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Abstract We consider a multi-item lot-sizing problem with joint set-up costs and
constant capacities. Apart from the usual per unit production and storage costs for each
item, a set-up cost is incurred for each batch of production, where a batch consists of up
to C units of any mix of the items. In addition, an upper bound on the number of batches
may be imposed. Under widely applicable conditions on the storage costs, namely that
the production and storage costs are nonspeculative, and for any two items the one that
has a higher storage cost in one period has a higher storage cost in every period, we
show that there is a tight linear program with O(mT 2) constraints and variables that
solves the joint set-up multi-item lot-sizing problem, where m is the number of items
and T is the number of time periods. This establishes that under the above storage cost
conditions this problem is polynomially solvable. For the problem with backlogging,
a similar linear programming result is described for the uncapacitated case under very
restrictive conditions on the storage and backlogging costs. Computational results are
presented to test the effectiveness of using these tight linear programs in strengthening
the basic mixed integer programming formulations of the joint set-up problem both
when the storage cost conditions are satisfied, and also when they are violated.
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1 Introduction

In this paper we consider a multi-item lot-sizing discrete time problem in which
production takes place in (a possibly limited number of) mixed batches of constant
capacity. Apart from the usual unit storage and production costs, there is a fixed cost per
batch representing the use of limited capacity resources. An alternative interpretation
involves a warehouse/retailer and decisions on the use of trucks of a given capacity to
ship from the warehouse so as to (possibly) stock items and satisfy demand forecasts
at the retailer. The objective is to find replenishment decisions for all items that satisfy
the demand over a finite planning horizon, and minimize the sum of fixed and variable
production costs and storage costs.

As explained below, the complexity of the multi-item lot-sizing joint set-up cost
problem is determined by the specific assumptions made on the cost parameters. In this
paper we develop a compact linear program, i.e., a linear programming formulation for
the problem whose size is polynomial in the size of the input. Moreover, we identify
widely-applicable conditions on the cost parameters under which, the proposed linear
programming formulation is tight, i.e., it generates an optimal solution to the multi-
item lot-sizing joint set-up cost problem.

More specifically, we first assume, without loss of generality, that the per unit costs
have been normalized so that the production costs are zero over time, see for instance
p. 132 in Pochet and Wolsey [16]. Then, we make the following assumptions on the
per unit storage cost hi

t for item i in period t

(i) Nonspeculative (Wagner–Whitin) cost condition: hi
t ≥ 0 for all i, t , and

(ii) Dominance condition: it is possible to index the items such that they have non-
increasing storage costs in each period, that is, hi

t ≥ hi+1
t for all i, t .

Under the above conditions on the storage cost parameters, we show that an optimal
solution for the multi-item lot-sizing joint set-up cost problem can be obtained by
solving a linear program with O(mT 2) constraints and variables, where m is the
number of items and T is the number of time periods. To our knowledge this is the
first polynomial algorithm for a multi-item lot-sizing problem with joint set-up costs
in which a batch may include any mix of items. Our result complements a recent result
of Levi et al. [10] showing that the problem is NP-hard when the storage costs are
non-speculative, but the dominance condition above does not hold. We also briefly
describe a similar tight and compact linear program for the problem with backlogging
under more restrictive storage and backlogging cost conditions and when the batch
size is arbitrarily large. The full proof and details of the backlogging case can be found
in Anily et al. [3].

In general, dynamic lot-sizing problems with capacity restrictions are known to
be hard problems. When only one batch is allowed in each period and the capacity
limitation is time-dependent, even the single item case is NP-Hard, see Florian et al.
[8] and Bitran and Yanasse [4]. When the capacity limitations are time independent,
the single item problem is solvable in polynomial time, see Florian and Klein [7]
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Multi-item lot-sizing with joint set-up costs 81

and van Hoesel and Wagelmans [17]. Pochet and Wolsey [14] considered the single
item problem with multiple batches, where the set-up, inventory holding and unit
production costs are time-dependent. They designed an O(T 3) algorithm, which is
based on finding a shortest path in an appropriately defined network. Lee [9] addressed
the single item multiple batch problem in which there exists a setup cost for ordering
in a particular period, in addition to a different setup cost incurred for each batch, and
presented an O(T 4) procedure to solve it.

The special case of the single item problem with non-speculative costs, also called
Wagner–Whitin costs, arises very frequently and has received special treatment. In the
uncapacitated case, Wagelmans et al. [19] and Federgruen and Tzur [6] have shown
that there is an O(T ) algorithm, and Pochet and Wolsey [15] have derived a tight
and compact linear programming description in both the uncapacitated and constant
capacity cases.

The effectiveness of an MIP approach based on such tight linear programs, or on
valid inequality descriptions of the convex hulls of solutions, has been demonstrated
on various lot-sizing problems starting with Eppen and Martin [5]. The recent book of
Pochet and Wolsey [16] classifies and presents the state-of-the-art on the formulation
and solution of a wide variety of production planning problems by mixed integer
programming, and demonstrates the effectiveness of tight extended formulations on
several industrial cases.

Results concerning polynomial algorithms for multi-item problems are limited.
Exceptions are the multi-item discrete lot-sizing problems with and without back-
logging in which a limited number of items are produced per period, see Miller and
Wolsey [12]. The problem studied here with multiple items and multiple batches has
been studied recently. Anily and Tzur [1] developed a O(mT m+5) dynamic program-
ming algorithm, assuming production, holding and batch/set-up costs to be constant
over time. Note that this algorithm has polynomial running time for a fixed number
of items, but in practice its running time is prohibitive even for very small values of
m. Finally Anily and Tzur [2] contains an optimal search algorithm and heuristics to
solve the problem.

In Sect. 2 we formally present the problem and the assumptions on the storage
costs, and then develop the results and proofs. In Sect. 3 we state the results for the
backlogging case. In Sect. 4 we present some computational results indicating the
potential value of these reformulations in solving joint set-up problems as mixed inte-
ger programs, both for cases in which the storage cost conditions hold and also when
they are violated. We conclude with some remarks concerning possible extensions and
open questions.

2 The multi-item joint set-up problem

First we present the notation needed to describe the multi-item problem.
T is the number of periods.
m is the number of items.
di

t is the demand of item i in period t for 1 ≤ i ≤ m, 1 ≤ t ≤ T .
hi

t is the unit storage cost of item i in period t for 1 ≤ i ≤ m, 1 ≤ t ≤ T .
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qt is the fixed cost for producing a full or partial batch in period t .
C is the batch capacity.
vt is the maximum number of batches allowed in period t . Note that traditionally in
lot-sizing models one takes v = (v1, . . . , vT ) = (1, . . . , 1) as one allows only one
set-up (or a single batch) per period.

To formulate the problem as a mixed integer program, we introduce the following
decision variables:
yt —the number of batches produced in period t .
xi

t —the production quantity of item i in period t .
si

t —the storage quantity of item i at the end of period t , with si
0 = 0 for all i .

The problem, denoted F AM (for a family set-up), can be formulated as the following
mixed integer linear program:

min
m∑

i=1

T∑

t=1

hi
t s

i
t +

T∑

t=1

qt yt (1)

si
t−1 + xi

t = di
t + si

t for all i, t (2)
m∑

i=1

xi
t ≤ Cyt for all t (3)

si
0 = 0 for all i, y ≤ v (4)

x ∈ R
mT+ , s ∈ R

m(T +1)
+ , y ∈ Z

T+ (5)

Recall the nonspeculative and dominance conditions on the storage costs:
h1

t ≥ h2
t ≥ · · · ≥ hm

t ≥ hm+1
t ≡ 0 for all t .

With these additional conditions the problem class is denoted F AM∗.

We introduce the idea of surrogate products, where the i-th surrogate product is
composed of the i items having the largest storage costs. (Any two items with identical
storage costs can be combined). For this surrogate product, we introduce the following
surrogate variables: Si

t = ∑i
j=1 s j

t are the surrogate storage variables, Xi
t = ∑i

j=1 x j
t

are the surrogate production variables, Di
t = ∑i

j=1 d j
t are the surrogate demands and

Hi
t = hi

t − hi+1
t ≥ 0 the surrogate storage costs. Note that

∑m
i=1

∑T
t=1 hi

t s
i
t =∑m

i=1
∑T

t=1 hi
t (Si

t − Si−1
t ) = ∑m

i=1
∑T

t=1(h
i
t − hi+1

t )Si
t = ∑m

i=1
∑T

t=1 Hi
t Si

t , and
Xi

t ≤ Cyt for all i, t , so we obtain an equivalent formulation:

min
m∑

i=1

T∑

t=1

Hi
t Si

t +
T∑

t=1

qt yt (6)

Si
t−1 + Xi

t = Di
t + Si

t for all i, t (7)

Xi
t ≤ Cyt for all i, t (8)

Si
t ≥ Si−1

t , Xi
t ≥ Xi−1

t for all i, t (9)

Si
0 = 0 for all i, y ≤ v (10)
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X ∈ R
mT+ , S ∈ R

m(T +1)
+ , y ∈ Z

T+ (11)

where constraints (7) are obtained by summing constraints (2) and constraints (9) come
from the non-negativity of si

t and xi
t , respectively. Note that there is a bijection between

feasible (x, s, y) solutions of (2)–(5) and feasible (X, S, y) solutions of (7)–(11).
Our first relaxation is precisely to drop the constraints (9) giving:

min
m∑

i=1

T∑

t=1

Hi
t Si

t +
T∑

t=1

qt yt (12)

Si
t−1 + Xi

t = Di
t + Si

t for all i, t (13)

Xi
t ≤ Cyt for all i, t (14)

Si
0 = 0 for all i, y ≤ v (15)

X ∈ R
mT+ , S ∈ R

m(T +1)
+ , y ∈ Z

T+ (16)

Letting Di
tl ≡ ∑l

u=t Di
u , and aggregating the balance constraints (13) and the

capacity constraints (14), we obtain a second relaxation:

min
m∑

i=1

T∑

t=1

Hi
t Si

t +
T∑

t=1

qt yt (17)

Si
t−1 + C

l∑

u=t

yu ≥ Di
tl for 1 ≤ t ≤ l ≤ T, i = 1, . . . , m (18)

Si
0 = 0 for all i, y ≤ v (19)

S ∈ R
m(T +1)
+ , y ∈ Z

T+, (20)

where constraints (18) state that for each surrogate item i , the sum of the initial
inventory in period t and the capacity in periods t, . . . , � is at least as large as the
demand of the item in these periods. Let X F AM∗

be the feasible region (18)–(20).
Note first that the storage cost conditions on hi

t translate into the condition Hi
t ≥ 0

for all i, t .
The observations below are almost immediate because the surrogate stock variables

Si
t are unbounded from above, and thus in an extreme point solution of conv(X F AM∗

)

at least one of the inequalities (18) must be satisfied at equality for each pair i, t .

Observation 1 If Hi
t < 0 for some i ∈ {1, . . . , m}, t ∈ {1, . . . , T }, then

min{HS + qy : (S, y) ∈ X F AM∗} → −∞.

Observation 2 Every extreme point of conv(X F AM∗
) is of the form (S∗, y∗) where

y∗ ∈ {y ∈ [0, v] ∩ Z
T : ∑t

u=1 yu ≥ 	 Dm
1t

C 
 for 1 ≤ t ≤ T } and S∗i
t−1 = maxk=t,...,T

(Di
tk − C

∑k
u=t y∗

u )+ for 1 ≤ t ≤ T, 1 ≤ i ≤ m.
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Lemma 1 In every extreme point of conv(X F AM∗
)

0 ≤ Di
t + Si

t − Si
t−1 = min[Di

t + Si
t , Cyt ] ≤ Cyt for 1 ≤ t ≤ T, 1 ≤ i ≤ m.

Proof Consider an extreme point (S, y) of conv(X F AM∗
). According to Observation 2

this extreme point satisfies the following inequalities: Si
t−1 ≥ 0 and Si

t−1 ≥ (Di
tτ −

C
∑τ

u=t yu)+ for 1 ≤ t ≤ τ ≤ T, where at least one inequality holds as equality for
all 1 ≤ t ≤ T, 1 ≤ i ≤ m.

We first show that Di
t + Si

t − Si
t−1 ≤ min[Di

t + Si
t , Cyt ] by showing that Di

t +
Si

t − Si
t−1 ≤ Cyt . For this we consider two distinct cases, Si

t = 0 or Si
t > 0. If

Si
t = 0, then by Observation 2 Si

t−1 ≥ Di
t − Cyt and therefore Di

t + Si
t − Si

t−1 =
Di

t − Si
t−1 ≤ Di

t − (Di
t − Cyt ) = Cyt . If Si

t > 0, then from Observation 2 there
exists τ , t + 1 ≤ τ ≤ T, such that Si

t = Di
t+1,τ − C

∑τ
u=t+1 yu . Observation 2 also

implies that Si
t−1 ≥ Di

t,τ − C
∑τ

u=t yu . Therefore, Di
t + Si

t − Si
t−1 = Di

t + Di
t+1,τ −

C
∑τ

u=t+1 yu − Si
t−1 ≤ Di

t + Di
t+1,τ − C

∑τ
u=t+1 yu − Di

t,τ + C
∑τ

u=t yu = Cyt .

To complete the proof, we show that either Di
t + Si

t − Si
t−1 ≥ Di

t + Si
t or Di

t + Si
t −

Si
t−1 ≥ Cyt . The former inequality is clearly satisfied when Si

t−1 = 0. If Si
t−1 > 0,

there are two cases. If Si
t−1 = Di

t −Cyt , then Di
t +Si

t −Si
t−1 = Di

t +Si
t −(Di

t −Cyt ) =
Si

t + Cyt ≥ Cyt . If Si
t−1 = Di

tτ − C
∑τ

u=t yu with τ > t , then using the fact
that Si

t ≥ Di
t+1,τ − C

∑τ
u=t+1 yu, we get that Di

t + Si
t − Si

t−1 ≥ Di
t + Di

t+1τ −
C

∑τ
u=t+1 yu − (Di

tτ − C
∑τ

u=t yu) = Cyt . ��
Now we can state and prove the two principal results of this paper.

Theorem 2 The relaxation min{HS + qy : (S, y) ∈ X F AM∗} solves the multi-item
lot-sizing problem (1)–(5) if and only if H ≥ 0.

Proof We have shown above that the costs are unchanged under the change of the
surrogate variables. When Hi

t ≥ 0 for all i and t , the problem min{HS+qy : (S, y) ∈
X F AM∗} is a relaxation of the multi-item lot-sizing problem, and we only need to
show that if (S, y) is an optimal (extreme point) solution of this relaxation, then the
corresponding solution (x, s, y) with si

t = Si
t − Si−1

t , Xi
t = Di

t + Si
t − Si

t−1 and

xi
t = Xi

t − Xi−1
t solves the original problem. Given y ∈ Z

T+ which is optimal for
min{HS + qy : (S, y) ∈ X F AM∗}, (4) holds by definition. Moreover, there exists a
corresponding optimal solution S with Si

t−1 = maxl≥t (Di
tl − C

∑l
u=t yu)+ for all i

exactly as in Observation 2. Now as Di
t ≤ Di+1

t , we have that Si
t−1 ≤ Si+1

t−1 , and thus

si
t−1 ≥ 0. Then Si

t ≤ Si+1
t , Di

t ≤ Di+1
t and from Lemma 1 Xi

t = min[Di
t + Si

t , Cyt ].
It follows that Xi

t ≤ Xi+1
t , and so xi

t ≥ 0. Also as (S, X) satisfy the flow conservation
equations (13) by definition, (s, x) satisfy the flow conservation constraints (2). Finally,
Xm

t ≤ Cyt , so
∑m

i=1 xi
t ≤ Cyt and (3) is satisfied. Thus (x, s, y) is feasible for the

original problem (1)–(5). ��
The next result provides a compact linear programming formulation for

conv(X F AM∗
).
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Theorem 3 conv(X F AM∗
) =projs,y QFAM∗

where the polyhedron QFAM∗
is described

by the following constraints:

Si
t−1 = Cµi

t + C
T∑

u=t

f i
tuδi

tu for all i, t (21)

l∑

u=t

yu + µi
t +

∑

{u: f i
tu≥ f i

tl }
δi

tu ≥ Di
tl/C� + 1

for all i, t, l with 1 ≤ t ≤ l ≤ T (22)
T +1∑

u=t

δi
tu = 1 for all i, t (23)

Si
0 = 0 for all i, y ≤ v (24)

S ∈ R
m(T +1)
+ , y ∈ R

T+, µ ∈ R
mT+ , (δi

t t , . . . , δ
i
tT , δi

t,T +1) ∈ R
T −t+2+

for all i, t (25)

where f i
tl = Di

tl/C − Di
tl/C� for all i, t, l with 1 ≤ t ≤ l ≤ T and f i

t,T +1 = 0 for
all i, t .

Proof The motivation for the variables of this new formulation lies in the fact that
in an extreme point solution of (18)–(20), Si

t−1 mod C must take one of the values
C f i

tt , . . . , C f i
tT , C f i

t,T +1. Introducing corresponding 0-1 variables: δi
tu = 1 if Si

t−1

mod C = C f i
tu and µi

t for the integer part, we have that in every extreme point

Si
t−1 = C

T∑

u=t

f i
tuδi

tu + Cµi
t for all i, t

T +1∑

u=t

δi
tu = 1 for all i, t

δi
t ∈ {0, 1}, µi

t ∈ Z
1+ for all i, t.

The proof consists of three steps: (i) to show that conv(X F AM∗
) ⊆projs,y QF AM∗

; (ii)
to show that projs,y QF AM∗ ∩ (Rm(T +1) × Z

T ) ⊆ X F AM∗
and (iii) to show that y is

integer-valued in an extreme point of QF AM∗
and thus also in an extreme point of

projs,y QF AM∗
.

(i) If (s, y) is an extreme point of conv(X F AM∗
), there exist δ, µ integer such that

(s, y, δ, µ) satisfies (18)–(20),(21),(23). Substituting for Si
t−1 using (21), (18)

becomes
∑l

u=t yu +∑T
u=t f i

tuδi
tu +µi

t ≥ Di
tl/C. Then using (23),

∑
{u: f i

tu< f i
tl }

f i
tuδi

tu < f i
tl and thus

∑l
u=t yu + ∑

{u: f i
tu≥ f i

tl } f i
tuδi

tu + µi
t > Di

tl/C − f i
tl =

Di
tl/C�. Now Chvàtal-Gomory rounding shows that (22) is a valid inequality

123
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when y, δ, µ are integer. As extreme rays of conv(X F AM∗
) are generated by

increasing the µi
t variables, (22) is valid for conv(X F AM∗

).
(ii) Here it suffices to show that if (s, y, δ, µ) ∈ QF AM∗

with y integer, then (s, y)

satisfies (18). Letting α = ∑
u: f i

tu≥ f i
tl

δi
tu with 0 ≤ α ≤ 1, we have that

Si
t−1 + C

l∑

u=t

yu = Cµi
t + C

T∑

u=t

f i
tuδi

tu + C
l∑

u=t

yu

≥ C( Di
tl

C
� + 1 −

∑

{u: f i
tu≥ f i

tl }
δi

tu) + C
T∑

u=t

f i
tuδi

tu

≥ C Di
tl

C
� + C{(1 − α) + f i

tlα}

≥ C Di
tl

C
� + C f i

tl = Di
tl .

(iii) We show that the 0-1 matrix A associated with the constraints (22)–(23) is
totally unimodular. We use the characterization that for all column subsets J ,
there exists a partition J+, J− of J such that

∣∣∣∣∣∣

∑

u∈J+
aru −

∑

u∈J−
aru

∣∣∣∣∣∣
≤ 1

for every row r of the matrix.

Let Jy be the columns associated to yt variables in J and let J i
δ be the columns

associated to µi , δi variables in J .
We assign elements of Jy alternately to J+ and J− working from y1 up to yT .
Now fix t , and let τt = min{u : u ≥ t, u ∈ Jy}.
For each i , treat the variablesµi

t , δ
i
tu in the order (µi

t , δ
i
tu1

, δi
tu2

, . . . , δi
tuT −t+1

, δi
t,T +1)

where f i
tu1

≥ f i
tu2

≥ · · · ≥ f i
tuT −t+1

≥ f i
tuT +1

= 0. Observe that the corresponding

constraint submatrix, defined by the variables in J i
δ with i, t fixed, and the constraints

(22) is a consecutive 1’s matrix with 1’s in the first column.
Now consider row r = (i, t, �) of (22). If τt ∈ J+, assign the columns of J i

δ

alternately starting with J−.
We have by construction that as τt ∈ J+,

0 ≤
∑

u∈J+∩Jy

aru −
∑

u∈J−∩Jy

aru ≤ 1.

Also from the assignment to J i
δ ,

−1 ≤
∑

u∈J+∩J i
δ

aru −
∑

u∈J−∩J i
δ

aru ≤ 0.
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By addition we obtain that

−1 ≤
∑

u∈J+
aru −

∑

u∈J−
aru ≤ 1.

If τt ∈ J−, the argument is similar. Thus the matrix is TU, and the extreme points of
QF AM∗

have y integer. ��
Putting these two theorems together, we have the result that is the basis of our

subsequent computations.

Corollary 4 An optimal extreme point solution of the linear program min{HS + qy :
(S, y, µ, δ) ∈ QF AM∗

) solves F AM∗. It suffices to set si
t = Si

t − Si−1
t and xi

t =
di

t + si
t − si

t−1 for all i, t to obtain an optimal solution to F AM∗.

The following observation is also useful in practice. When m = 1, X F AM∗
reduces

to the set X W W−CC = {(s, y) ∈ R
n+ × Z

n+ : sk−1 + C
∑t

u=k yu ≥ dkt 1 ≤ k ≤ t ≤
T, y ≤ v}, arising from the problem with Wagner–Whitin costs and constant capaci-
ties, that has been studied earlier. In particular, QF AM∗

reduces to one of the known
extended formulations for conv(X W W−CC ), and a “mixing inequality” description of
conv(X W W−CC ) in the original variables with an O(T 2 log T ) separation algorithm
is known, see in Pochet and Wolsey [15,16]. Theorem 3 is closely related to a similar
result for mixing sets with common integer variables in Miller and Wolsey [13] and
can also be written as

conv(X F AM∗
(S, y)) =

m⋂

i=1

conv(X W W−CC (Si, y)).

Corollary 5 An inequality description of conv(X F AM∗
(S, y)) is known, and there is

an O(mT 2 log T ) separation algorithm.

When C is very large, and in particular C ≥ ∑m
i=1

∑T
u=1 di

u = Dm
1T , the problem

becomes uncapacitated and is denoted by F AM∗ − U . Using the explicit description
of the convex hull of the single item uncapacitated problem from Pochet and Wolsey
[15], we get:

Corollary 6 The linear program

min
m∑

i=1

T∑

t=1

Hi
t Si

t +
T∑

t=1

qt yt (26)

Si
t−1 +

l∑

u=t

Di
ul yu ≥ Di

tl for 1 ≤ t ≤ l ≤ T, i = 1, . . . , m (27)

Si
0 = 0 for all i, yt ≤ 1 for all t (28)

si
t = Si

t − Si−1
t for all i, t (29)
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xi
t = si

t − si
t−1 + di

t for all i, t (30)

S ∈ R
m(T +1)
+ , y ∈ R

T+ (31)

solves the uncapacitated problem F AM∗ − U.

3 The backlogging case: Uncapacitated

In this section we consider the backlogging version of the joint set-up problem,
that we denote by F AM − B. It can be formulated as the following mixed integer
program:

z = min
m∑

i=1

T∑

t=1

hi
t s

i
t +

m∑

i=1

T∑

t=1

bi
t r

i
t +

T∑

t=1

qt yt

si
t−1 − r i

t−1 + xi
t = di

t + si
t − r i

t for all i, t
m∑

i=1

xi
t ≤ Cyt for all t

si
0 = r i

0 = 0 for all i,

x ∈ R
mT+ , s, r ∈ R

m(T +1)
+ , y ∈ Z

T+,

where r i
t is a variable denoting the backlog size of item i in period t , and bi

t is the
backlogging cost per unit of item i backlogged in period t .

It is now natural to ask under what conditions, if any, a relaxation based on m
surrogate items solves F AM − B. We show that it can be done for the uncapacitated
version of this problem, denoted F AM − B − U , in which the capacity C is replaced
by a large parameter M s.t. M ≥ Dm

1T = ∑m
i=1

∑T
t=1 di

t .
Assuming an ordering of the items, we proceed as before and construct the same

surrogate items using in addition Ri
t = ∑i

j=1 r j
t , Bi

t = bi
t − bi+1

t , and as before we
obtain a relaxation

min
m∑

i=1

T∑

t=1

Hi
t Si

t +
m∑

i=1

T∑

t=1

Bi
t Ri

t +
T∑

t=1

qt yt (32)

Si
t−1 + M

l∑

u=t

yu + Ri
l ≥ Di

tl for 1 ≤ t ≤ l ≤ T, i = 1, . . . , m, (33)

Si
0 = Ri

0 = 0 for all i, (34)

S, R ∈ R
m(T +1)
+ , y ∈ Z

T+, (35)

whose feasible region (33)–(35) is denoted X F AM∗−B−U . When m = 1, this reduces
to the set X W W−U−B = {(s, r, y) ∈ R

n+ × R
n+ × Z

n+ : sk−1 + M
∑t

u=k yu + rt ≥
dkt 1 ≤ k ≤ t ≤ T }, arising from the uncapacitated problem with Wagner–Whitin
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costs (ht , bt ≥ 0 for all t), and backlogging for which the convex hull is known.
Specifically we can write

X F AM∗−B−U (S, R, y) =
m⋂

i=1

X W W−U−B(Si, Ri, y).

Below we examine the strength of this relaxation and examine whether its convex
hull can be described. First we introduce the assumptions on the storage and backlog
costs that we will use:

(i) hi
t = hi , bi

t = bi for all i, t

(ii) hi − hi+1 ≥ 0, bi − bi+1 ≥ 0 for all i

(iii) bi = κhi for all i .

With these additional conditions, the problem is denoted F AM∗ − B − U . With time
invariance, conditions (i) and (ii) are natural extensions from the case without back-
logging. Condition (iii) then ensures that between any two production periods, those
periods in which demand is satisfied from stock and those satisfied by backlogging
are the same for each item.

Theorem 7 The relaxation min{HS + BR + qy : (S, R, y) ∈ X F AM∗−B−U } solves
F AM∗ − B − U.

Theorem 8

conv(X F AM∗−B−U (S, R, y)) =
m⋂

i=1

conv(X W W−U−B(Si, Ri, y)).

The proof of these two theorems can be found in Anily et al. [3]. That of Theorem 7
is similar to that of Theorem 2, and that of Theorem 8 is a simple generalization of
the proof for the case m = 1 as it appears in Pochet and Wolsey [15]. The latter
article provides a compact extended formulation and a fast separation algorithm for
conv(X W W−U−B . Alternatively one can use the facility location formulation for unca-
pacitated lot-sizing with backlogging that is also known to be tight, see, for example,
Levi et al. [11].

The storage and backlog cost conditions (i)–(iii) are very restrictive. However there
appears to be little chance of relaxing them significantly. The already strong con-
ditions (i) and (ii) are insufficient. Specifically the relaxation (32)–(35) does not
solve the instance with m = 2, T = 8, d1 = (10, 5, 8, 4, 1, 16, 38, 31), d2 =
(2, 3, 4, 9, 2, 13, 21, 25), h1 = 0.2, h2 = 0.1, b1 = 2.0, b2 = 0.2, q = 101.

It has also been pointed out by a referee that the problem F AM∗ − B −U is easily
solved by dynamic programming.
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4 Computation

Here our aim is to indicate the potential of the extended formulations developed
in the previous sections in solving the multi-item lot-sizing problem with joint set-up
costs F AM . Much effort has been spent in recent years in using polyhedral combina-
torics to develop special purpose branch-and-cut algorithms, and our results could be
used in this way. However, extended formulations can be used directly with a standard
mixed integer programming solver, and do not require the development of special
separation routine or branch-and-cut software.

It is also important to observe that the extended formulations are valid for relax-
ations of F AM , and can therefore be used whether or not the Wagner–Whitin and/or
Dominance conditions hold. It is thus natural to ask to what extent the formulation
is effective even when these conditions are violated. Note however that many models
encountered in practice have storage costs per item that are constant throughout the
time horizon, so the storage cost conditions are very often satisfied.

Our computational tests are limited to (i) showing how a standard MIP solver
performs on one set of randomly generated instances of F AM∗ when given the original
formulation, or one tightened by either the uncapacitated or constant capacity extended
formulations, and to (ii) indicating that the extended formulations can be used and can
be effective on instances of F AM for which the storage cost conditions are not satisfied.

4.1 Instances of F AM∗ satisfying the cost conditions

For the joint set-up problem F AM∗, we consider instances with m = 30 and
T = 50, and three capacity levels C ∈ {50, 120, 250}. The instances are generated
randomly as follows:
di

t = 	5∗rand� (	x� denotes the closest integer to x) for all i, t , hm
t = 0.05+0.1∗rand

for all t and hi
t = hi+1

t +0.05∗rand for all i, t with i < m, and qt = 	75+50∗rand�
for all t , where rand is generated each time uniformly in [0, 1].
The bounds vt for t = 1 . . . T are set to 100 and are inactive. The instances with
C = 50 can be considered as tightly constrained possibly requiring multiple batches
per period, whereas those with C = 250 are relatively uncapacitated problems in the
sense that typically yt ∈ {0, 1}, and the bound is inactive.

For each instance we compare three options. The first is to solve the MIP (1)–(5),
denoted “O” (original). The second is to add the linear program (27)–(31) based on
the uncapacitated problem to the formulation (1)–(5) with Si

t replaced by
∑i

j=1 s j
t ,

denoted “U” (uncapacitated). The third is to add the linear program (21)–(26) based
on the constant capacity problem to the formulation (1)–(5), again with Si

t replaced

by
∑i

j=1 s j
t , denoted “CC” (constant capacity). All three MIPs are then solved with

the Xpress-MP system, Version 16.01.01, using the standard defaults running under
Windows XP on a 1.6 GHz IBM Thinkpad.

In the two Tables below we will use the following notation: LP denotes the value
of the linear programming relaxation of the (re)formulation, XLP the value after the
further addition of Xpress-MP cutting planes at the top node, IP the optimal value,
and BLB and BIP the best lower and upper bounds on termination.
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Table 1 Average of 5 F AM∗ instances with 30 items and 50 periods

C r c LP/IP XLP/IP BLB/IP BIB/IP S Nodes

50 O 1,550 3,050 97.6 98.5 99.0 100.1 300 48,300

50 U 39,697 3,050 97.8 98.5 98.9 100.2 300 7,500

50 CC 42,800 42,800 100 100 100 100 11 1

120 O 1,550 3,050 81.5 94.2 97.1 100.3 300 17,700

120 U 39,697 3,050 95.8 96.6 98.3 100.4 300 3,700

120 CC 42,800 42,800 100 100 100 100 34 1

250 O 1,550 3,050 49.3 84.4 94.0 100.3 300 11,700

250 U 39,697 3,050 100.0 100.0 100.0 100.0 9 3

250 CC 42,800 42,800 100 100 100 100 45 1

Results for the F AM∗ instances are presented in Table 1. In the first column we
indicate the value of the capacity C , in the second column we indicate which reformu-
lation is used: O , U , or CC . In the next two columns we specify the number of rows r
and columns c of the problem after reformulation. The next four columns present the
average values of the ratios LP/IP,XLP/IP,BLB/IP and BIP/IP taken over 5 instances,
written as percentages. The last two columns give the average total time in seconds
and the average number of nodes in the tree. The maximum run time was set to be 300
seconds. Note that the instances have just 50 integer variables.

We now comment briefly on the results in Table 1. As a consequence of Theorems 2
and 3, the constant capacity reformulation allows us to solve all the instances by linear
programming. The fact that when C = 250 the uncapacitated reformulation requires
only three nodes on average confirms that these instances are relatively uncapacitated.
With the original formulation, we observe that the duality gaps are much smaller for the
capacitated cases with C ∈ {120, 50} than for the uncapacitated case with C = 250.
One also sees from column BIP/IP that the quality of the best feasible solution found
after 300 seconds is always remarkably good, especially with the original formulation.

4.2 Instances of F AM violating the cost conditions

Here we consider instances of F AM satisfying neither the Wagner–Whitin nor the
Dominance conditions. Specifically the instances are generated as before, except that
hm

t = −0.15+rand, where rand is generated each time uniformly in [0, 1], so there is
a 15% chance on average of hm

t being negative. As before, hi
t = hi+1

t +0.05∗rand for
all i, t with i < m. Again we generated five instances for which we consider three dif-
ferent capacity levels C ∈ {50, 120, 250}. Each instance is solved first with the initial
formulation (1)–(5), denoted “O” as above, and then with a tightened formulation.

Two observations motivate our choice of reformulation for these instances.

1. As these instances do not satisfy the cost conditions, every subset of items is a
potential surrogate item. Our choice here is to use the m singleton sets (single
items), and m surrogates of the form {1, . . . , i} where the items are ordered by
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Table 2 Average of 5 F AM instances with 30 items and 50 periods

C r c LP/IP XLP/IP BLB/IP BIB/IP S Nodes Opt

50 O 1,550 3,050 98.0 98.7 99.1 100.2 300 40,509 0

50 CC 5,3150 51,650 99.4 99.8 99.9 100.1 154 494 4

120 O 1,550 3,050 85.2 95.2 97.8 100.2 300 18,660 0

120 CC 45,500 44,000 99.2 99.3 99.8 100.0 247 140 3

250 O 1,550 3,050 54.3 82.8 90.8 100.9 300 10,732 0

250 U 37,955 3,050 99.6 99.6 100 100 22 42 5

nonincreasing average storage cost h̄i = ∑
t hi

t .

2. The complete reformulation using (21)–(26) has a very large number of constraints
and variables. However, as shown in Van Vyve and Wolsey [18], approximate
versions of these reformulations that are significantly smaller often give bounds
almost as good as those provided by the complete formulation. Specifically for
the constant capacity reformulation, we choose a parameter T K with 0 ≤ T K ≤
T −1. The approximate formulation obtained from (21)–(26) by only introducing
the variables δi

tl and the constraints (22) for values of t, l with l − t ≤ T K ,
denoted QF AM∗

T K , is a valid relaxation. A similar approximation is obtained in the
uncapacitated case if one just generates the constraints (27) for values of t, l with
l − t ≤ T K .

We can now describe the reformulations used in Table 2. For the instances with C =
50, we use the formulation (1)–(5), and then add the approximate formulation QF AM∗

T K
for each single item set with T K = 10 and the approximate formulation QF AM∗

T K for the
m surrogate items with T K = 30. For C = 120, we adopted the same reformulation
but with values of T K = 10 and 20, respectively. These two reformulations are
denoted “CC ′′. For C = 250, we added the approximate uncapacitated formulation
because it has no additional variables. We used the values T K = 10 for the single
items and T K = 20 for the surrogate items. This formulation is denoted “U ′′.

Table 2 has the same structure as Table 1, except for the additional column in which
we indicate how many of the instances are solved to optimality within the time limit
of 300 s.

These results suggest that even when the storage cost conditions are not satisfied,
the reformulations aid significantly in strengthening the lower bounds and in proving
optimality.

5 Further remarks and observations

In the brief computational section we have attempted to indicate one of the sim-
plest ways in which our results can be used in practice, namely just passing a modified
MIP formulation to a standard MIP solver. One possible alternative is to work in the
original space of variables and add violated inequalities describing the convex hull as
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cuts. Again the description of the facet-defining inequalities and an efficient separa-
tion algorithm are known—based on Observation 4 it suffices to use the separation
algorithm for conv(X W W−CC ) described in Pochet and Wolsey [16] for each surrogate
item. So this approach requires the implementation of an O(mT 2 log T ) separation
routine integrated with the MIP solver. Another classical alternative would be to use
Lagrangean relaxation or column generation, in which case the subproblem to be
solved at each iteration is to optimize over X F AM∗

. This leads us to an intriguing open
question.

Is there a polynomial dynamic program or a polynomial combinatorial algorithm
for F AM∗ faster than the linear programming approach derived here?

The so-called Joint Replenishment Problem involving both joint and individual item
fixed costs is a more complicated problem whose formulation might also benefit from
the results of this paper. Levi et al. [11] give a primal-dual 2-approximation algorithm
for the version with backlogging and a very general storage cost structure that is based
on the facility location formulation for uncapacitated lot-sizing. More generally our
reformulations can be applied to any lot-sizing problem with joint fixed costs.
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