
feature

64	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

Ritu Agarwal and Atish P. Sinha analyzed pro-
grammers’ assessments of UML’s convenience and
report that they perceived only the class diagram
and the interaction diagram as user friendly.1 If
this is the case for programmers, the perception
of UML diagrams’ convenience and clarity is even
lower among nontechnical systems analysts and
customers. Ian Sommerville reaches an even more
radical conclusion, noting that it’s necessary in
many cases to combine UML diagrams with func-
tional processing and flow diagrams for customers
to understand the UML diagrams.

Developing object models during require-
ments analysis usually simplifies the transition
to object-oriented design and programming.
However, I have found that end-users of a
system often find object models unnatural
and difficult to understand. They may prefer
to adopt a more functional, data processing
view. Therefore, it is sometimes helpful to
supplement object models with data-flow

models that show the end-to-end data pro-
cessing in the system.5

These considerations lead to these basic ques-
tions: What is object-oriented analysis (OOA) to
the practitioner? How does it differ from func-
tional approach analysis? Has OOA theory, which
had a prominent place in the literature of the 90s,
taken hold in practice as well? Or has it remained
theoretical, and if so, why?

Defining OOA
To address these issues, we first need to define
OOA. Although in practice OOA is perceived as
an analytical operation that uses UML diagrams,
we can’t take this as the definition of the theory
behind the OOA methodology. Indeed, OOA
products are usually UML diagrams, which have
become the de facto standard for object modeling
and have even been mechanized in various com-
puter-aided software engineering (CASE) tools.5
Theoretically, though, we distinguish between the

R esearch1–3 and commercial surveys4 suggest that the object-oriented (OO) ap-
proach strongly supports the technical design and coding phases of software
development but poorly supports the functional analysis phase. In other words,
“the design is good, the analysis is poor.”4 The source of this weakness is often

attributed to the fact that “UML representations have not been effective in large-scale proj-
ects for context and communication.”4

System modeling
using object-oriented
analysis (OOA) and
UML diagrams fails to
attract practitioners
because the costs
of engaging in
OOA outweigh
the benefits.

Roy Gelbard, Bar-Ilan University

Dov Te’eni and Matti Sadeh, Tel Aviv University

Object-Oriented Analysis—
Is It Just Theory?

de s ign

	 January/February 2010 I E E E S O F T W A R E 	 65

methodology and the tools with which we imple-
ment it.

CASE tools, as well as the software engineer-
ing literature, emphasize the benefits of using UML
diagrams during systems analysis to make an easy
and smooth transition to design and coding.5,6
Although researchers assess UML as efficient and
effective for OO programming, they raise doubts
as to its efficiency and effectiveness for functional
analysis.1,7–11

Roger Pressman addresses the question of
OOA’s significance and provides this definition:

Any discussion of object-oriented analysis
must begin by addressing the term object-
oriented. … The intent of object-oriented
analysis is to define all classes (and the
relationships and behavior associated with
them) that are relevant to the problem to be
solved.6

In addition, as Martin Fowler and Kendall
Scott mention in their prize-winning book UML
Distilled: Applying the Standard Object Mod-
eling Language, “The UML is the successor to
the wave of object-oriented analysis and design
methods.”12

This article examines the practice of OOA in
light of Pressman’s view. It not only depicts the sit-
uation but also points to potential pitfalls and sug-
gests directions for improvement in terms of orga-
nizational cost-benefits.

Approach
Pressman provides an operational definition of
OOA’s required elements:

To accomplish this, a number of tasks must
occur:

 1. … requirements must be communicated
between customer and software engi-
neer.

 2. Classes must be identified.

 3. A class hierarchy is defined.

 4. Object-to-object relationships should be
represented.

 5. Object behavior must be modeled.

 6. Tasks 1 through 5 are reapplied itera-
tively until the model is completed.6

Pressman’s definition therefore requires three
main operations: first, identifying and defining
classes—that is, the attributes, methods, hierarchy
and relations among the classes; second, modeling
potential object behaviors using UML notations;
and finally, an iterative life cycle.

Our examination of the actual application of
OOA thus focused on

 ■ class-objects, as the first phase in system
analysis,

 ■ using UML diagrams to describe the dynamic
aspect of class objects (the methods, messages,
and relations between classes), and

 ■ exploiting engineering capabilities to achieve
an iterative life cycle.

We examined the actual use factors involved
with OOA, focusing on organizational cost-benefit
considerations. The costs included total time re-
quired to complete work, licensing, training and
support, and gap solutions (mechanized or man-
ual). The benefits covered time saving at each phase
of the life cycle as a result of team support, version
management support, change management sup-
port, clarity for the customer, clarity for the devel-
opment team, quality (closure and completeness of
the product), and ease of mechanization.

Earlier research highlighted these compo-
nents in an isolated fashion and didn’t link them
to the larger picture of cost-benefit consider-
ations.2,4,7,8,13 In contrast, we incorporate these
features while recognizing the putative impact of
external variables such as policy, which can be
dictated by the customer, business partners, or the
organization itself as part of the organizational or
project culture.

Method
We conducted semistructured interviews with soft-
ware project managers, senior systems analysts,
and IT developers concerning the system analysis
of 54 software development projects, which were
all planned to be programmed in OO languages
and tools. All projects had already accomplished
system analysis. Semistructured interviews let in-
terviewers adjust the questions according to the
terms and terminology particular to various proj-
ects. This lets us analyze projects from a wide
variety of fields, system types, and development
procedures.

Table 1 presents the distribution of the 54 sam-
ples. Although the projects differed in terms of the
developing body’s internal best practice, CMMI,
ISO 12207, or MIL-STD 498 development

Researchers
raise doubts
as to UML’s

efficiency and
effectiveness
for functional

analysis.

66	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

standards, all were defined as OO projects, from
the initiating phase to the analysis and develop-
ment phases.

Each interview had four stages. First, we pre-
sented the study and the interview process to cre-
ate a relationship with the interviewees, reduce
their concerns, and assure confidentiality. Second,
we asked general questions about the project: the
nature of the project, phases and products, con-
cepts, and terminology. At this stage, we refrained
from posing questions that could have been per-
ceived as overly invasive. Third, we asked what-
how-why questions based on the phase of the proj-
ect and the required questions at each phase. We
proceeded gradually from “what” and “how” to
“why,” delaying questions interviewees could see
as judgmental as much as possible. This gradual-
ness also helped deal with the interviewees’ natu-
ral tendency to present a “pretty picture.” In the
final stage, we focused on questions about the

project and interviewee that could be perceived
as personal and invasive. However, by this stage,
the interviewees had made some investment in the
survey process and found it easier to answer more
probing questions.

Results
Our study focused on three basic requirements of
OOA: class identification and definition, use of
modeling language to characterize objects; and it-
erative life cycle.

Class Identification and Definition
Figure 1 presents the phase in which we identified
and defined the analysis, design, and coding classes
in each project. We found a significant difference
between projects that used CASE tools and projects
that didn’t. So, Figure 1 presents the distribution of
class identification and definition in these two cat-
egories separately.

We found no correlation between this distribu-
tion and other project distributions, except project
size (in person-years). The projects with a 3–10
person-year scope identified and defined classes at
earlier phases, while smaller and larger projects left
identification to later.

Use of Modeling Language
Table 2 presents the projects’ use of UML diagrams
and additional modeling devices, including flow
charts and data-flow diagrams. Each row shows the
percent of projects that used the specified diagram.
We made no distinction between basic or advanced
diagram use.

It appears that users or developers might not
find symbolic language—for example, modeling
diagrams—sufficiently clear, requiring supplemen-

Table 1
Project distribution

Sector High-tech (37%), software house (29%), governmental (12%), start-up (12%), services (10%).

Project size (person-years) Up to 1 (25%), 1–3 (10%), 4–10 (33%), 11–50 (16%), more than 50 (16%).

Team size (members) Up to 3 (31%), 4–10 (42%), 11–50 (21%), more than 50 (6%).

Product type Tailor made solution (69%), off-the-shelf product (31%).

System type Massive user interface and database (59%), real-time (23%), combined (18%).

Programming language .NET (42%), C++ (31%), Java (25%), Delphi (2%).

Development standards ISO (62%), in-house best practice (33%), CMMI (5%).

Use of computer-aided software
engineering (CASE) tools

CASE tools available but not used (45%), CASE tools not available (28%), CASE tools used (27%).

Object-oriented background Professional course (30%), academic and professional courses (26%), self-education (23%), academic
course (19%), none (2%).

60

50

40

30

20

10

0

CASE tool availableCASE tool not available

Pe
rc

en
ta

ge

36% 57%

7%

49%

32%

19%

Coding
Design
Analysis

Figure 1. Class
identification and
definition. The chart
shows the earliest
phase in which we
identified or used
classes. When
computer-aided
software engineering
(CASE) was available,
classes were defined
earlier, but even then
only a fraction of the
projects identified
classes at the
analysis phase.

	 January/February 2010 I E E E S O F T W A R E 	 67

tal textual descriptions. The degree of accuracy
that diagrams achieve defines to what extent text is
needed to complete the description. Table 3 presents
the level of text support used to complement the
modeling language’s visual components. The table
refers to the entire set of diagrams each respondent
used. These results show that diagrams aren’t clear
enough to the user or to the developer and that sub-
stantial textual clarifications usually support visual
modeling—for example, diagrams including UML
diagrams.

Table 4 presents the distribution of modeling
diagrams into six categories according to their func-
tionality in system modeling, noting the degree to
which the surveyed projects used each category. We
found a negative correlation between the degree of
use and the amount of textual description. In other
words, the higher the degree of use, the fewer tex-
tual descriptions. We found the greatest amount
of verbal description in use case and data-flow dia-
grams (the main-functionalities category), and the
lowest in the data item category, which includes
class diagrams and entity relation (ER) diagrams.
A closer examination of ER and class diagram use
indicated that most projects actually used class dia-
grams as ER diagrams, modeling only the static as-
pect, not the dynamic aspect. Another finding re-
garding the configuration category is that nearly all
projects were modeled during design and not dur-
ing analysis.

Iterative Life Cycle
The results show that 84 percent of the projects
were carried out in a single iteration—that is, ac-
cording to the waterfall model and contrary to

the OO approach. Only 16 percent of the projects
were developed in a process that defined multiple
iterations.

Cost-Benefit Considerations
We asked the respondents to assess the effective-
ness of the methodologies and the tools they used
during various phases of work, such as

 ■ the degree of clarity of the various UML dia-
grams to the customer, analysis team, and de-
velopment team.;

 ■ the degree of accuracy of the description
achieved with the diagrams, and to what extent
text was needed to complete the description;

 ■ the amount of investment needed for method
use, ease of learning, and description using the
diagrams;

 ■ the amount of team support, in change man-
agement and version management;

 ■ the amount of support for various software en-
gineering operations, code generation, and re-
use; and

Table 2
Diagram use

Diagram Use (%) Remark

Use case 6.7

Class 56.9

Activity 25.5 Logical level

State transition 17.6

Sequence 25.5 Physical level of activity, isomorphic to collaboration

Collaboration 13.7 Communication diagram according to UML 2

Package 33.3 Logical level, isomorphic to component

Component — Physical level, isomorphic to package

Deployment —

Flow charts 25.5

Data-flow 9.8 Supports use case functionality

Table 3
Level of textual support

Textual support level Use (%)

Diagrams with a few remarks 2.0

Text and graphics presented together 35.3

Mostly text diagrams when needed 29.4

Text with a few diagrams 25.5

Text only 7.8

68	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

 ■ the reason for using the method: the availability
or unavailability of the supporting CASE tool.

The following quotes represent the most typical
responses to these questions:

Drawing diagrams takes a long time and the
project must follow a strict and busy schedule,
which leaves no time to invest in diagrams.

The customers don’t understand the com-
plex diagrams anyway, and even if they do
understand the outline of symbols, they still
have difficulty understanding the significance
of the described functionality models.

The diagrams alone never succeed in describ-
ing the system accurately.

In any case, additional aspects are discovered
during the coding phase that the analyst did
not anticipate.

A detailed description of the screens consti-
tutes a sufficiently clear and precise defini-
tion of the system (in projects in which the
user interface is a chief component of the
system).

Only 27 percent of the projects used CASE
tools. CASE tools were available in 72 percent of
the projects, but 45 percent chose not to use them.
The remaining 28 percent didn’t make the CASE
tools available to the project. The most com-
mon answers regarding this point included these
reasons:

The customer isn’t interested in a formal
explanation of the diagrams, and a detailed
verbal explanation is necessary in any case.

The customer’s demands and our obligations

to him are defined as a functional language,
and no one cares how it’s modeled at the
analysis and design phases; the main thing
is that the system provides the necessary
functionality.

Use of CASE tools doesn’t shorten the pro-
cess because the real difficulty is in defining
each of the demands and not in the modeling
method used to do so.

Discussion
We made three observations regarding the data.
First, only in 7 to 19 percent of the projects were
the classes identified—partially or comprehen-
sively—during analysis. In the other projects, class
identification occurred during design and coding
(32 to 57 percent during coding).

Second, during analysis, the practitioners sur-
veyed used modeling tools to characterize five
main components: data-item modeling (56.9
percent), process modeling (39.2 percent), busi-), process modeling (39.2 percent), busi- percent), busi-), busi-
ness-logic modeling (25.5 percent), action mod- percent), action mod-), action mod-
eling (17.6 percent), and hierarchic distribution
according to system functionalities (13.5 percent).
We found the first two components at not only
a higher level of use compared to the three lat-
ter components but also a higher level of clarity.
As Table 3 shows, diagrams aren’t clear enough
to the user or the developer. This is why massive
amounts of textual description usually support vi-
sual modeling—for example, diagrams, including
UML diagrams.

Finally, only 16 percent of the projects were de- percent of the projects were de-of the projects were de-
veloped in a process that defined the number of
iterations. The rest of the projects were developed
in a single iteration—that is, according to the wa-
terfall model and not the object approach.

Thus the field, which is apparently fluent in
OOA principles (only 2 percent of the interviewees
had no training in OOA methodology), doesn’t

Table 4
Percentage and type of diagrams used in the six modeling categories

Modeling Category Use (%) Diagrams used

Data item 56.9 Class diagram, entity-relation diagram

Process 39.2 Activity, sequence, and collaboration diagrams

Logic 25.5 Flow charts

Actions 17.6 State transition diagram

Main functionalities 13.5 Use case, data-flow diagram

Configuration 33.3 Package and component diagrams

	 January/February 2010 I E E E S O F T W A R E 	 69

implement this approach in actual work situa-
tions, despite the availability of CASE tools in 72
percent of the surveyed projects. Is this due to the
low percentage of CASE tool use in OOA meth-
odology? Or, is it due to insufficiently developed
technology? Or, does it arise from comprehension
problems related directly to the approach and its
representation using UML diagrams?

Brian Dobing and Jeffrey Parsons report that
both customers and programmers experienced
difficulties in understanding some of the model-
ing diagrams.8 Customers need to critique the re-
sult of the characterization, whereas programmers
must develop the programs according to the mod-
eling diagrams. Several researchers have attempted
to overcome the lack of integration between ob-
jects and processes.14,15 Still, David Avison and
Guy Fitzgerald define the current state as a post-
methodology era, in which methodologies lack a
great deal of capabilities and are greedy exploiters
of resources.16 The latter feature directly impacts
the cost-benefit ratio

Overall, the common perception is that CASE
tools are at a reasonable level of technologi-
cal maturity and user friendliness. So, the cost-
effectiveness argument is more relevant to the ap-
proach these tools implement rather than to the
technology. In software development, as in other
fields of development, projects aspire to work effec-
tively by reaching goals economically and in a “rea-
sonable” time frame. In software development, hu-
man resources are the dominant cost factor. A clear
goal definition is therefore crucial, but we could not
find explicit statements of project goals. We elabo-
rate on this matter in light of our survey results and
suggest a number of practical recommendations.

Clarity, Integrity, and Completeness
as Keys to Cost-Benefit Analysis
Unlike a construction project’s architectural plan-
ning phase, OOA methodology lacks clarity and
comprehensiveness (except for, perhaps, the data
component).17 Moreover, the products of architec-
tural planning—lot plan, construction plan, electri-
cal plan, water, air conditioning, carpentry, garden-
ing, and quantities itemization—successfully meet
these criteria:

 ■ Clarity and integrity. Both the customer and
the engineer can explicitly understand them.
The customer will demand that they reliably
correspond to his other desires, while the engi-
neer will need to complete the engineering plan-
ning of the building.

 ■ Completeness. An architectural plan promises

full coverage of all building components, so
there’s no need for additions or explanations at
later implementation phases.

OOA products don’t meet these criteria.
Moreover, OOA products fail to provide con-

trols and measures to assess whether the criteria
have been met. The condition for clarity-integrity, as
implemented in the database component (using the
normal forms), is the elimination of uncontrolled
data item redundancy. UML diagrams are beset
with duplications, which not only threaten the clar-
ity and explicitness of the object definition but also
waste valuable time and human resources.1,8,11,13

UML has several redundancies, for example:

 ■ activity diagrams and sequence diagrams both
represent the same functional actors and the
same functional chronology;

 ■ sequence diagrams and communication dia-
grams both represent the same interactions
among the functional classes; and

 ■ communication diagrams and the operations
section in class diagrams both represent the
same functionality of the classes.

As regards completeness, both the functional
and the OOA approach fail to provide visual-mod-
eling tools for the user interface, business logic,
hardware and software infrastructures, and tech-
nical constraints.

So, the low use of OO CASE tools and OOA
methodology casts doubts on the methodologies
more than on organizational policy.2 First and fore-
most, organizations’ policies in regard to method-
ologies and tools reflect cost-benefit considerations.
In the absence of clarity, integrity, and completeness
of all system components, and in the absence of de-
composing and stopping rules for all system com-
ponents, the ability to use these tools and method-
ologies effectively and economically has little appeal
for the organization or project.

Bene�t

Actual use
• Class identi�cation
• Advanced UML
• Iterative use

Cost

Organization policy
(intervene)

Intention to use

Figure 2. The proposed
model. The actual use
of OOA is an outcome
of the intention to use
OOA, which is affected
by cost variables,
benefit variables
and an intervene
variable related to the
organization policy.

70	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

We suggest the model in Figure 2 for further ex-
ploration of the intention to use and the actual use
of any analysis theory, methodology, or tool. Re-
garding OOA theory, we suggest that the “actual
use” variable should be composed from the three
core constructs: class identification, advanced UML
(to clearly distinguish between “pure” OO use and
other uses that are usually quite similar, such as ER
diagrams and class diagrams), and iterative use.

Suggested Directions for Improvement—
Less Is More

Given the need to meet cost-benefit con-
straints, the analysis phase should focus on only
four components and exploit them by relying on
previous experience and theory. The first com-
ponent is the organizational-interactions. Practi-
tioners rarely exploit use-case diagrams because
these diagrams don’t analyze crucial components
such as organizational structure, knowledge au-
thority and responsibility domains, production ca-
pacity, and workloads. It’s no surprise that these
issues are characterized chiefly by free text, which
reduces clarity and consistency in the specifica-
tion. For example, Dov Te’eni applied communi-
cation theory to match systems design to the par-
ticular organizational structure. Further research
is imperative.18

The second component is data items. Modeling
data items with class diagrams and ER diagrams is
the most effective approach. Given the amount of
detail found in the diagrams in practice, we sug-
gest restricting the modeling during analysis to en-
tities (without methods).

The third component is business processes. In
OOA, business process modeling is scattered over
a wide range of diagrams. Each type of diagram
presents a separate aspect of the process, with no
organized way of forming an integrated picture of
the processes, the business logic, or the way they’re
merged into the organization’s business-service
chain. So, modeling this domain with the OOA
components isn’t effective. A project that meticu-
lously completes the various OOA diagrams in
this domain will find that it’s performing the same
analysis over and over, as many times as the num-
ber of diagrams used. Applied research that injects
organizational theory into the modeling of busi-
ness process is needed to produce useful simula-
tions of the organization.

The final component is user experience. The
OOA methodology doesn’t include modeling of
the user’s interaction with the system. Yet, such
modeling that is based on theories of human cogni-
tion, affect and behavior is necessary for determin-
ing effective design.19 As we indicated earlier, the
current form of use cases is too weak to represent
the user’s physical, cognitive, and affective require-
ments and provides no guidance to effective user
interface designs.

W e’ve argued that for OOA to be worth-
while, costs should be reduced by con-
centrating on four major components,

namely organizational relationships and interac-
tions, data items, business processes, and user ex-
periences. The benefits of each component should
be enhanced by going deeper into the analysis that
builds on relevant psychological, organizational
and social theories.

References
 1. R. Agarwal and A.P. Sinha, “Object-Oriented Model-

ing with UML: A Study of Developers’ Perceptions,”
Comm. ACM, vol. 46, no. 9, 2003, pp. 248–256.

 2. J. Iivari, “Why Are CASE Tools Not Used?” Comm.
ACM, vol. 39, no. 10, 1996, pp. 94–104.

 3. D.J. Reifer, “Is the Software Engineering State of the
Practice Getting Closer to the State of the Art?” IEEE
Software, vol. 20, no. 6, 2003, pp. 78–83.

 4. J. Duggan, “Modeling and Methods: The Keys to the
Quality Kingdom,” Proc. Gartner Analysis and Design
Summit, Gartner, 2001.

About the Authors
Roy Gelbard is head of the Bar-Ilan University Graduate School of Business
Administration’s information system program. His work involves several related areas of
information systems: data and knowledge representation, data mining and recommenda-
tion systems, methodologies of system analysis, and integration of software engineering
and project management tools. Gelbard has a PhD in information systems from Tel-Aviv
University. Contact him at gelbardr@mail.biu.ac.il.

Dov Te’eni is a professor in the information systems department at Tel-Aviv University.
He studies several related areas of information systems: human-computer interaction,
computer support for communication, knowledge management and systems development.
His research usually combines model building, laboratory experiments, and development
of prototypes such as Spider and kMail. Te’eni has a PhD in IS and computer science from
Tel-Aviv University. He coauthored Human-Computer Interaction for Organizations (Wiley
2001), and wrote a novel titled Let’s Congress (visit letscongress.com). He has served as
senior editor for the Management Information Systems Quarterly and associate editor for
the Journal of the Association for Information Systems, Information and Organizations, and
Internet Research. Contact him at teeni@post.tau.ac.il.

Matti Sadeh is a senior software engineer and systems analyst in a large software house. He has a MSc in
information systems management from Tel-Aviv University. Contact him at sadematti@hotmail.com.

	 January/February 2010 I E E E S O F T W A R E 	 71

 5. I. Sommerville, Software Engineering, 8th ed.,
Addison-Wesley, 2007.

 6. R.S. Pressman, Software Engineering: A Practitioner’s
Approach, 6th ed., McGraw-Hill, 2005.

 7. I. Davies et al., “How Do Practitioners Use Conceptual
Modeling in Practice?” Data and Knowledge Eng., vol.
58, no. 3, 2006, pp. 358–380.

 8. B. Dobing and J. Parsons, “How UML Is Used,”
Comm. ACM, vol. 49, no. 5, 2006, pp. 109–113.

 9. C.F.J. Lange, M.R.V. Chaudron, and J. Muskens, “In
Practice: UML Software Architecture and Design
Description,” IEEE Software, vol. 23, no. 2, 2006, pp.
40–46.

 10. D. Te’eni, R. Gelbard and M. Sade, “Increasing the Ben-
efit of Analysis: The Case of Communication Support
Systems,” Didaktik der Informatik, Lecture Notes in
Informatics, vol. 92, Gesellschaft für Informatik, 2006,
pp. 13–27.

 11. A. Zeichick, “Modeling Usage Low: Developers
Confused about UML 2.0”, Software Development
Times, 15 July 2002; www.sdtimes.com/content/article.
aspx?ArticleID=26637.

 12. M. Fowler and K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, Addison-Wesley,
1997.

 13. J.C. Knight et al., “Why Are Formal Methods Not
Used More Widely?” Proc. 4th NASA Langley Formal
Methods Workshop (LFM 97), NASA, 1997, pp. 1–12.

 14. D. Dori, Object Process Methodology—a Holistic
Systems Paradigm, Springer, 2002.

 15. P. Shoval and J. Kabeli, “FOOM: Functional and
Object-Oriented Analysis and Design of Information
Systems: An Integrated Methodology,” J. Database
Management, vol. 12, no. 1, 2001, pp. 193–210.

 16. D.E. Avison and G. Fitzgerald, “Where Now for Devel-
opment Methodologies?” Comm. ACM, vol. 46, no. 1,
2003, pp. 79–82.

 17. B.C. Bjoerk, “A Unified Approach for Modeling Con-
struction Information,” Building and Environment,
vol. 7, no. 2, 1992, pp. 173–194.

 18. D. Te’eni, “The Language-Action Perspective as a Basis
for Communication Support Systems,” Comm. ACM,
vol. 49, no. 5, 2006, pp. 65–70.

 19. D. Te’eni, J. Carey, and P. Zhang, Human-Com-
puter Interaction: Developing Effective Organizational
Information Systems, John Wiley & Sons, 2007.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Heleen Vodegel
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertiser Page
Seapine Software Cover 4

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

ADVERTISER INFORMATION
JANUARY/FEBRUARY 2010 • IEEE SOFTWARE

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

