint in (11) for S = N, and (z∗i )
n
i=1 is a corresponding

optimal routing to the problem. The proof of the two cases is as follows:

• If Θ < 1, or if Θ = 1 and λ(N)−
∑io

i=1 z̄i = 0, then the optimal policy is a domestic processing

policy analyzed in Altman et al. (2011) and described at the beginning of this subsection. As

the outsourcing option is not used, Θ = Ψ, where Ψ is the Lagrange multiplier of the equality

constraint of the optimization problem (4) whose value is defined in (6). In particular, line i∗,

defined in (5), is the last open line, and the unique optimal routing rate z∗i , to any line i ≤ i∗,

is given in (8). In order to complete the proof of this item, we calculate the competitive

equilibrium prices core cost allocation (x1, . . . , xn), see (2), by substituting the values of Θ

and z∗i for i ∈ N, into xi = ϕi(z
∗
i )−Θ(z∗i − λi) =

αiz
∗
i

µi−z∗i
−Θ(z∗i − λi).

• Otherwise, outsourcing is used, implying that Θ = 1, the last open line is io given in (13),

the unique optimal routing rate to any line i ≤ io is given by z̄i, see Proposition 1, and any

optimal solution (z∗1 , . . . , z
∗
n) to the optimization problem (11) for S = N, satisfies z∗i > z̄i

for i ≤ io, z∗i = 0 for i = io + 1, . . . , n, and
∑

i∈N z∗i = λ(N). In particular, in any such

solution, the rate at which units are outsourced is λ(N) −
∑io

i=1 z̄i > 0. Thus, any optimal

solution of problem (11) for S = N, is of the following form: z∗i = z̄i + δi, where δi > 0 for
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i = 1, . . . , io, z∗i = 0 for i = io + 1, . . . , n, and
∑io

i=1 δi = λ(N) −
∑io

i=1 z̄i. Substituting into

(2) generates the following competitive equilibrium prices core cost allocation (x1, . . . , xn):

xi = ϕi(z
∗
i )− (z∗i − λi), 1 ≤ i ≤ n, where for the open lines

xi = (
αiz̄i

µi − z̄i
+ δi)− (z̄i + δi − λi) =

αiz̄i
µi − z̄i

− (z̄i − λi), 1 ≤ i ≤ io

and for the closed lines

xi = λi, io + 1 ≤ i ≤ n.

The proof is terminated by substituting z̄i, 1 ≤ i ≤ io, (see (10) into this last expression.

The competitive equilibrium prices core allocation specified in Theorem 2 demonstrates that

lines that are closed at optimality are charged a cost that is proportional to their demand rate,

increasing at a rate that is equal to the marginal cost of processing one additional unit in the

system. In fact, this core cost allocation is independent of the demand rates and of the congestion

cost rates of lines that are closed, which means that in some sense the supervisors of the closed

lines are free riders as they are not punished for having inefficient lines. This is even more salient

under the case that the outsourcing option is not used, as the demands of the closed lines are

processed by the open lines, and the closed lines pay for their total demand, the rate of processing

the last infinitesimal unit on the open lines. In addition, we would like to highlight the fact that the

structure of the competitive equilibrium prices core allocation for this line balancing game is quite

complex, and that it is doubtful if one could guess a core allocation without using Condition 2

in Section 2 on market games, especially that this game is not concave. See the next example

that rules out the possibility of using Condition 1 in Section 2 for proving total balancedness and

characterizing the whole core.

Example 1 Let N = {1, 2, 3}, with µ1 = µ2 = 100, λ1 = λ2 = 1, µ3 = 1, λ3 = 0.99 and

α1 = α2 = α3 = ϵ, where ϵ is sufficiently small so that outsourcing is not used by any coalition. Let

S = {1, 3} and T = {2, 3}. We have here c̃({1}) = c̃({2}) = 0.01, c̃({3}) = 99. In coalition S line 1

is open and likewise line 2 is open in coalition T . Thus, c̃(S) = c̃(T ) = 0.02. In coalition S ∪ T
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lines 1 and 2 are open, each getting half of the total traffic. Hence, c̃(S ∪ T ) = 2( 1+0.495
100−1−0.495). It is

easy to see c̃(S ∩ T ) = c̃({3}) = 99. Hence, c̃(S ∪ T ) + c̃(S ∩ T ) > c̃(S) + c̃(T ), proving that c̃(·) is

not a concave set function.

3.2 The capacity sharing and reduction of capacity game

In this subsection, similarly to Subsection 3.1, we consider a system N = {1, . . . , n} of parallel

M/M/1 lines, where line i ∈ N is associated with a Poisson demand rate λi > 0, an exponential

service capacity rate µi, where λi < µi, and a unit congestion cost rate of αi > 0. As in Subsection

3.1, the long run expected cost of the system in case of no cooperation, is the sum of the congestion

costs of the individual lines, namely,
∑

i∈N
αiλi
µi−λi

, however here, the demand λi of line i ∈ N must

be processed by its dedicated line, i.e., line i.

We start by considering basic line balancing policies that reassign the whole surplus capacity

of µ(N) − λ(N) units to the lines such that each line i ∈ N gets a positive share of the surplus

capacity at top of the necessary minimal level of λi. The cost of such a policy is the long run

expected congestion cost of the resulting system. However, in general, it might be cheaper for

the system to reduce the level of surplus capacity that is used by the lines as a too high surplus

capacity might be expensive due to high maintenance costs. In such a case, the capacity that is

not used for internal purposes might be left unused in return to some maintenance cost savings or

it might be rented out to other firms in return to some income. The cost of the system, in the

general case, consists of the congestion cost of the lines in N minus the savings or income due to

reducing/renting the extra capacity.

The basic policy that minimizes the total long run congestion cost for the capacity sharing

problem (with no option of capacity reduction), where the surplus capacity of µ(N)− λ(N) units

is fully allocated to the lines of N, for the special case where the congestion cost rate is the same

for all lines, i.e., αi = α for i ∈ N, is derived in Kleinrock (1976) pp. 329-331. We present next

a generalization of Kleinrock’s solution to line dependent congestion cost parameters. In order to

solve this problem, let the function fi(s) : ℜ+ → ℜ+ denote the long run expected congestion cost
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of line i ∈ N if it is allocated s > 0 units of surplus capacity:

fi(s) =
αiλi

s
, i ∈ N. (14)

The optimal long run congestion cost is given by

c(N) = min{
∑
i∈N

fi(si) :
∑
i∈N

si = µ(N)− λ(N) and si > 0 for i ∈ N}.

Basic algebra reveals that the optimal allocation of the surplus capacity to the lines is given by

s∗i =
√
αiλi · (µ(N)− λ(N))∑

j∈N
√
αjλj

, i ∈ N, (15)

and the optimal congestion cost is

c(N) =
(
∑

j∈N
√
αjλj)

2

µ(N)− λ(N)
. (16)

Next, we allow for surplus capacity reduction, which comes with unavoidable extra conges-

tion, in return to saving some maintenance costs or, alternatively, earning some rental fees. The

savings/income rate per unit of capacity that is not used by the lines is scaled to 1. A capacity

reconfiguration of the system allows for a partial reduction of the surplus capacity as well as a

reassignment of the remaining surplus capacity among the lines. The total cost consists of the

congestion cost minus the savings/income due to capacity’s reduction.

Let the function ϕi(s), defined below, denote the optimal cost of line i ∈ N whose current

surplus capacity is s in view of the option to cut some of its capacity. Recall that the function f

is defined in (14).

ϕi(s) = min{fi(w)− (s− w)| 0 < w ≤ s} i ∈ N. (17)

Let s̄i be the surplus capacity for which the derivative ∂fi(s)
∂s = −αiλi

s2
equals −1, implying that

s̄i =
√
αiλi, i ∈ N. (18)
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Thus, s̄i is the maximum value of surplus capacity that line i utilizes, as otherwise reducing the

capacity is more profitable. Therefore,

ϕi(s) =


αiλi
s if 0 < s ≤ s̄i, i ∈ N

αiλi
s̄i

− (s− s̄i) otherwise.
(19)

We now proceed to the definition of the respective game G = (N, c̃), where N = {1, . . . , n}

is the set of M/M/1 lines as in Subsection 3.1, and the characteristic function c̃ assigns to each

coalition ∅ ⊆ S ⊆ N the optimal congestion cost of its lines minus the savings obtained by reducing

its capacity over all feasible policies that assign at most µ(S)− λ(S) units of the surplus capacity

among the lines of S, and the rest is reduced. By using the ϕi, i ∈ N, functions defined in (19),

the characteristic function for any coalition ∅ ⊆ S ⊆ N, is expressed by

c̃(S) = min{
∑
i∈S

ϕi(si) :
∑
i∈S

si = µ(S)− λ(S) and si > 0 for i ∈ S} (20)

The cost of the grand-coalition, c̃(N), is obtained by substituting S by N in (20).

Theorem 3 The capacity sharing with capacity reduction game, G = (N, c̃), where the character-

istic function c̃ is defined in (20), is a market game.

Proof: The proof follows along the same lines as the proof of Theorem 1, using the convexity of

ϕi(s) that follows from the convexity of fi(s), i ∈ N, see (17), and (14).

In view of Theorem 3 and Condition 2, the capacity sharing with capacity reduction game,

G = (N, c̃), is totally balanced and the cost allocation based on competitive equilibrium prices is

in its core.

Let Θ be the Lagrange multiplier of the equality constraint in (20) for S = N. In this problem

it holds that Θ < 0 as increasing the surplus capacity of the system reduces the total cost. If the

option of capacity reduction is not used, then Θ < −1, and otherwise Θ = −1. More specifically,

θ = max { − 1, −
( ∑

i∈N
√
αiλi

µ(N)− λ(N)

)2

} (21)

where the expression −
(∑

i∈N

√
αiλi

µ(N)−λ(N)

)2

is the Lagrange multiplier of the capacity sharing version
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of the problem where no option of capacity reduction exists. The next Lemma elaborates on the

structure of the solution to (20) for S = N as follows from the fact that at optimality, the derivatives

of ϕi(·), see (19), for i ∈ N, are all identical. The proof is similar to the proof of Lemma 1 so we

skip it.

Lemma 2 An optimal solution (s∗1, . . . , s
∗
n) for problem (20) for S = N, satisfies one of the fol-

lowing two cases:

• for all i ∈ N, s∗i < s̄i where s∗i is defined in (15), or

• for all i ∈ N, s∗i ≥ s̄i.

Moreover, there exists a unique optimal surplus capacity assignment to lines, where line i ∈ N is

assigned a surplus capacity of min{s∗i , s̄i}, and µ(N) −
∑

i∈N min{s∗i , s̄i} units of surplus capacity

are reduced.

The next theorem specifies explicitly the core cost allocation (xi)
n
i=1 based on competitive

equilibrium prices, see (2).

Theorem 4 The optimal cost c̃(N) of the grand-coalition and the competitive equilibrium prices

cost allocation (xi)
n
i=1 of the capacity sharing with surplus capacity reduction game, (N, c̃), are given

by:

c̃(N) =
(
∑

i∈N
√
αiλi)

2

µ(N)− λ(N)
and xi = 2

√
−Θ

√
αiλi +Θ(µi − λi) , i ∈ N. (22)

where Θ is the Lagrange multiplier of the equality constraint in the optimization problem of the

grand-coalition, see (21).

Proof: Recall the form of the competitive equilibrium prices cost allocation given in (2), i.e.,

xi = ϕi(s
∗
i )−Θ(s∗i − (µi−λi)), i ∈ N, where Θ is the Lagrange multiplier of the equality constraint

of the optimization problem of the grand-coalition. In the proof we distinguish between two cases

and show that the core cost allocation of both cases boil down to a single form that is based on Θ.

• If Θ < −1, or if Θ = −1 and µ(N) − λ(N) = Σi∈N s̄i, then no reduction of capacity takes

place and the surplus capacity µ(N)−λ(N) is distributed among the lines, so that line i ∈ N
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is allocated a surplus capacity s∗i given in (15). By equation (21), Θ = −
(∑

i∈N

√
αiλi

µ(N)−λ(N)

)2

and the long run expected congestion cost c̃(N) is given in (16). Substituting these values

into the competitive equilibrium prices formula gives xi =
αiλi
s∗i

−Θ(s∗i − (µi − λi)), i ∈ N,

resulting in the core cost allocation given in (22).

• If Θ = −1, and µ(N)−λ(N) > Σi∈N s̄i, then surplus capacity reduction takes place, and line

i ∈ N is assigned a surplus capacity of s̄i =
√
αiλi, see (18). Thus, any vector (s∗1, . . . , s

∗
n)

that satisfies s∗i = s̄i + δi where δi > 0 and
∑n

i=1 s
∗
i = µ(N) − λ(N), is optimal. However,

the surplus capacity assignment (s̄i), i ∈ N, is unique. The reduction level in capacity is

then
∑

i∈N δi = µ(N)−λ(N)−
∑

i∈N s̄i = µ(N)−λ(N)−
∑

i∈N
√
αiλi > 0. The competitive

equilibrium prices cost allocation vector is obtained by xi = ϕi(s̄i+ δi)− (−1)(s̄i+ δi− (µi−

λi)) = ϕi(s̄i)− δi + (s̄i + δi − (µi − λi)) = 2
√
αiλi − (µi − λi), i ∈ N, as claimed in (22). The

optimal cost c̃(N) is equal to
∑

i∈N xi, as the competitive equilibrium prices cost allocation

vector (x1, . . . , xn) is in the core, and thus it satisfies the efficiency property.

In the cost allocation specified in Theorem 4, there are no free riders. The cost allocated to any

line i ∈ N is increasing in its congestion cost rate αi and in its demand rate λi, but is decreasing

in the line’s contribution capacity of µi.

Comment 1 For the game where αi = 1 for all i ∈ N , and with no option of capacity reduction,

the vector (22) is shown in Timmer and Scheinhardt (2013), by a different way, to be in the core.

The next example shows that the game G = (N, c̃) is not concave.

Example 2 Using the queueing system described in Example 1 with αi = M sufficiently large for

all i ∈ N, leading to never opting to save by reducing the capacity under any coalition, results in a

game which is not concave: The value of c̃({1}) is large in comparison with the value of any other

coalition so concavity is ruled out. Specifically, c̃(S) = c̃(T ) = 0.04M where c̃(S ∩ T ) = c̃({3}) =

99M and c̃(S ∪ T ) > 0. Hence, c̃(S ∪ T ) + c̃(S ∩ T ) > c̃(S) + c̃(T ), showing that c̃ is not a concave

set function.
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4 Line balancing of parallel loss lines

In Section 3 the unlimited buffers’ size case, is considered. In practice, however, it is quite common

that lines have finite buffers that are likely to cause blocking of demand units that arrive to a line

when its buffer is full. Blocked units are assumed to be lost forever. A line with a positive finite

buffer size may cause two types of cost: (1) the cost of units that reach the line when its buffer is

full and therefore are lost, and (2) the cost of units due to having to wait in the buffer. In Section

5 we elaborate on possible future research directions on parallel line systems with general finite

buffers. We note that from a mathematical point of view, the long run expected cost of lost units

in a line with a finite buffer is a function of the respective loss probability, i.e., the probability that

the buffer is full. In this section we focus on the simplest form of the loss probability that applies

to a line with no buffer, i.e., a buffer of size zero, as a first step toward a future analysis of general,

possibly line dependent, buffer sizes. In the next two subsections we consider parallel M/M/1/1

line systems where the lines have no buffers, and therefore the cost associated with each line is the

cost of its lost units. Note that systems that consist of parallel lines where each demand unit is

directed to a line that is idle, if such one exists, and there is no space for waiting units, are called

loss systems. Thus, a systems of parallel M/M/1/1 lines is also called a system of parallel loss

lines. In this section, the line balancing techniques described in Section 3 are applied and analyzed

on parallel M/M/1/1 line systems where the cost of lost units replaces the congestion cost. The

corresponding cooperative games are shown to be reducible to market games, proving that they

are totally balanced. A competitive equilibrium prices cost allocation is suggested for each of these

games. It is interesting to note that in contrary Section 3, in parallel loss lines, all lines are open

in the optimal solution to the unobservable routing problem, where, some lines might be closed in

the optimal solution to the capacity sharing problem.

For simplicity, we use the same notation as in Section 3 and follow the same assumptions, except

that the assumption λi < µi is not necessary anymore. As the lines have no buffers, the demand

that arrives to line i ∈ N when it is busy processing another unit, is immediately discarded. Let

βi be the cost of a unit lost by line i ∈ N, implying that its long run average cost of lost units is

βiλ
2
i

µi+λi
. The total cost of the system is assumed to be additive in the cost of the individual lines.
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4.1 The unobservable routing and outsourcing game

The optimal domestic unobservable routing policy in a parallel loss line system minimizes the

expected average cost of lost units. Each line i ∈ N is associated with a cost βi > 0 per unit lost

by the line, an arrival rate λi > 0 and a capacity µi > 0. Thus, λi
λi+µi

is the loss probability,
λ2
i

λi+µi

is the loss rate of line i ∈ N, and the total long run expected cost of lost units of the system is∑
i∈N

λ2
i

λi+µi
. As we show below, it turns out that for line-dependent lost unit cost parameters, no

closed form solution of the unobservable routing problem exists. Thus, we first describe the solution

for the case where the lost unit cost parameters are identical for all lines in N, i.e., βi = β > 0 for

i ∈ N, and then we propose a solution method for line-dependent costs too.

Under the assumption βi = β > 0 for all i ∈ N , the cost of lost units by line i that faces

a demand rate of z, is τi(z) = βz2

µi+z . The unobservable routing problem form for any coalition

∅ ⊆ S ⊆ N of parallel lines is:

c(S) = min{
∑
i∈S

τi(zi) :
∑
i∈S

zi = λ(S) and zi ≥ 0 for i ∈ S}. (23)

The unobservable routing problem of the grand-coalition is obtained by substituting S by N in

(23). All lines are open at optimality as limz→0
∂τi(z)
∂z = 0 for any µi > 0 and β > 0. We define a

game G = (N, c) where the set of players N is the set of lines described above, and the characteristic

function value for each coalition ∅ ⊆ S ⊆ N is defined in (23).

Let Ψ be the Lagrange multiplier of the equality constraint in (23) for S = N. Solving (23) for

S = N, by using the KKT conditions, result in

Ψ = β

(
1−

(
µ(N)

µ(N) + λ(N)

)2
)
. (24)

Clearly, 0 < Ψ < β, as the chance of a unit of demand to be lost is less than 1. In particular,

the optimal routing to each line is proportional to its capacity:

z∗i = λ(N)
µi

µ(N)
, i ∈ N (25)

In addition, at optimality, all lines share the same fraction of busy time, which is equivalent to
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same chance of a demand unit to be lost :

λ(N)

λ(N) + µ(N)
.

The cost of the grand-coalition c(N), defined by (23) for S = N, is calculated by substituting z∗i

for i ∈ N, given in (25), into
∑

i∈N τi(zi). The cost of any coalition ∅ ⊆ S ⊂ N is given by

c(S) =
βλ(S)2

λ(S) + µ(S))
. (26)

Interestingly, c(S) is a function of µi, i ∈ S, only through the sum µ(S), though each line works

individually.

Next, we consider the respective cooperative game (N, c), defined by the set of lines N, where

the characteristic function value of each coalition of lines ∅ ⊆ S ⊆ N is the expected long run cost

of units lost by the lines of S.

Theorem 5 The unobservable routing parallel M/M/1/1 lines game (N, c), with the characteristic

function defined in (26), is a market game. The competitive equilibrium prices cost allocation for

this game is given by

xi =
βλ(N)

(λ(N) + µ(N))2
[(λ(N) + 2µ(N))λi − λ(N)µi] , i ∈ N.

Proof: The game (N, c) satisfies the requirements of a market game due to the form of the

characteristic function, see (23), and to the fact that functions τi(·) in (23) are convex for i ∈

N. Therefore, the game is totally balanced. The competitive equilibrium prices is obtained by

substituting z∗i for i ∈ N , see (25), and Ψ, see (24), in (2).

As can be seen from the core cost allocation of the game as stated in Theorem 5, the cost

allocated to any line i, i ∈ N, is linearly increasing in its demand rate λi and linearly decreasing

in its capacity µi, where λi has a greater weight in the cost allocation than µi has. In fact, by

rearranging the coefficients of λi and µi, we can see that the cost is increasing linearly in the demand

rate λi and is decreasing in the surplus capacity µi − λi.

The same calculations for non-identical costs per lost unit by the lines i ∈ N, βi, reveal that the
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optimal routing to line i, i ∈ N, is a function of the respective Lagrange multiplier Ψ, that depend

on (β1, . . . , βn). Thus, let zi(Ψ) be the optimal routing to line i ∈ N as a function of the respective

Lagrange multiplier Ψ. Some basic algebra results in the following equations that have no closed

form solutions:

zi(Ψ) = µi

(√
1 +

Ψ

βi −Ψ
− 1

)
, i ∈ N (27)

The next proposition provides some insight to the line-dependent cost parameters optimization

problem and the respective cooperative game:

Proposition 2 The unobservable routing optimization problem and the respective cooperative game

in parallel line loss systems with line dependent cost per unit lost, satisfies the following properties:

1. There exists a unique optimal routing of demands to the lines.

2. All lines of N are open at optimality.

3. No closed form expression for the optimal routing of demands to line exists.

4. The game is a market game and therefore it is totally balanced.

Proof: Any optimal solution of the unobservable routing in parallel line loss systems with line

dependent cost per unit lost, satisfies (27). Let βmin = min{βi : i ∈ N}.

1. The uniqueness of the solution follows from the strict convexity of τi(z), i ∈ N, that implies

the uniqueness of the Lagrange multiplier Ψ.

2. We first show that Ψ < βmin. For that sake note that the cost incurred by any unit of demand

that can be directed to any line, is strictly less than βmin, as if this demand unit is routed

to the line that is associated with βmin, there is a strictly positive chance that it will not get

lost, even if all the demand of rate λ(N) is routed to that same line. Thus, by (27), zi(Ψ) > 0

for i ∈ N.

3. In order to find the optimal routing, one needs to solve for Ψ by solving the constraint∑
i∈N zi(Ψ) = λ(N). This equation has no closed form solution for general βi, i ∈ N.
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4. The proof that the game is a market game and is totally balanced follows along the same

lines as the proof of Proposition 2.

As stated in the third item of Proposition 2, in the general case of line dependent lost costs, no

closed form solution for Ψ, and therefore neither for z∗i (Ψ), i ∈ N, exist. However, as zi(Ψ), i ∈ N,

are increasing functions of Ψ, one can search for Ψ by using a technique such as bisection. Once

that Ψ, and hence z∗i (Ψ), i ∈ N, are found, a core cost allocation based on competitive equilibrium

prices can be computed.

In the rest of this subsection we limit ourselves to lines that have identical unit lost cost

parameters denoted by β > 0, as done at the beginning of this subsection. In addition, we allow

now for outsourcing demand at a cost of 1 per unit. The total cost consists of the cost of lost

units plus the outsourcing cost. Assuming that each line is assigned its own dedicated supervisor,

the supervisors might be asked to cooperate by redirecting the incoming demand to the lines and

possibly to the external service provider in order to minimize the steady state expected cost. Let

G = (N, c̃) be the cooperative game that assigns to each coalition of lines ∅ ⊆ S ⊆ N, with given

capacities µi, i ∈ S, the minimum long run expected cost related to a total demand rate of λ(S)

units, which are either outsourced or redirected to the lines of S.

If β ≤ 1 then the outsourcing cost of a unit is at least as large as discarding the unit, implying

that no unit is outsourced, and the game G = (N, c̃) boils down to the game (N, c) analyzed at the

beginning of this subsection, where no option of outsourcing existed.. Thus, in the sequel we then

consider the case where β > 1.

The marginal cost due to lost units increases in the demand rate routed to the line. Let z̄i be

the maximum demand rate routed to line i, i ∈ N, before the outsourcing cost is cheaper than the

expected loss cost on the line. In order to compute z̄i we solve for ∂τi(z)
∂z = 1, where τi(z) =

βz2

µi+z .

Therefore, under the case that β > 1,

z̄i = (

√
β

β − 1
− 1) µi , i ∈ N. (28)
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Clearly, z̄i increases with µi, i ∈ N. Let gi(z) be the optimal cost of line i for demand rate z :

gi(z) =


βz2/(µi + z) if z ≤ z̄i, i ∈ N

βz̄2i /(µi + z̄i) + (z − z̄i) otherwise.

Thus, the long run expected cost of lost units and outsourcing of any coalition ∅ ⊆ S ⊆ N in the

game G = (N, c̃) is given by

c̃(S) = min{
∑
i∈S

gi(zi) :
∑
i∈S

zi = λ(S) and zi ≥ 0 for i ∈ S} (29)

The cost of the grand-coalition c̃(N), is obtained by substituting S by N in (29). Similarly to (12),

the Lagrange multiplier corresponding to the equality constraint of problem c̃(N), see (29) for

S = N, is equal to

Θ = min{Ψ, 1}, (30)

where Ψ is defined in (24).

Theorem 6 The unobservable routing with outsourcing in parallel M/M/1/1 lines game, G =

(N, c̃), is a market game.

Proof: The proof is similar to that of Theorems 1 and 3. Based on the form of the characteristic

function of the game, see (29), and in view of the convexity of the functions gi, i ∈ N, the game

G = (N, c̃) is a market game, see (1).

Based on Theorem 6 and Condition 2 in Section 2, the game G = (N, c̃) is totally balanced,

and the cost allocation based on competitive equilibrium prices is in its core.

Similarly to Lemmas 1 and 2, the solution (z∗i )i∈N of c̃(N), see (29), satisfies that either for all

i ∈ N, z∗i < z̄i or, for all i ∈ N, z∗i ≥ z̄i. Recall that Θ is the Lagrange multiplier of the equality

constraint in (29) for S = N. If Θ < 1 outsourcing is not used by the lines of N and z∗i < z̄i, for all

i ∈ N. Outsourcing is not used also if z∗i = z̄i, for all i ∈ N. If outsourcing is not used, the routing

rate to line i, i ∈ N, is given in (25). Outsourcing is used if and only if λ(N) >
∑

i∈N z̄i. In such
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a case, Θ = 1, and the optimal routing to line i, i ∈ N, is z̄i where a rate of λ(N)−
∑

i∈N z̄i units

is outsourced. In view of the strict convexity of the functions gi(z) in z ∈ (0, z̄i), for i ∈ N, at

optimality, the routing rates to the lines of N are unique.

Theorem 7 The optimal cost of the grand-coalition and the competitive equilibrium prices core

allocation (xi)
n
i=1 of the unobservable routing parallel M/M/1/1 lines with outsourcing game, (N, c̃),

are:

• If Θ < 1, or if Θ = 1 and λ(N) =
∑

i∈N z̄i, then no outsourcing takes place by the grand-

coalition N, c̃(N) is given in (26) for S = N, and the cost core allocation for i ∈ N is given

in Theorem 5.

• Otherwise, Θ = 1 and λ(N) −
∑

i∈N z̄i > 0, where z̄i, i ∈ N, are defined in (28). A rate of

λ(N)−
∑

i∈N z̄i units is outsourced by N, c̃(N) = λ(N)− µ(N)(
√
β −

√
β − 1)2, and

xi = λi − µi(
√
β −

√
β − 1)2 , i ∈ N. (31)

Proof: According to Theorem 6, the cost allocation based on competitive equilibrium prices, whose

general form is, xi = gi(z
∗
i )−Θ(z∗i − λi) for i ∈ N, is in the core of the game (N, c̃), where (z∗i )

n
i=1

is the optimal solution to (29) for S = N and Θ is the respective Lagrange multiplier of its equality

constraint, see(30).

• If Θ < 1, or if Θ = 1 and λ(N) =
∑

i∈N z̄i, then

λ(N) ≤
∑
i∈N

z̄i = (

√
β

β − 1
− 1) µ(N),

and outsourcing is not used by N thus the results obtained by analyzing the unobservable

routing game (N, c) at the beginning of this subsection, as stated in the Theorem, apply.

• Otherwise, outsourcing is used, the arrival rate to line i is z̄i, i ∈ N, and a rate of λ(N) −∑
i∈N z̄i > 0 demand units is outsourced. Accordingly, c̃(N) is calculated. The cost allocation

in (31) is based on competitive equilibrium prices and as the game is a market game, see

Theorem 6, it is in its core.
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As all lines are open in the optimal solution, and the cost allocation has the same form for all

lines, no free riding issue might occur here.

Note that if outsourcing is not used by N, the form of c̃(N) is the same as the cost of a single

line with capacity µ(N) and demand of λ(N), and moreover it is not additive is λi or µi, i ∈ N.

Thus, guessing a cost allocation that satisfies the efficiency constraint, i.e.,
∑n

i=1 xi = c̃(N), is not

trivial, let alone guessing a cost allocation that satisfies also the 2n−2 stand-alone constraints, one

for each coalition. The identification of the game as a market game allows us to easily get a core

cost allocation.

We conclude this subsection with an example that shows that the unobservable routing with

outsourcing game in loss systems is not concave:

Example 3 Consider an instance where N = {1, 2, 3} and βi = 1 for i ∈ N. Let, λ1 = 1, λ2 = 2,

λ3 = 3, µ1 = 5, µ2 = 3 and µ3 = 4. It is easy to check that outsourcing is not used by N or by

any coalition of lines in N . Take S = {1, 2} and T = {1, 3}. Thus, S ∩ T = {1} and S ∪ T = N.

c̃(S ∪ T ) = 62

18 = 2, c̃(S ∩ T ) = 12

6 = 0.1667, tildec(S) = 32

11 = 0.818182, and c̃(T ) = 42

13 = 1.2307,

thus c̃(S ∪ T ) + c̃(S ∩ T ) > c̃(S) + c̃(T ), proving that the game is not concave, see Condition 1 in

Section 2.

4.2 The capacity sharing and reduction of capacity game

The last line balancing game that we introduce is the capacity sharing with possible capacity

reduction in a system that consists of parallel M/M/1/1 lines. The total cost of a coalition in

this game is composed of the cost of loss units plus the possible savings due to capacity reduction.

As discussed in Section 3.2, the reduced capacity saves the associated maintenance expenses and

possibly is rented to other firms for some profit. We use the same notation as in Section 4.1, but

here, we solve the more general case, that of line dependent cost per unit lost. First, we derive the

optimal domestic processing policy that minimizes the long run expected average cost of lost units.

The cost due to lost units for line i ∈ N is given by fi(y) =
βiλ

2
i

y+λi
, where the variable y ≥ 0 denotes

the capacity assigned to line i ∈ N and βi is the cost per unit lost at line i ∈ N. The optimal total
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cost of lost units of any coalition S∅ ⊆⊆ N over all policies that reassign the capacity µ(S) to the

lines of S where each line i ∈ S faces a demand rate of λi is given by

c(S) = min{
∑
i∈S

fi(yi) :
∑
i∈S

yi = µ(S) and yi ≥ 0 for i ∈ S} (32)

The cost of the grand-coalition c(N) is computed by substituting S by N in (32). Let y∗i be the

optimal capacity of line i ∈ N. Under the optimal policy, lines with a low cost per unit lost are

not necessarily open as their capacity can be used by other lines whose cost of lost units is more

expensive. Without loss of generality, the lines are assumed to be indexed in a non-increasing order

of βi, i.e., β1 ≥ β2 . . . ≥ βn. We prove that the long run average cost of lost units is minimized by

opening lines {1, . . . , i∗}, where i∗ is of the following form:

i∗ = min

{
i ∈ N : βi+1 ≤

(
∑i

j=1 λi
√
βi)

2

(µ(N) +
∑i

j=1 λi)2

}
(33)

Theorem 8 Consider a capacity sharing parallel M/M/1/1 lines system where the objective is to

minimize the long run average cost of lost units by allocating the capacity µ(N) among the lines of

N. The optimal capacity allocation is given by y∗i = 0 for i > i∗ (where i∗ is given in (33)), and:

y∗i = (µ(N) +
i∗∑

k=1

λk)
λi
√
βi∑i∗

k=1 λk

√
βk

− λi for i ≤ i∗ . (34)

In addition, the cost of the grand-coalition is given by

c(N) =
(
∑i∗

k=1 λk

√
βk)

2

µ(N) +
∑i∗

k=1 λk

+
n∑

k=i∗+1

βkλk , (35)

and the Lagrange multiplier of the equality constraint of (32) for S = N is given by

Ψ = − (
∑i∗

k=1 λk

√
βk)

2

(µ(N) +
∑i∗

k=1 λk)2
(36)

Proof:

The proof follows by solving the problem min
∑

i∈N fi(yi) under the constraint
∑

i∈N yi = µ(N)

and yi ≥ 0 for i ∈ N. Suppose that initially all lines of N have zero capacity, and gradually we
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allocate them capacities. If line i is closed then it costs βiλi for losing all its demand. If line i ∈ N

gets an infinitesimal capacity, the marginal cost is dfi(yi)
dyi

|yi=0 = − βiλ
2
i

(yi+λi)2
|yi=0 = −βi < 0. Clearly,

allocating additional capacity to line i ∈ N is profitable as fewer demand units of the line are lost.

The more capacity is assigned to line i ∈ N, the lower is its marginal profit from the loss of less

units.

Starting with lines with no capacities, line 1 is the first to be allocated capacity until either,

the total capacity µ(N) runs out or its derivative reaches −β2. If the first case occurs, only line

1 is open at optimality and the cost is f1(µ(N)) +
∑n

k=2 βkλk. If the second case occurs, continue

to allocate capacities to lines 1 and 2 simultaneously and gradually while keeping df1(y1)
dy1

equal to

df2(y2)
dy2

until either, the total capacity µ(N) runs out, or the derivatives reach the value −β3. We

continue this process of allocating capacity until all the capacity µ(N) is allocated. The explicit

solution is obtained by solving the KKT conditions of problem (32) for S = N and identifying the

Lagrange multiplier Ψ of the equality constraint
∑

i∈N yi = µ(N). In fact, Ψ is equal to the final

value of the derivative of all open lines, i.e., the optimal capacity assignment should be such that

for each open line i, d
dyi

(
βiλ

2
i

yi+λi
)|yi=y∗i

= Ψ and for each closed line i, the derivative at y∗i = 0 is

−βi ≥ Ψ. By solving the conditions, i∗ defined in (33), returns the last open line, and for each open

line i, y∗i =

√
βiλi√
−Ψ

− λi, where Ψ is given in (36). As for each open line i, −βi < Ψ, the capacity

allocated to line i, namely y∗i , is positive. By substituting the value of Ψ, we get y∗i , see (34), and

by substituting y∗i for i ∈ N, into the cost function
∑

i∈N fi(y
∗
i ), we get c(N), see(35).

If βi = β for all i ∈ N, then all lines are open, and each line is allocated a capacity that

is proportional to its demand rate, i.e., y∗i = µ(N) λi
λ(N) . In this case, the proportion of time

that each line is busy, namely, λ(N)
λ(N)+µ(N) , and the optimal cost rate, β λ2(N)

λ(N)+µ(N) , coincide with

the corresponding terms in the solution of the unobservable routing in parallel M/M/1/1/ lines,

analyzed in Subsection 4.1.

Next we consider a system of parallel M/M/1/1 lines with the option of capacity reduction in

return for savings of 1 per unit of capacity reduced. Let ȳi be the maximum capacity allocated to

line i ∈ N before the capacity reduction option becomes more profitable. A line i ∈ N is associated
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with a positive ȳi if and only if dfi(yi)
dyi

|yi=0 = −βi < −1. Some basic algebra gives

ȳi = max{0, λi(
√
βi − 1)}.

The cost of line i ∈ N as a function of its capacity y ≥ 0 is given by

ϕi(y) =


βiλ

2
i /(y + λi) if y ≤ ȳi

βiλ
2
i /(ȳi + λi)− (y − ȳi) otherwise

(37)

Let G = (N, c̃) be the respective cooperative game on a parallel M/M/1/1 lines system, where

line i ∈ N is associated with a demand rate λi, and a total capacity of µ(N) is allocated to the lines

of N, with possible capacity reduction. The respective characteristic function value of the grand-

coalition given in (38) returns the minimum long run expected cost of lost units minus savings due

to capacity reduction over all feasible policies:

c̃(S) = min{
∑
i∈S

ϕi(yi) :
∑
i∈S

yi = µ(S) and yi ≥ 0 for i ∈ S}. (38)

The cost of the grand-coalition c̃(N) is found by substituting S by N in (38).

Theorem 9 The capacity sharing with capacity reduction in parallel M/M/1/1 lines game G =

(N, c̃), where the characteristic function c̃ is defined (38), is a market game.

Proof: The Theorem follows directly from the characteristic function, and the convexity of the

functions ϕi(y), i ∈ N, see (37).

In view of Theorem 9 the game is totally balanced, and the cost allocation based on competitive

equilibrium prices is in its core. Let Θ be the Lagrange multiplier of the equality constraint in (38)

for S = N. Clearly, Θ < 0 as increasing the capacity of the system may only reduce the total cost.

If the option of capacity reduction is not used, then Θ = Ψ < −1, and otherwise Θ = −1. More

specifically,

Θ = min { − 1, Ψ} (39)
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where Ψ is the Lagrange multiplier of the problem with no option of capacity reduction, see (36).

Clearly, the optimal solution to the problem with the additional option of capacity reduction is

such that all lines i ∈ N with βi < 1, are shut as the marginal savings of opening such a line is βi,

which is lower than the marginal revenue of reducing the capacity. In particular, if β1 ≤ 1 then

all lines are shut, all demand is lost, all capacity is reduced, and the long run expected cost is∑
i∈N βiλi − µ(N). Otherwise, let i′ = min{i ∈ N : βi ≤ 1} − 1. Thus, line i ∈ N is closed if and

only if i > min{i∗, i′} def
= i0, where i∗ is defined in (33). Similarly to the other games described in

this paper, at optimality, either for all i ≤ i0, y∗i < ȳi or, for all i ≤ i0, y∗i ≥ ȳi.

As is demonstrated in Theorem 10, surprisingly, this game has a unique form of the equilibrium

competitive prices cost allocation that is independent of whether or not reduction of capacity takes

place.

Theorem 10 The cost of the grand-coalition and the competitive equilibrium prices core allocation

(xi)
n
i=1 of the capacity sharing parallel M/M/1/1 lines with capacity reduction game (N, c̃), are

given by:

c̃(N) = 2
√
−Θ

io∑
i=1

λi

√
βi + Θ

(
io∑
i=1

λi + µ(N)

)
+

n∑
io+1

βiλi

where Θ = min { − 1, Ψ} with Ψ defined in (36).

xi = 2λi

√
−Θβi + (λi + µi)Θ for i ≤ io

xi = λiβi +Θµi for io < i ≤ n

Proof: The proof follows directly from the above analysis, the fact that the game is a market

game, see Theorem 9, and the form of an competitive equilibrium prices cost allocation, see (2).

We note that in this problem, at optimality, some lines might be open and the others might be

closed, as in Subsection 3.1. However, here, as we explain below, the competitive equilibrium prices

core allocation of line i ∈ N, given in Theorem 10, which is a linear function of both the demand
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rate λi and the service rate µi, of the line, does not seem to cause adverse feelings of free riding as

we encountered in Subsection 3.1. Each line is compensated for all its capacity at the rate of |Θ|,

see (39). A close line i ∈ N, pays for the loss of all of its demand a rate of βi per unit, i.e., it pays

a rate of βiλi. An open line j ∈ N, pays for the loss of demand λj(2
√
−Θβj +Θ) < βjλj , meaning

that it pays the loss fee for just a fraction of its demand.

As we have shown for the other games, this last game is also not concave. In fact, Example 3

shows that the capacity sharing loss system with capacity reduction game is not concave for the

case that βi = β for i = 1, 2, 3.

5 Conclusion

The area of line balancing is fundamental in operations and service management. It allows a firm

to increase its profit and improve its efficiency. It is well known that in practice, various causes may

stand as obstacles in achieving a stable full cooperation among various units in a firm. One way

that the management may mitigate these obstacles and encourage full cooperation is by displaying

a scheme that allocates the total cost or rewards among the cooperating units so that both the

strengthes and deficiencies of each unit, are reflected by the scheme. This can be done by using

the theory of cooperative games and the various cost allocation concepts that have been proposed

in the literature. In this paper we focus on cost allocation schemes that guarantee full cooperation

and the stability of the grand-coalition, namely, no unit or coalition of units has an incentive to

abandon the grand-coalition. We consider here four line balancing games that are reducible to

market games, and as such we could point out for each game a specific core cost allocation based

on competitive equilibrium prices. The competitive equilibrium prices cost allocation assigns to

each player i ∈ N the cost that player i faces after applying an optimal assignment of the players’

initial resources among themselves, minus the economic value of the additional resources that are

assigned to player i, where each resource type is evaluated by its corresponding Lagrange multiplier.

We note that, in general, market games deal with any number of resources. In this article, all the

line balancing games that we consider, have a single resource that is reallocated among the players.

In the general case, however, player i may get more units of some resources, where simultaneously,
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the player may be asked to transfer some (or all of the) units of other resources that she owns to

the other players. By definition, this cost allocation sounds fair, and indeed it is proved to be in

the core of the game, i.e., no coalition ∅ ⊆ S ⊆ N can claim that it can pay less by abandoning the

grand coalition. Still, it does not mean that all players will be satisfied by being charged according

to their competitive equilibrium prices. See our discussion in Subsection 3.1 about possible adverse

feelings on free riding of supervisors of lines that are closed at optimality.

As discussed in Section 1, in practice, lines usually have buffers of finite size. In production

processes, the buffers are usually finite due to space limitations that result from the cost of the

space, the cost of holding units in a buffer, or the opportunity cost of financing WIP within a

buffer, see [?]. Similarly, in service systems, the buffers’ size are determined by capacity limitations

that are the result of either limited space, or of a constrained technology, e.g., the number of IP

IVR ports in a call center that are used for queueing purposes. A general parallel line system

may have line dependent buffer sizes. The cost of a line with a positive finite-size buffer consists

of both the congestion cost and the cost of demand lost. In a general system each line i ∈ N

may be associated with three types of resources (1) its buffer size bi, where 0 ≤ bi ≤ ∞, (2) its

demand rate λi ≥ 0 and (3) its service capacity rate µi ≥ 0. In addition, each such line is associated

with two cost parameters (i) a cost βi ≥ 0 per unit lost, which is applicable if bi < ∞, and (ii) a

congestion cost rate αi ≥ 0, which is applicable if bi > 0. By considering the redistribution of the

at most three resources listed above, there exist seven variants of line balancing games on parallel

line systems. The study of such systems can help managers to improve their systems by applying

line balancing methods while being sensitive to designing fair cost/bonus allocation schemes that

retain the stability of the whole system and the continuing cooperation among the heads of the

different units in the firm.
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