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Abstract: The classical assumptions of the capital asset pricing model do not 
ensure obtaining a tangency (market) portfolio in which all the risky assets 
appear with positive proportions. This paper gives an additional set of 
assumptions that ensure obtaining such a portfolio. Our new set of assumptions 
mainly deals with the structure of the covariance matrix of the risky assets 
returns. The structure we suggest for the covariance matrix is of a two-block 
type. We derive analytically sufficient conditions for a matrix of this type to 
produce a long-only tangency portfolio (as well as a long-only global minimum 
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1 Introduction 

The Markowitz (1952, 1959) model is one of the great intellectual achievements of 20th 
century finance. Markowitz formalised the concept of diversification and his model led 
directly to the capital asset pricing model (CAPM) of Sharpe (1964), Lintner(1965), and 
Mossin (1966). Nobel prizes in economics (i.e., Markowitz, Sharpe, and Tobin) are due 
wholly or in part to this massive, path-breaking paradigm. 
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While a magnificent intellectual achievement, the Markowitz/CAPM is one of the 
most non-implemented models of the 20th century revolution in finance. Though the 
model has been used for attractive tests of capital market efficiency and pricing, it  
has failed to fulfil its original mission – to be a viable guide in choosing an optimal 
portfolio. Compared to that other blockbuster intellectual achievement of finance, the 
option pricing model of Black, Scholes, and Merton, the Markowitz model is rarely used, 
and –when used in its original form – almost always fails to lead to plausible portfolio 
choices. 

According to the seminal work of Markowitz (1952, 1959) an investor who cares only 
about the mean and variance of portfolio returns should hold a portfolio on the efficient 
frontier. In practice, applying the Markowitz mean-variance theory involves estimating 
the means and covariances of asset returns, and often results in portfolios with large short 
sale positions. This is true both when the means and covariances are estimated by the 
traditional sample mean vector and the sample covariance matrix respectively, as well as 
by more advanced estimation techniques.1 Obtaining portfolios with short sale positions 
can be considered a major drawback, since short selling is often restricted by regulators, 
investment policies of mutual funds sometimes prohibit taking short positions, and many 
individual investors find short selling onerous or impossible.2 In addition, whereas asset 
positions in a long-only portfolio, and hence turnover and transactions costs, are strictly 
bounded, this is not true for portfolios with short positions. 

Of the portfolios on the efficient frontier, two are of a particular interest. The first is 
the tangency portfolio, since, given the assumptions of the CAPM and in the presence of 
a risk-free asset, the CAPM identifies the tangency portfolio with the market portfolio. 
Thus, from the CAPM perspective, obtaining a tangency portfolio that includes short sale 
positions is problematic, since it precludes its identification with the market portfolio. 

The second efficient portfolio of interest is the global minimum variance portfolio 
(henceforth – GMVP), which is, in the mean-variance framework, the portfolio on the 
efficient frontier with the smallest return variance. The interest in the GMVP stems from 
the fact that the derivation of the GMVP requires estimating only the covariance matrix 
of asset returns, whereas for other efficient portfolios we have to estimate the means of 
asset returns as well, and that significantly adds to the estimation error. However, also in 
the GMVP case, its derivation in practice using the Markowitz framework results in 
obtaining highly illogical portfolios with significant short sale positions.3 

Almost from inception it was realised that the failures of the Markowitz/CAPM 
model as a prescriptive instrument for portfolio choice have their roots in the 
incompatibility of historical asset return data with the inputs required for the model  
(the vector of expected returns and the covariance matrix of asset returns). As anyone 
who has ever tried a naïve implementation of Markowitz on almost any historical dataset 
soon realises, data is a poor predictor of expected returns and covariances (correlations), 
and this is what leads to the above mentioned implausible portfolios with the significant 
short positions.4 

1.1 A numerical example 

We illustrate the difficulties with the Markovitz model with an example. Consider annual 
return data for 1994–2004 for nine arbitrary US stocks (General Electric, Microsoft, 
Johnson & Johnson, Kellogg, Boeing, 3M, IBM, Intel, and Merck): 
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Figure 1 Illustration of the difficulties with the Markowitz model 
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A B C D E F G H I J

Percentage 
of portfolio 24.28% 22.07% 11.03% 1.11% 2.96% 5.24% 9.93% 15.79% 7.58%
Average 
return 23.66% 21.38% 18.43% 5.51% 27.63% 21.14% 17.63% 23.05% 13.81%
Standard 
deviation 32.17% 40.71% 18.97% 23.86% 29.93% 25.84% 13.56% 52.19% 25.18%

GE MSFT JNJ K BA MMM IBM INTC MRK
GE 0.0941 0.0690 0.0201 -0.0039 0.0780 0.0612 0.0112 0.1144 0.0467
MSFT 0.0690 0.1507 0.0375 -0.0047 0.0345 0.0827 -0.0020 0.1460 0.0548
JNJ 0.0201 0.0375 0.0327 0.0165 0.0092 0.0270 -0.0036 0.0261 0.0291
K -0.0039 -0.0047 0.0165 0.0518 -0.0069 -0.0074 -0.0042 -0.0241 0.0103
BA 0.0780 0.0345 0.0092 -0.0069 0.0814 0.0399 0.0226 0.0945 0.0388
MMM 0.0612 0.0827 0.0270 -0.0074 0.0399 0.0607 0.0001 0.0965 0.0408
IBM 0.0112 -0.0020 -0.0036 -0.0042 0.0226 0.0001 0.0167 0.0304 0.0049
INTC 0.1144 0.1460 0.0261 -0.0241 0.0945 0.0965 0.0304 0.2476 0.0466
MRK 0.0467 0.0548 0.0291 0.0103 0.0388 0.0408 0.0049 0.0466 0.0577

Risk-free 
rate 3%

Tangency 
portfolio GMVP

GE 8.63% 12.57%
MSFT 20.97% 18.08%
JNJ 2.33% -0.04%
K 7.18% 8.03%
BA -0.69% -7.94%
MMM 57.35% 57.10%
IBM 88.48% 90.30%
INTC -40.30% -38.27%
MRK -43.97% -39.82%

NINE STOCKS, ANNUAL DATA, 1994-2004

Variance-covariance matrix

Explanation:  The return data in row 3 is annual for 1994-
2004.  Row 2 shows the value weights of the portfolio of 
these 9 stocks using market values at the end of 2004.  

The risk-free rate of 3.0% is the approximate annual 
return on U.S. Treasury securities at the end of 2004.

 

We can see that the Markowitz optimisation produces a tangency portfolio whose  
weights (column B, rows 21–29) differ significantly from the value weights of the 
portfolio of the nine stocks using market values at the end of 2004 (row 2). Moreover, 
there are three negative positions in the computed tangency portfolio, two of which are 
very large (Intel and Merck).5 As to the GMVP, it has four negative portfolio positions. 
In most practical optimisation situations, this of course would be impossible to 
implement. 

The correlation matrix of the returns reveals another problem: The historical data has 
three correlations above 0.8. While this is undoubtedly a property of the data, it is 
difficult to believe that this is also a forward-looking correlation. 

Figure 2 Correlation data 
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A B C D E F G H I J

GE MSFT JNJ K BA MMM IBM INTC MRK
GE 1.0000 0.5791 0.3632 -0.0560 0.8905 0.8100 0.2819 0.7492 0.6334
MSFT 1.0000 0.5340 -0.0532 0.3113 0.8647 -0.0406 0.7556 0.5880
JNJ 1.0000 0.4002 0.1780 0.6052 -0.1529 0.2900 0.6699
K 1.0000 -0.1067 -0.1319 -0.1427 -0.2131 0.1880
BA 1.0000 0.5667 0.6116 0.6657 0.5669
MMM 1.0000 0.0040 0.7866 0.6903
IBM 1.0000 0.4721 0.1590
INTC 1.0000 0.3899
MRK 1.0000

Correlation Matrix
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1.2 Is there a solution? 

The problematics of the Markowitz model were realised almost from the first and led to a 
variety of workarounds that initially focused mostly on the covariance matrix. The  
single-index model of Sharpe (1963) and Elton-Gruber’s (1973) constant correlation 
model can be seen as two of these workarounds. Both of these models, which stem  
from the early days of the CAPM, ignore covariances computed from the data and 
substitute instead alternative assumptions about how covariances can be computed. In the 
case of the single-index model, the assumption is that the co-movement between risky 
assets is due to a single common influence or index. In the case of the constant 
correlation model, the assumption is that every pair of risky assets has the same 
correlation coefficient.6 

An early alternative to the problem of computing the expected returns is  
Sharpe’s (1974) “reverse engineering” of expected returns.7 Sharpe’s 1974 paper focuses 
on the computation of the expected return for a benchmark portfolio. By assuming that 
the portfolio is ex-ante optimal, Sharpe shows that the vector of expected returns is given 
by ( ) ,B B fE r x rλ= Ω +  where ( )BE r  is the vector of expected benchmark returns, Ω is 
the covariance matrix, Bx  is vector of benchmark proportions, rf is the risk-free rate, and 
 λ is a normalising constant.8 

More recent attempts to address the problem of estimating the covariance matrix and 
the vector of expected returns include among others: Bayesian models for estimation; the 
MacKinlay and Pastor (2000) missing factor model; the shrinkage estimators of Ledoit 
and Wolf (2003, 2004a, 2004b); the Kan and Zhou (2007) three-fund model; and the 
multi-prior model of Garlappi et al. (2007). However, none of these studies focuses on 
generating portfolios with no short sale positions. 

The most intuitive way to overcome the obstacle of short positions is to add short-sale 
constraints to the portfolio selection problem. Yet, at least from a theoretical point of 
view, this procedure is problematic, as it generates portfolios with weights that can only 
be found numerically and not analytically.9 Another problem with imposing the short sale 
constraints, as noted by Black and Litterman (1992), is that they generate ‘corner’ 
solutions with zero weights in many assets. 

Previous papers by Roll (1977), Roll and Ross (1977), and Rudd (1977) establish 
analytical conditions on the covariance matrix that give a GMVP with long-only 
positions. Yet, our main interest in this paper is the tangency portfolio. Kandel (1984) 
shows that for any set of N – 1 assets, an Nth asset can be analytically constructed such 
that the mean variance optimal portfolio will be long-only. However, Levy and Ritov 
(2001) show that in large markets this Nth asset might be very unrealistic. Green (1986), 
by employing duality theory, presents conditions that ensure the existence of a long-only 
mean variance portfolio. These conditions involve the feasibility of portfolios that have 
non-negative correlation with all assets and positive correlation with at least one. A 
typical criticism regarding these conditions might be that they are not always constructive 
enough. 

1.3 This paper 

In this paper we present an additional set of assumptions (to the classical CAPM 
assumptions) that is sufficient to ensure that the tangency portfolio will indeed  
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be long-only. Our additional set of assumptions deals with the structure of the covariance 
matrix of the risky assets returns and requires the vector of the expected excess  
returns to be positive. Our new set of assumptions also enables obtaining a long-only 
GMVP. 

The structure we suggest for the covariance matrix is of a two-block type. Namely, 
we assume that the risky assets can be divided into two blocks, and pairs of risky assets 
within the same block have the same positive covariance, whereas the covariance 
between stocks from the two different blocks equals a third negative constant. We then 
derive analytically sufficient conditions for a matrix of this type to produce a long-only 
tangency portfolio (as well as a long-only GMVP). 

Clearly, in reality the structure of the covariance matrix is not of a two-block type. 
However, we find this structure to be appealing from the estimation of the covariance 
matrix prospective, since estimating the two-block covariance matrix requires the 
estimation of the variances and only three covariances, whereas without imposing any 
structure on the covariance matrix, its estimation procedure involves the same number of 
variances, but a huge number of covariances, which can cause a severe estimation error 
problem.10 

The idea of reducing the number of parameters that are estimated for constructing the 
covariance matrix estimator is consistent with many works that have been done in the 
past. For example, Sharpe (1963) presents the single-index model, which assumes that 
the co-movement between risky assets is due to a single common influence or index.  
Elton and Gruber (1973) present the constant correlation coefficient model, which 
assumes that every pair of risky assets has the same correlation coefficient. Ledoit and 
Wolf (2003, 2004a, 2004b) follow the seminal work of Stein (1955) and introduce 
shrinkage techniques in which the covariance matrix is estimated based on a weighted 
average of the sample matrix and another covariance matrix estimator on which quite a 
lot of structure is imposed. 

In the next section, we present our theorem which gives an additional set of 
assumptions that is sufficient to ensure obtaining a long-only tangency/market portfolio 
(as well as a long-only GMVP). 

2 Theorem 

In this section we show a construct for the covariance matrix that eliminates the problem 
of tangency portfolios with short sale positions. Our construct – which we call the  
two-block covariance matrix – assumes that the risky assets can be divided into  
two groups (blocks). Within each block, the covariance between stocks is identical for all 
pairs of stocks in the block. The covariance between stocks from different blocks is also 
identical for all pairs. Thus, in the block structure, the number of covariances associated 
with each stock is reduced to two: the covariance with the other stocks in the same block 
(the within-block covariance) and the covariance with the stocks from the other block 
(the between-block covariance). We will show that this construction leads both to 
analytical simplicity and incorporates economic logic. We assume a universe of n risky 
assets and one risk-free asset. 
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Definition: A two-block covariance structure has the following form: 
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subject to the following conditions: 

• The first block is of size j and the second block has size n–j. 

• 2
is  are the variances, η1 and η2 are the covariances within block 1 and 2 respectively. 

• η is the covariance between stocks from different blocks. 

In the appendix to this paper we prove: 

Theorem: Suppose the vector k of expected excess returns is positive. Then both the 
tangency portfolio and the GMVP are long-only, if the covariance matrix is two-block 
and if the following conditions are met: 
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We can notice that the first two conditions imply that in each block the within-block 
covariance must be smaller than the variances of all the stocks that are included in this 
block. Namely, we are dealing here with relatively small-sized within-block covariances. 
Thus, like the shrinkage estimators advocated by Ledoit and Wolf (2003, 2004a, 2004b), 
and the portfolios of estimators advocated by Jagannathan and Ma (2000), Disatnik and 
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Benninga (2007), and Fletcher (2009), the block matrix has the appealing property of 
covariance elements which are shrunk compared to the typically large covariances of the 
traditional sample matrix. Not only are the large covariances those responsible for the 
extreme short positions that are obtained so often when the mean-variance theory is 
implemented in practice, but as Michaud (1989) states, inverting the sample matrix with 
its large covariance elements also amplifies the sampling error. 

We can also see that the limitation of the proposed two-block structure is the 
requirement in the third condition that the between-block covariance has to take a 
negative value. That is because, in real-life, it can be a challenge to find two groups of 
stocks that on average move in opposite directions. 

3 Summary 

The classical assumptions of the CAPM do not ensure obtaining a long-only tangency 
(market portfolio). In this paper, we introduce an additional set of assumptions that is 
sufficient to ensure that the tangency portfolio will indeed be long-only. Our additional 
set of assumptions deals with the structure of the covariance matrix of the risky assets 
returns and requires the vector of the expected excess returns to be positive. 

The structure we suggest for the covariance matrix is of a two-block type. We derive 
analytically sufficient conditions for a matrix of this type to produce a long-only 
tangency/market portfolio (as well as a long-only GMVP). 

We find the structure of a two-block covariance matrix to be appealing from the 
estimation of the covariance matrix prospective. That is because by imposing this 
structure, we decrease significantly the number of parameters, which are needed for the 
estimation process of the covariance matrix. An additional implemental advantage of our 
two-block construct is that it makes use of relatively small-sized within-block 
covariances. In future research, we plan to investigate the plausibility of the two-block 
structure empirically. Specifically, we plan to evaluate the out-of-sample (ex-post) 
performance of the tangency portfolio that is constructed using a two-block covariance 
matrix. 
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Notes 
1 See, for example, Ledoit and Wolf (2003), Jagannathan and Ma (2003), Disatnik and 

Benninga (2007), and DeMiguel et al. (2009). 
2 See, for example, regulation SHO of the US Securities and Exchange Commission (SEC), 

http://www.sec.gov/spotlight/shortsales.htm. Almazan et al. (2004) report that over the  
1994–2000 period 69% of their sample of US domestic equity mutual funds were not allowed 
to short. 

3 Note that in practice the GMVP often includes less extreme short sale positions than other 
efficient portfolios [see for example, Jagannathan and Ma (2003)]. Nevertheless, these short 
sale positions are still quite significant [see for example, Disatnik and Benninga (2007) and 
Disatnik and Katz (2012)]. 

4 The reasonable correspondence of implied option volatilities with the asset return variances 
leads one to believe that historical data may be a better predictor of variances. 

5 With the exception of Kellogg (K) all of the historical average returns are implausibly high as 
a prediction of future expected returns. This is another problem of using historical data. 

6 In examining these short-cut methods to compute the covariance matrix, it is sometimes 
difficult, from the current vantage point, to distinguish between the need for greater 
computational efficiency and the realisation that the historical data gives problematic 
outcomes in the optimisation process. 

7 This method became the foundation of the Black-Litterman (1990) model. 

8 λ is often taken to be a constant representing the optimiser’s risk aversion. Benninga (2008) 
shows that λ can be interpreted in relation to the expected benchmark return. 

9 To obtain a solution for the constrained optimisation problem, an iterative procedure, based on 
the Kuhn-Tucker conditions, is commonly used. 

10 For example, when portfolios of 150 risky assets are considered, without imposing a structure 
on the covariance matrix, one has to estimate 11,175 different covariances. 

Appendix 

The Proof of the Theorem 

The proof consists of three parts. First, we show that, under the conditions of the 
theorem, the two-block structure indeed generates an invertible covariance matrix. Then, 
we show that, under these conditions, a long-only GMVP is obtained. Lastly, we show 
that, under the same conditions, also a long-only tangency portfolio is obtained. 

• Part 1: Disatnik and Katz (2012) show that the two-block matrix is positive definite 
for: 
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Therefore, under the conditions of the theorem, we always obtain a positive definite 
matrix. This implies that the two-block matrix is indeed an invertible covariance 
matrix, since it is also a symmetric matrix. 

• Part 2: Given a covariance matrix Ω, the vector of the GMVP weights is obtained by 

,
-1

T -1
Ω 1

1 Ω 1
 where Ω–1 denotes the inverse matrix of Ω, 1 denotes a vector of ones, and 

1T denotes the transpose vector of 1. Using the two-block structure of Ω, Disatnik 
and Katz (2012) show that the weight of stock i in the GMVP that Ω produces is: 

( )

( )

2
2

1 21

1
2

1 22

11  , 1,...,
( 2 )

11 , 1,...,
( 2 )

i
i

i
i

B
w i j

A B ABs

A
w i j n

A B ABs

η η
η η ηη

η η
η η ηη

+ −
= ⋅ =

+ + + −−

+ −
= ⋅ = +

+ + + −−

 

Thus, we can see that a long-only GMVP is generated, if the following set of 
conditions holds: 
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Therefore, under the conditions of the theorem, we always obtain a long-only 
GMVP. 

• Part 3: Since by assumption the vector of excess returns, k, is positive, in order to 

find a long-only tangency portfolio, whose vector of weights is given by ,
-1

T -1
Ω k

1 Ω k
 it 

is sufficient to prove that under the conditions of our theorem all the elements of Ω–1 
are positive. 

Symmetric considerations imply that, given the two-block structure of Ω, under the 
conditions of the theorem, in Ω–1: all the diagonal elements have the same sign; all 
the off-diagonal elements in the first block have the same sign; all the off-diagonal 
elements in the second block have the same sign; and all the elements outside the 
two blocks have the same sign. 

We progress by showing that when η < 0, all the elements outside the two blocks of 
Ω–1 are positive. By explicitly writing the equations for ΩΩ–1 = I, where I denotes 
the identity matrix, it is straightforward to show that when η = 0, all the elements 
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outside the two blocks equal zero. Saying that the GMVP is long-only is equivalent 
to saying that the sum of the elements in each of the columns of Ω–1 is positive. As a 
result, it can be shown that the elements outside the two blocks cannot equal zero, 
unless η = 0. Using again that ΩΩ–1 = I enables to show that when all the elements in 
Ω–1 are positive, η must be negative. Adding the property that all the elements in Ω–1 
are continuous functions of η enables to show that when η → 0+, all the elements 
outside the two blocks are negative. Combining the last three results with the 
abovementioned continuous property implies that when η < 0, all the elements 
outside the two blocks of Ω–1 must be positive. 

We now turn to the off-diagonal elements in the two blocks of Ω–1. It can be shown 

that, under the conditions of the theorem, when 1 2
1 ,
B

η η η⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 all the off-

diagonal elements in the first block equal zero and when 2 1
1 ,
A

η η η⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 all the 

off-diagonal elements in the second block equal zero. 

It can also be shown that in the range 1 2 1 2
1 1 1, ,
A B B

η η η η
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− + + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 the 

off-diagonal elements in the first block are decreasing functions of η, and in the 

range 1 2 2 1
1 1 1, ,
A B A

η η η η
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− + + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 the off-diagonal elements in the 

second block are decreasing functions of η. As a result under the conditions of the 
theorem, all the  
off-diagonal elements in both blocks of Ω–1 are positive. 

Lastly, after obtaining that under the conditions of the theorem all the off-diagonal 
elements in Ω–1 are positive, it is straightforward to show, using again the equations 
derived from ΩΩ–1 = I, that also the diagonal elements in Ω–1 are positive. 

Q.E.D. 


