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We consider a deterministic pricing and replenishment model in which the retailer advertises a fixed
price and the selling schedule, and customers can advance or delay their time of purchase incurring
holding or shortage costs. We investigate the impact of heterogeneity in the customers' reservation
prices. We show that the resulting optimal solution may be very different from that obtained when
customers are homogeneous. We identify nine types of possible optimal sales strategies, and compute
their profits. In particular, the solution may contain sales at several discrete points of time between
consecutive replenishment epochs with no sales between them.
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1. Introduction

Classic inventory models customarily assume that clients who
do not find the product on the shelf upon their arrival, either quit
(lost sales) or wait for the next reorder time (backlogging), see for
example Section 3.3 in Zipkin (2000). Under backlogging, which
holds especially for monopolists, customers, arriving when the
product is not available, wait for the next replenishment.
The retailer is then penalized by a shortage cost consisting of the
administrative work involved in handling the shortage and the
loss of good will. The shortage cost is often assumed to be
proportional to the amount backlogged and possibly also to the
backlogging duration.

In the more recent literature it has been recognized that
customers are strategic, in particular they time their purchase to
maximize their welfare, and profit maximizing sellers respond to
the customers' strategy. Some of this literature is reviewed by Shen
and Su (2007). In such models dynamic pricing, rationing of the
amount of product on the shelves, stockpiling, and timing of sales
play cardinal role. For example, short term price promotion may
have several effects, like attracting customers of other brands, an
increase of consumption, and stockpiling. The latter means that
customers may hold inventory at a cost, in order to consume it
later when the price is raised to its regular level. An explanation
for the potential benefits of this behavior was given by Eppen and
Libermann (1984): “Under certain conditions, price deals on
nonperishable goods can benefit both retailer and customer by
ll rights reserved.

sin@post.tau.ac.il (R. Hassin).
transferring part of the inventory holding cost from the former to
the latter in return for an unusually low price.”

Early papers on stockpiling are Salop and Stiglitz (1982) and
Bucovetsky (1983), and more recent contributions include Hendel
and Nevo (2004), Bell et al. (2002), and Lai et al. (2010). Other
recent papers also consider forward-looking customers. Su (2007)
considers customers who can buy at the current price or delay
their purchase at a cost to purchase later. Su and Zhang (2008),
Aviv and Pazgal (2008), and Mersereau and Zhang (2012) also
consider forward-looking customers who can delay their purchase
to enjoy future discounts, but are concerned about product
availability. Liu and van Ryzin (2008), Zhang and Cooper (2009),
and Cachon and Swinney (2009) consider firms that intentionally
understock products to create rationing risk which induces custo-
mers to buy earlier than they would otherwise intend. Su and
Zhang (2009) consider strategic sellers who use commitments to a
particular quantity and compensations to customers during stock-
outs. Bansal and Maglaras (2009) show how sellers can manip-
ulate the timing of purchase of their customers by dynamic
pricing. Mesak et al. (2010) discuss demand manipulation by
advance selling. Papanastasiou et al. (2012) show that strategic
stock-outs can be used to influence social learning, leading to
higher overall product adoption and increased firm profits. A
different line of strategies where consumers' demand can be
manipulated by an appropriate inventory holding strategy is
described by Balakrishnan et al. (2004), where consumers posi-
tively react when they observe high levels of inventory.

Our objective is to investigate the effect on the retailer's
optimal strategy when customers are strategic, willing to pay for
advancing or delaying their purchase due to an anticipated short-
age. Examples for such behavior abound and we discuss some of
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them below. We investigate a basic deterministic problem in
which the time horizon is continuous and infinite, the demand
rate is constant (price dependent), and the information is assumed
to be complete, i.e., the retailer knows the preferences of the
customers, and the customers are aware of the price and selling
periods. We assume that the price that the retailer chooses is
constant over time. This assumption fits many real life situations,
for example retailers that adopt the common ‘everyday low price’
policy (EDLP). Another case where this assumption is natural is
described below, referring to the market consisting of a discount
price and customers who only buy at this price.

The model that we consider here is an extension of Glazer and
Hassin (1986) where customers who are willing to buy the product
can buy it earlier than the time they most desire it and incur
inventory holding costs, buy the product later than needed and
incur shortage costs, or give-up and leave the system without
buying the product. This behavior is not a result of price fluctua-
tions, but it is rather a strategic response to the retailer's policy on
when to display the product on the shelf. In other words, the
retailer may avoid selling the product in certain periods if this
increases its profit. By doing so, it manipulates some of the
customers to advance or postpone their purchase. We follow
Glazer and Hassin (1986) by assuming a stationary and determi-
nistic model where the seller is restricted to a fixed price. Thus,
instead of altering the price dynamically, the seller optimizes
profits by restricting sales to certain instants, and customers
respond by timing their purchase. For the case of homogeneous
customers (except for the time they need the good) Glazer and
Hassin (1986) found that the solution may be one of three types:
Continuous sales throughout the cycle, sales only at the time of
inventory replenishment, or continuous sales through an interval
followed by a no-stock interval, i.e., an interval in which the firm
does not hold stock, that ends with the next replenishment. This
finding adds to classic models by explaining real cases in which
sellers do not hold inventory at all. Glazer and Hassin (1990) solve
the same model but with the objective of maximizing social
welfare rather than seller's profits. It is shown that planned
shortages may be socially desired, and indeed, a profit maximizer
generates less shortage than is socially desirable. In particular, the
policy of continuous sales throughout the cycle is never socially
optimal.

The assumption of identical customers greatly limits the
applicability of these results. For example, when prices can be
varied, Conlisk et al. (1984) and Sobel (1984) show that with
heterogeneous customers, by periodically cutting the price sharply
the firm can increase its profits by selling to customers with low
reservation price. Our motivating question is: Will the qualitative
results obtained by Glazer and Hassin with homogeneous customers
still hold when customers differ by their reservation prices? We
identify optimal integrated pricing, replenishment, and selling
schedule policy for two types of customers, each associated with
its own constant arrival rate and reservation price. We show that
the optimal strategy may be significantly different when having
heterogeneous customers. We identify nine possible outcomes,
eight of them are variations of the possible strategies with
homogeneous customers, but the last one contains in between
two replenishment epochs, several no-sale intervals, i.e., intervals
in which the retailer does not sell the product, separated by sale
points.

The latter type of policy may explain why in some cases firms
limit their sales to discrete points of time and by doing so they
manipulate their customers. We next describe a few examples
where the product is sold at a pre-specified set of time epochs:
(i) The Tuesday Morning chain of stores is known for its unique
philosophy: “sell first-quality, famous designer and name-brand
merchandise at extraordinarily discounted prices on an event
basis... usually on the first Tuesday of the month”. (ii) All over
the world it is common to have market days, so that goods are not
continuously available. Of course there might be various reasons
for regular market days, like resource availability, low demand,
and seasonal demand; our model provides another interesting
view. (iii) Many firms offer periodical discounts which can be
interpreted as discrete sales as mostly in between two discount
periods, the sales are low (as the price is high). Such periodic
discounting also has been discussed in the bullwhip effect litera-
ture. In between periods, the consumers typically forward buying
their needs for the whole period. Our model could describe such
price discount events. The product is sold continuously, but at
certain times the price is vastly reduced. Many customers will try
to wait for those discounts. Our model focuses on those customers
who always wait for discounts. The other customers are outside
the model. The special sales may then be repeated for a very short
period (say, a day or a weekend). Since customers are aware of the
special sales they will only buy on sales periods and will carry the
inventory for future days when the price is high. (iv) The situation
we are analyzing might occur in some of the home appliances and
office equipment retail chains (e.g., Ace, Home Depot, Office
Depot). It is quite common to find in these chains that they sell
an item over a certain period, then it is taken off the shelf only to
be returned a few weeks later. Sometimes this happens because
they get bulk shipments in containers (typically from China) and
sometimes there is discontinuity in the shipments of this product.
Another explanation for these planned shortages is given by our
results. (v) Many computer games (such as the popular Call of
Duty series) have a new edition released once or twice a year,
causing a period of sales of the original game followed by long no
sales intervals. (vi) As our results show it is possible to have an
optimal policy where the product is first sold continuously and
then it is sold at a number discrete points until the next
continuous sales interval. An example for such a mixed behavior
is the real-estate industry, and in particular in Hong Kong. The
replenishment is the time completion of a project, and the
developers adopt various strategies to sell the apartments (see,
Lai et al., 2004 for more examples and discussion): One-time clear
strategy, is when a big real-estate project is finished, the developer
offers a reasonable price and consumers buy all apartments at the
selling date. Usually it just takes one or several days to sell
thousands of apartments. Alternatively, in a continuously selling
strategy the developer offers a pretty high price and consumers
come continuously and it may take one year to sell one thousand
apartments. In yet another strategy that is employed, apartments
are sold one year before they are used, resulting in consumers who
need wait before moving in bearing a very high holding cost. (See
the new regulation on selling price and quantity in the Hong Kong
real estate market athttp://www.info.gov.hk/gia/general/201005/
26/P201005260094.htm and in particular Part (c).)

We note however, that the solution type where there are a
number of discrete sales epochs in between two consecutive
replenishments, is less frequently observed relative to the other
eight cases, and one of our goals is to characterize the conditions
under which this solution is obtained. In particular, we show that
this solution requires that the consumers shortage costs be higher
than their inventory holding cost, and that the firm's fixed
replenishment cost is high.

The assumption that customers are charged for shortages and
for holding inventory, endogenously and indirectly induces a
shortage cost for the retailer without necessitating an assessment
of unit shortage/backlogging cost by the firm. The strategic use of
no-sale intervals may cause some of the customers to quit without
buying. Indeed, the higher are the holding/shortage costs faced by
the customers, more customers will quit in a no-sales interval,
inducing a higher shortage penalty cost on the retailer. The
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assessment of the customer's inventory/shortage costs is simpler
because these are more direct costs than the respective costs of
the firm. For example, consider a car dealer who sells an imported
model non-continuously. Customers who are aware that the
product will not be available at the time they desire it can buy it
earlier than needed (incurring financial charges), or wait until it is
back in stock, paying the rental cost of an equivalent car. This
example demonstrates that the assessment of shortage/holding
cost that the customer incurs can be more straightforward than
the assessment of the indirect shortage costs incurred by the seller
because of loss of reputation.

We consider two customer types, denoted 1-customers and
2-customers, where 1-customers are associated with a higher
reservation price. We identify nine possibilities for an optimal
solution. Three consist of sales at replenishment instants only, to
all 1-customers and to a proportion x of 2-customers, where x¼0,
x¼1 or 0oxo1. Two consist of continuous sales to either only
1-customers, or to all customers. We call policies that consist of
sales at replenishment instances or continuous sales policies—
simple. Three more possibilities consist of a continuous sales
interval followed by a no-stock interval. We call such policies
semi-continuous. In the three possible optimal semi-continuous
policies, sales are made to all 1-customers, to a proportion x of 2-
customers appearing in the continuous sales interval, and to a
proportion y of the 2-customers appearing in the no-sale interval,
where x¼y¼0, or x¼1 with y¼0 or 0oyo1. Finally, we identify
a possible optimal policy that consists of a continuous sales
interval followed by at least two no-sale intervals. The sales at
the continuous sales interval are to all customers, and at the no-
sale intervals to 1-customers only. We derive the average rate of
profits in each case. We also give conditions on the input para-
meters that restrict the possible optimal strategies.

Finally, we mention the extensive literature on inventory
replenishment with capacity limits of the supplier that cause
interruptions in the replenishment of the product, see for example,
Parlar and Berkin (1991), Wang and Gerchak (1996), Güllü (1998),
and Güllü et al. (1999). In these models there are periods when
supply is not available or is partially available. Customers are
usually uninformed about when these “dry periods” start and end.
Closest to our model is the model of Atasoy et al. (2012) that
considers a discrete time three-level supply chain where a man-
ufacturer orders supply from an external supplier that may stop
selling in certain periods. However, in order to help the manu-
facturer, the supplier provides him an accurate information about
the availability of the supply in the next given number of periods.
The manufacturer is facing deterministic periodic demands of
customers. The paper considers the manufacturer's problem who
needs to plan its own order quantities from the supplier in order
to minimize his total expected costs that consist of his ordering
costs, plus holding and backorder costs, given the available limited
information about the dry periods. In this model, and in ours, the
supply is not available at all times, and the manufacturer (in their
model) or the customers (in ours) need to decide when and if to
buy in order to minimize their costs. Though, there are several
differences between this model and ours, and the most crucial one
is that in their model the timing and length of supply availability is
not strategically planned but result from external random forces.

The paper is organized as follows: In Section 2 we describe the
model and present notation with preliminary results. In Section 3
we consider simple policies of selling either only at replenishment
instants or continuously through the cycle. In Section 4 we
consider semi-continuous policies, where sales are made continu-
ously through the first part of the cycle, followed by a no-stock
interval. In Section 5 we introduce a lemma that helps to restrict
the search for an optimal solution to policies with nondecreasing
no-sale intervals. In Sections 6–8 we characterize the possible
solutions which are neither simple nor semi-continuous depend-
ing on whether the customers’ holding cost is greater or smaller
than their shortage cost. For each policy type we compute the
average rate of profit of the policy of this type which can be a
candidate for being optimal if certain conditions on the input
parameters are satisfied. Altogether we identify nine types of
policies. The optimal solution for a given set of input parameters
is then the policy with highest value among those whose neces-
sary conditions are satisfied, provided that this value is positive.
The results are summarized in the concluding section.
2. The model and preliminaries

We consider a deterministic model with a monopolistic firm
that sells a single type of a product at a constant price to two types
of customers, i.e., no price discrimination is allowed. The firm
incurs a fixed replenishment cost of size K, and a variable cost c. It
also pays a linear holding cost of hf per unit of the product per unit
of time. Customers differ by two parameters, the time when they
most need the product, which we call their demand time, and their
reservation price, which is their valuation of the product at that
point of time. We assume that the first type of customers is
characterized by a reservation price w1, and by an arrival rate λ1.
The second type of customers is characterized by a reservation
price w2, and by an arrival rate λ2, where w14w2 and λ¼ λ1 þ λ2.
We assume that each customer needs a single unit of the product.
We use the following terminology: Customers that demand the
product at t and whose reservation price is wi are called ðt;wiÞ-cus-
tomers. When the time of arrival is not important we simplify the
notation and refer to the customer simply as an i-customer, where
i∈f1;2g.

Customers are ready to buy the product earlier or later than
their demand time. Such a deviation comes at a cost. We assume
that the costs are linear in the earliness or tardiness duration,
similar to the EOQ model with backlogging where the customer
plays the role of the retailer. Specifically, for some positive
parameters hc and s, a (t,w)-customer is ready to pay for it at
most w−hcτ at time t−τ and at most w−sτ at time t þ τ for any τ40.
This behavior can be interpreted as follows: By obtaining the
product before t, the customer incurs an inventory holding cost of
hc per unit of time; by obtaining the product after t, the customer
incurs shortage cost of s per unit of time. We also use

Hc ¼
2

1
s
þ 1

hc

for the harmonic mean of the two holding cost parameters of the
customer. It is well known that the harmonic mean is bounded
from above by the arithmetic mean, i.e., Hc ≤ðhc þ sÞ=2. We are
going to see in the analysis that Hc plays the role of an adjusted
holding cost rate for the customer for both a positive and negative
inventory level. Note that Hc¼hc when hc ¼ s. In addition let

ρ¼ s
hc þ s

:

The firm wants to maximize its average rate of profits by
choosing a price p, a sales schedule, and a replenishment policy.
Like in the EOQ model, there exists an optimal cyclic stationary
policy, and without loss of generality we focus on the first cycle
½0; T �. The Zero-Inventory-Ordering property holds here and there-
fore a new order is placed after the stock is depleted. However,
unlike in the EOQ model, the firm is allowed not to sell the product
continuously during the cycle if this increases its average rate of
profit. We assume that the policy of the firm is known to the
customers and therefore, a customer whose demand-time is at a
no-sale point may decide to buy the product earlier or later when



Fig. 1. Indifference curves of a ðθa;Δ;wÞ�customer and a ðθa;Δ;wðp;ΔÞÞ�customer.
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it is sold, or alternatively, to quit and not buy it at all. As a result,
the optimal policy structure may be such that the stock depletes
earlier than at T.

We fully characterize an optimal cyclic solution of our model
for two types of customers. We show that there exists an optimal
solution where for some TI∈½0; T �, the firm sells continuously up to
TI. If the stock is depleted at TI, then the interval ðTI ; TÞ is a no-stock
interval, i.e., an interval in which the firm does not hold any stock.
In such a case, TI¼0 means that the firm never holds stock and it
sells only at replenishment epochs, and TI ¼ T means that the firm
sells continuously through the cycle. We call these two types of
extreme policies simple policies:

Definition 1. A policy is simple if the sales are continuous or only
at replenishment instants.

A semi-continuous policy is obtained if 0oTIoT and the stock
is depleted at TI, meaning that ðTI ; TÞ is a no-stock interval:

Definition 2. A policy is semi-continuous-sales, or for short semi-
continuous, if sales are continuous until the stock is depleted.

The interval ða; aþ ΔÞ is said to be a no-sale interval if the firm
sells the product only at points a and aþ Δ, and nowhere else in
the interval. In particular, the no-stock interval ðTI ; TÞ in simple and
semi-continuous policies is a no-sale interval. Apart from simple
and semi-continuous policies defined above, other possible candi-
dates for optimal cyclic policies exist. Such policies consist of an
interval ½0; TI � of continuous sales, 0≤TIoT , and thereafter the
stock at TI is sold at a number of discrete points before T. In other
words, such a policy consists of a (possibly empty) interval ½0; TI � of
continuous sales, followed by at least two no-sale intervals, where
the last one that ends at T is also a no-stock interval.

We distinguish several cases and solve each case separately.
The optimal policy is obtained by solving all cases and picking up
the best one. We denote the average cost per unit of time of a
given policy by V. A policy is profitable if its average rate of profit is
positive. If no profitable policy exists, it is optimal for the firm to
do nothing. In such a case the optimal average profit is 0. We
compute nine candidate policies and mark their values as
V ð1Þ;…;V ð9Þ. These values depend on two input parameters,
namely, KHc and Khf . It turns out that, as in Glazer and Hassin
(1986), ρ plays a central role in the analysis. If sales are made at the
two ends of an interval but not within it, and all customers who
arrive within the interval decide to buy the product, ρ is the
fraction of customers arriving during the interval and buying the
product, who prefer advancing their purchase to its beginning,
while the other fraction of 1−ρ defer their purchase to the end of
the interval. Note that some of the customers arriving during such
an interval may quit without buying the product, however, as we
prove, it is never optimal for a profitable policy to contain a sub-
interval such that all customers born in it are lost.

Lemma 3. A profitable optimal policy does not contain a time
interval such that all customers born in it are lost.

Proof. Suppose that the there exists an optimal cyclic profitable
policy Π, with price p and cycle ½0; TÞ that contains sub-intervals of
total length 0oτoT in which all customers are lost. Let VðΠÞ40
denote the average profit of Π. Consider an alternative policy Π′,
with a cycle length of T−τ, that is exactly as Π except that all
intervals in which all customers are lost are removed from the
cycle. The number of customers in a cycle that buy the product in
Π and Π′ is exactly the same, and thus the revenue per cycle and
the fixed cost per cycle are not affected by this change. Moreover,
the holding cost per cycle of Π′ is bounded from above by the
holding cost per cycle of Π. Thus, the total profit in a cycle in Π′ is
at least as large as that of Π, and as the cycle length of Π′ is smaller
than that of Π, Π′ is a strictly better policy, contradicting the
optimality of Π. □

As we show, it is most common that the optimal policy is either
simple or semi-continuous, i.e., it is most likely that inserting no-
sale intervals between TI and the no-stock interval is sub-optimal.
However, it turns out that for particular sets of input data this is
possible.

We first analyze the behavior of customers who are arriving at
a no-sale interval ða; aþ ΔÞ. For a fixed price p, define

wðp;ΔÞ ¼ pþ 0:5HcΔ; ð1Þ
and

θa;Δ ¼ aþ ρΔ:

Fig. 1 illustrates θa;Δ and wðp;ΔÞ, and a fixed value of w such that
powowðp;ΔÞ. The indifference curve of a (t,w)-customer
describes how much such a customer is willing to pay for the
product at every instant τ. It raises with slope hc ¼ 0:5Hc =ρ for
τot and decreases with slope s¼ 0:5Hc=ð1−ρÞ for τ4t. Given a no-
sale interval ða; aþ ΔÞ, sales to (t,w)-customers with aþ
2ρðw−pÞ=Hcotoaþ Δ−2ð1−ρÞðw−pÞ=Hc are lost, (t,w)-customers
with a≤t ≤minfaþ 2ρðw−pÞ=Hc, θa;Δg buy at a, and those with
maxfaþ Δ−2ð1−ρÞðw−pÞ=Hc, θa;Δg≤t ≤aþ Δ buy at aþ Δ. Observe
that for a reservation price w¼wðp;ΔÞ, there is no loss of
wðp;ΔÞ�customers in a no-sale interval ða; aþ ΔÞ. Moreover, since
wðp;ΔÞ−hcρΔ¼wðp;ΔÞ−sð1−ρÞΔ¼ p, a ðθa;Δ;wðp;ΔÞÞ�customer is
indifferent among buying at a, buying at aþ Δ, and not buying
at all. If ρ40:5 then the sales at a are higher than at aþ Δ, and
when ρ≤0:5, the sales at aþ Δ are higher than at a.

From now on we focus on two customer types. Let
Δi ¼ ðwi−pÞ=s denote the maximum length of a no-sale interval
without loss of any i-customers, i¼ 1;2. In the following we
compute the sales volume at the two extreme points of a no-
sale interval ða; aþ xÞ from those customers arriving in the inter-
val. The sales volume at a from those customers is

λ1ρminðx;Δ1Þ þ λ2ρminðx;Δ2Þ:
The sales volume at a+x from those customers is

λ1ð1−ρÞminðx;Δ1Þ þ λ2ð1−ρÞminðx;Δ2Þ:
In the following sections we derive nine types of policies that

may be candidates for the optimal solution.
3. Simple solutions

Each of the two kinds of simple policies is considered separately.



Fig. 4. Sales to all 1-customers and some 2-customers at replenishment instants.
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3.1. Sales at replenishment instants

There are four cases with sales made only at replenishment
instants that need to be considered. Observe that in this case
T∈½Δ2;Δ1�, because if T4Δ1 there is an interval where both types of
customers are lost, which is impossible by Lemma 3, and if ToΔ2

then p can be increased without losing sales.
�
 Sales only to 1-customers
This may happen if the seller chooses p≥w2. In this case,
T ¼ Δ1 ¼ 2ðw1−pÞ=Hc , or p¼w1−0:5HcT . Thus, V ðTÞ ¼ λ1½ðw1

−cÞ−0:5HcT �−K=T . It is optimized at T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=λ1Hc

p
. Ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 KHc=λ1
p

4w1−w2, then pow2, implying that this solu-
tion can be ignored as selling to the two types of customers
at the replenishment epochs gives a better solution. The
resulting solution is given in Fig. 2.
We next proceed to the cases of sales to both types of
customers, i.e., pow2.
�
 No loss of customers
There is no loss of customers if pow2 and T ≤Δ2, but clearly
ToΔ2 is suboptimal since in this case p can be increased
without losing sales. Hence, T ¼ Δ2, and V ðTÞ ¼ λ½ðw2−cÞ−
0:5HcT �−K=T is optimized at the solution given in Fig. 3.
It is interesting to note the similarity to the EOQ formula:
though V ð1Þ and V ð2Þ return the retailer's revenue in the case
that the retailer does not hold any inventory, yet its revenue
is the same as the revenue of a retailer that sells continu-
ously at price w1 (w2) to a rate of λ1 (λ2) of customers, and
whose holding cost is the adjusted holding cost of the
customer, namely Hc.
�
 Sales to all 1-customers and some 2-customers with T ¼ Δ1

Here T ¼ Δ1 ¼ 2ðw1−pÞ=Hc or p¼w1−0:5HcT . Note that the
maximum price at which the product should be sold in
order for all 1-customers to buy it is at most the difference
between w1 and the maximum cost a 1-customer is charged
for buying earlier or later than desired. Thus, Δ2 ¼ 2ðw2−pÞ=
Hc ¼ T−2ðw1−w2Þ=Hc . Hence,

VðTÞ ¼ 1
T
f½λ1T þ λ2Δ2�½ðw1−cÞ−0:5HcT �−Kg

¼ −0:5λHcT þ ½λðw1−cÞ þ λ2ðw1−w2Þ�
−
1
T

λ2ðw1−cÞ
2ðw1−w2Þ

Hc
þ K

� �

¼ α1T þ α0 þ
α−1
T

;

where α−1 ¼ −ð2λ2ðw1−cÞðw1−w2Þ=Hc þ KÞ, α0 ¼ λðw1−cÞ þ λ2
ðw1−w2Þ, and α1 ¼ −0:5λHc. The optimal solution has
Fig. 2. Sales to 1-customers at replenishment instants.

Fig. 3. Sales to all customers at replenishment instants.
T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−1=α1

p
and the profit rate is α0−2

ffiffiffiffiffiffiffiffiffiffiffiffi
α−1α1

p
, as both α−1

and α1 are negative. This solution is feasible if pow2, or
equivalently λðw1−w2Þ2oλ2ðw1−cÞðw1−w2Þ þ 0:5HcK . The
solution is given in Fig. 4. We do not attempt to provide
an intuitive explanation to the expressing of V ð3Þ, but we note
that also here the adjusted holding cost of the customer is
induced on the retailer. In fact, if K and Hc are interchanged
then neither the price p nor the average cost V ð3Þ are affected.
It is just the cycle length T that may change.
�
 Sales to all 1-customers and some 2-customers with Δ2o
ToΔ1

Clearly, in this case pow2. The analysis is as in the previous
case but here we also need to compute the optimal p:

V ðT ; pÞ ¼ 1
T
fðλ1T þ λ2Δ2Þðp−cÞ−Kg

¼ 1
T

λ1T þ λ2
2ðw2−pÞ

Hc

� �
ðp−cÞ−K

� �
:

Equating to 0 the partial derivative with respect to p gives
the optimal value p¼ 1

2 ð0:5ðλ1=λ2ÞHcT þw2 þ cÞ and Δ2 ¼ 1
2

ð2ðw2−cÞ=Hc−ðλ1=λ2ÞTÞ. pow2 implies that Toðλ2=λ1Þ2ðw2−
cÞ=Hc. Let γ ¼ ðλ2=λ1Þ2ðw2−cÞ=Hc . Thus, we consider the
range Toγ, where VðTÞ ¼ α1T þ α0 þ α−1=T , with α1 ¼
λ21Hc=8λ2, α0 ¼ 0:5λ1ðw2−cÞ, and α−1 ¼ λ2ðw2−cÞ2=2Hc−K .
If α−1 ≤0 then V ′ðTÞ40, and T cannot be an internal point in
the range ðΔ2; min fΔ1; γgÞ.
If α−140 then the function V(T) is convex and the max-
imum again cannot be obtained at an internal point in the
range ðΔ2;minfΔ1; γgÞ. Thus, there is no internal maximum
of V(T), and this case cannot hold.

3.2. Continuous sales

In a continuous sales policy, customers either buy the product
at the time they want it, or they do not buy the product. Thus, the
customers in this case are not charged for holding stock or
shortage. We observe that continuous sales with price w2opo
w1 is never optimal because 2-customers do not buy and an
increase in p does not cause loss of 1-customers.
�
 p¼w1: This is the maximum value that the price can assume.
An optimal policy with p¼w1 must be a continuous-sales
policy. In such a case only 1-customers buy and V ðTÞ ¼ λ1ðw1−
cÞ−0:5hf λ1T−K=T is optimized at

T ¼
ffiffiffiffiffiffiffiffiffi
2K
λ1hf

s
;

giving the solution described in Fig. 5.

�
 p¼w2: Here both customer types buy the product and

V ðTÞ ¼ λðw2−cÞ−0:5hf λT−K=T implying that T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=λhf

q
. The

solution is given in Fig. 6.

In V ð4Þ and V ð5Þ the revenue of the retailer consists of its gross
earnings minus the optimal EOQ cost where the holding cost rate
is the retailer's holding cost hf.



Fig. 5. Continuous sales to 1-customers.

Fig. 6. Continuous sales to all customers.

Fig. 7. Semi-continuous sales: pow2.
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4. Semi-continuous solutions

In this section we characterize cases in which the optimal
solution is semi-continuous (recall Definition 2). We deal sepa-
rately with three cases according to the position of p relative to the
interval ½w2;w1Þ. We note that p¼w1 implies the continuous sales
policy to 1-customers, as in Fig. 5, and if p4w1 no customers buy
the product. Thus it is sufficient to consider pow1.

4.1. pow2

Note that in an optimal solution T−TI∈½Δ2;Δ1�, since a longer
no-stock interval causes loss of 1-customers and a shorter one
means that it is possible to raise p without affecting the sales
pattern. The rate of profit is

VðT ; TI ;pÞ ¼
1
T
fðp−cÞ½λ1T þ λ2ðTI þ Δ2Þ�

−hf ½0:5λT2
I þ ρTI ½λ1ðT−TIÞ þ λ2Δ2��−Kg:

Looking for an internal solution with respect to p, we equate to
zero the partial derivative with respect to p, giving

p¼ 1
2

0:5Hc
λ1
λ2

T þ TI

� �
þ ðw2 þ cÞ þ hf ρTI

� �
;

and therefore, Δ2 ¼ ð1=HcÞ½ðw2−c−0:5ðλ1=λ2ÞTHcÞ−ð0:5Hc þ hf ρÞTI �.
These relations imply that VðT ; TIÞ ¼ ð1=TÞ½0:5aHcT

2
I þ bðTÞTIþ

dðTÞ�, where

a¼ 1
4
λ2 þ

1
Hc

hf ρλ2 þ
1

ðHcÞ2
h2f ρ

2λ2−
1
Hc

hf λþ
0:5
Hc

hf λ1ρ

¼ λ2

ðHcÞ2
ð0:5Hc þ hf ρÞ2−

0:5hf
Hc

λ

2
−λ1ρ

� �
;

bðTÞ ¼ 1
2
ð0:5Hc−hf ρÞ λ1T þ 2λ2ðw2−cÞ

Hc

� �
;

dðTÞ ¼ Hc

8λ2
λ1T þ 2λ2ðw2−cÞ

Hc

� �2

−K:

Equating to zero the partial derivative of VðT ; TIÞwith respect to
TI gives TI ¼ −bðTÞ=aHc and for an internal solution we need
a � bðTÞo0, T−TI∈½Δ2;Δ1�, and copow2.

Substituting TI into VðT ; TIÞ gives

VðTÞ ¼ 1
T

−
b2ðTÞ
2aHc

þ dðTÞ
 !

¼ 0:5α1HcT þ α0 þ
α−1
T

where

α1 ¼
λ21
4

−
ð0:5Hc−hf ρÞ2

aðHcÞ2
þ 1
λ2

 !
;

α0 ¼ 2α1λ2
w2−c
λ1

;

α−1 ¼ 0:5α1Hc
2λ2ðw2−cÞ

λ1Hc

� �2

−K :

The sign of b(T) is determined by the sign of ð0:5Hc−hf ρÞ ¼ ρðhc−hf Þ.
We consider three cases: hc¼hf; hc4hf ; and hcohf .
�
 hc¼hf: In this case bðTÞ ¼ TI ¼ 0, implying that an optimal semi-
continuous sales policy does not exist.
�
 hc4hf : In this case bðTÞ40, and we must have ao0 to have an
internal optimal solution. This also implies α140. Now,
TI ¼ −bðTÞ=aHc and p are linear increasing functions of T, while
Δ2 and Δ1 are linear decreasing functions of T. V(T) is convex if
α−1≥0 and otherwise it is concave. If it is convex, its maximum
is obtained at an extreme point. In this case either T is as large
as possible, namely the T that gives p¼w2, which is not the
case considered here, or T is as small as possible, i.e., when
either T ¼ TI or TI¼0, resulting in a simple solution considered
in Section 3. If α−1o0 then V(T) is monotone increasing and
concave, meaning again that there is no internal solution.
�
 hcohf : In this case bðTÞo0. For an internal solution for TI to
exist, we must have a40. Also in this case TI and p are linear
increasing functions of T, while Δ2 is linear decreasing in T.
○ If α−1≥0, V(T) is convex and therefore, the optimal T is at an

extreme value and either p¼w2, which is not the case
considered here, or T∈f0; TIg, which gives a simple solution.

○ If α−1o0, V(T) is concave.
n If α1≥0, V(T) is an increasing function, attaining its

maximum at the extreme value where p¼w2.
n If α1o0 then the maximum of V(T) is obtained at a value

that satisfies T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α−1=α1Hc

p
. This case requires further

investigation. Note that α1o0 is equivalent to
0oaoλ2ð0:5Hc−hf ρÞ2=ðHcÞ2. Substituting a in this
inequality, α1o0 is equivalent to ρo0:5. Thus, ρo0:5
implies that both α1o0 and α−1o0.
This internal semi-continuous solution is given in Fig. 7.

4.2. p¼w2

In this case both customer types buy the product during ½0; TI �,
and only 1-customers buy it during ðTI ; TÞ. As we consider here
semi-continuous policies, we restrict ourselves to 0oTIoT .
Clearly, T−TI ≤Δ1 in order to avoid loss of 1-customers.

VðT ; TIÞ ¼ λ1ðw2−cÞ þ
1
T

λ2ðw2−cÞTI−hf
1
2
λT2

I þ TIρλ1ðT−TIÞ
� �

−K
� �

¼ λ1ðw2−cÞ þ
1
T

T2
I hf ρλ1−

1
2
λ

� �
þ TIðλ2ðw2−cÞ−hf λ1ρTÞ−K

� �
:

Fix T.
�
 If 2ρλ1 ≤λ, the function VðTIÞ is concave, implying a candidate for an
internal maximum, namely TI ¼ ðλ2ðw2−cÞ−ρλ1hf TÞ=hf ðλ−2ρλ1Þ.



Fig. 9. Semi-continuous sales: w2opow1.
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This candidate is relevant (internal) only if 0oTIoT , and
T−TIoΔ1.

Substituting TI in VðT ; TIÞ gives

VðTÞ ¼ λ1ðw2−cÞ þ
1
T

2ðλ2ðw2−cÞ−hf ρλ1TÞ2
ðλ−2ρλ1Þhf

−K

( )

¼ λ1ðw2−cÞ þ
2

ðλ−2ρλ1Þhf
α1T þ α0 þ

α−1
T

n o
;

where α1 ¼ h2
f ρ

2λ2140, and α−1 ¼ λ22ðw2−cÞ2−0:5ðλ−2ρλ1Þhf K .
If α−1≥0 then V(T) is convex, and if α−1o0 then it is
monotone increasing. In both cases the maximum is
obtained at an extreme value of T where TI∈f0; T ; T−Δ1g.
The solutions TI∈f0; Tg are simple, and were considered in
Section 3. Thus, only TI ¼ T−Δ1 is relevant.
�
 If 2ρλ14λ, the function VðTIÞ is convex and its maximum is
obtained at a boundary value, TI∈f0; T ; T−Δ1g. As only semi-
continuous policies are considered here, we get also here that
only TI ¼ T−Δ1 is relevant.

Therefore, we continue by substituting TI ¼ T−Δ1 into VðT ; TIÞ:

VðTÞ ¼ λ1ðw2−cÞ þ
1
T

(
λ2ðw2−cÞðT−Δ1Þ−hf

λ

2
ðT−Δ1Þ2 þ ðT−Δ1ÞΔ1ρλ1

� �
−K

)

≡
α−1
T

þ α0 þ α1T ;

where α−1 ¼ Δ2
1hf ðρλ1−0:5λÞ−Δ1λ2ðw2−cÞ−K ≤0, α0 ¼ λðw2−cÞ þ hfΔ1

ðλ−ρλ1Þ, and α1 ¼ −0:5hf λo0. If α−1 ¼ 0, V(T) is decreasing in T, and
therefore the maximum is obtained at T ¼ Δ1, resulting in a simple
solution, see Section 3. If α−1o0, then V(T) is concave having an
internal maximum with T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−1=α1

p
and profit α0−2

ffiffiffiffiffiffiffiffiffiffiffiffi
α1α−1

p
, as

described in Fig. 8.

4.3. w2opow1

Here only 1-customers buy. Again, as in this section we deal
with semi-continuous policies, we look for solutions with
0oTIoT . In addition, T−TI ≤Δ1 in order to avoid loss of 1-
customers in some intervals. Thus,

VðT ; TI ; pÞ ¼ λ1ðp−cÞ−
1
T
ð0:5λ1hf T2

I þ λ1hf ρðT−TIÞTI þ KÞ:

In an optimal solution T−TI ¼ Δ1 ¼ 2ðw1−pÞ=Hc , otherwise p can
be increased to increase profits. Substituting p¼w1−0:5HcðT−TIÞ
into the cost function we get

VðT ; TIÞ ¼ λ1ðw1−c−0:5HcðT−TIÞÞ

−
1
T
ð0:5λ1hf T2

I þ λ1hf ρðT−TIÞTI þ KÞ:

By fixing T we get VðTIÞ ¼ aðTÞ þ bTI þ cðTÞT2
I , where

aðTÞ ¼ λ1ðw1−c−0:5HcTÞ−
K
T
;

b¼ λ1ð0:5Hc−hf ρÞ40;

dðTÞ ¼ λ1hf
T

ðρ−0:5Þ:
Fig. 8. Semi-continuous sales: p¼w2.
The sign of d(T) is determined by the sign of ρ−0:5. If dðTÞ≥0 then
VðTIÞ is convex in TI, meaning that its maximum is obtained at an
extreme value of TI, namely TI∈f0; Tg, both are simple solutions
that were considered in Section 3. Thus, suppose that dðTÞo0, or
equivalently ρo0:5. In this case VðTIÞ is concave in TI and a
possible internal maximum is

TI ¼−
b

2cðTÞ ¼
0:5Hc−hf ρ

hf ð1−2ρÞ
T :

In order for TI to be positive, and because ρo0:5, it must hold
that 0:5Hc−hf ρ40, which is equivalent to hc4hf . In addition we
need TIoT , which holds only if hf 4s. The two conditions hf ohc
and hf 4s imply that ρo0:5. Note also that the condition p4w2

implies that T−TIo2ðw1−w2Þ=Hc.
Substituting the expression for TI into VðT ; TIÞ gives

VðTÞ ¼ λ1ðw1−cÞ−
K
T
þ ð0:5Hc þ hf ρÞ2−Hchf

2hf ð1−2ρÞ
λ1T ;

which is a concave function of T. If the coefficient of T is
nonnegative, V(T) is increasing meaning that its maximum is
obtained at an extreme point which occurs when p¼w2, a case
which is not the case considered here. Otherwise, if the coefficient
of T is negative, (that is, ð0:5Hc þ hf ρÞ2oHchf ) V(T) is maximized at

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Khf =λ1Þð1−2ρÞ=Hchf−ð0:5Hc þ hf ρÞ2

q
. The resulting solution

is given in Fig. 9.
5. Solutions which are neither simple nor semi-continuous

In the next lemma we prove that optimal policies which are
neither simple nor semi-continuous consist of a single, possibly
empty, continuous-sales interval that starts at the replenishment
epoch, followed by at least two no-sale intervals. The next lemma
provides some further properties of such an optimal solution.

Lemma 4. There exists an optimal solution where the no-sale
intervals are ordered in nondecreasing length. Moreover, a no-sale
interval is not followed by an interval of continuous sales (hence there
may be at most one continuous-sales interval and it must start at0).

Proof. We prove the first part of the lemma. The second part can be
considered as a limit case and be proved similarly. Consider con-
secutive sales at τ0; τ0 þ x; τ0 þ xþ y, and suppose that x4y. We will
show that selling at τ0 þ y instead of at τ0 þ x does not decrease
profits. W.l.o.g. let τ0 ¼ 0 and hf¼1. The change does not affect the
total sales and therefore we only consider inventory holding costs.
We assume in the analysis below that xþ yoT , since if xþ y¼ T (i.
e., ½x; xþ y� is a no-stock interval) it is clear that the savings
associated with selling earlier and thus postponing more sales to T
are greater, so that the claim in this case also follows.
Let Ci(x) (Ci(y)) be the holding cost associated with i-customers if

the product is sold at x (y, respectively). We distinguish three cases:
�
 x; y≤Δi. In this case

CiðxÞ ¼ λifx½ð1−ρÞxþ ρy� þ ½ðxþ yÞyð1−ρÞ�g
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¼ λi½ðx2 þ y2Þð1−ρÞ þ xy�:
and CiðxÞ ¼ CiðyÞ.
�
 y≤Δiox. In this case

CiðxÞ ¼ λifx½ð1−ρÞΔi þ ρy� þ ½ðxþ yÞyð1−ρÞ�g;
and

CiðyÞ ¼ λify½ð1−ρÞyþ ρΔi� þ ½ðxþ yÞΔið1−ρÞ�g;
giving CiðxÞ−CiðyÞ ¼ λiyðx−ΔiÞ40 by our assumption that x4Δi.
�
 y4Δi. Also here CiðxÞ4CiðyÞ. The sales to i-customers at xþ y
are of size ð1−ρÞΔi, and at the middle sales point (x or y) they
are of size Δi. But selling at y rather than at x saves in inventory
costs. □

In view of the lemma, a general cyclic policy for the problem
can be represented by a continuous-sales interval ½0; TI �, TI≥0
followed by k≥0 no-sale intervals. In Sections 3 and 4 we
considered the case TI¼0 and k¼1, which is the simple policy
with sales only at replenishment instants, the case TI ¼ T and k¼0,
which is the simple continuous-sales policy, and the case
0oTIoT and k¼1, which is the semi-continuous policy. Let xi
for i¼ 1;…; k denote the length of the i-th no-sale interval. Thus,
T ¼ TI þ ∑k

i ¼ 1xi. By Lemma 4, w.l.o.g. x1 ≤x2 ≤⋯≤xk. Thus, the
product is sold continuously in ½0; TI �, and thereafter positive
quantities are sold in discrete points: TI þ ∑ℓ

i ¼ 1xi for ℓ¼ 0;1;…; k.
6. High customer holding cost: ρ≤0:5

In this section we characterize the solution assuming ρ≤0:5, or
equivalently, the customers’ holding cost rate, hc, is higher than
their backlogging cost rate, s. We prove that in this case there
exists an optimal solution which is either simple or semi-
continuous. Then we analyze the case ρ¼ 0:5 separately, as we
use it in the next section to characterize the optimal solutions
when ρ40:5.

Theorem 5. If ρ≤0:5, there exists an optimal policy which is either
simple or semi-continuous.

Proof. Consider an optimal policy such that TI40. Suppose also
that in the given policy there exists a no-sale interval ½a; aþ Δ�,
such that 0≤aoaþ Δ≤TI . Denote by Da and DaþΔ the amounts sold
at the respective ends of the no-sale interval. According to the
analysis of Section 2 and because ρ≤0:5, Da ≤DaþΔ. Thus, the
average holding cost paid by the firm for these units would
decrease if it sold continuously to each of these customers at time
they were born. Moreover, continuous sales may cause reneging
customers born during the interval to buy as well, resulting in
more profits to the firm. □

Indeed, in view of Theorem 5, the optimal solution for ρ≤0:5
can be obtained by enumerating all the solutions V ðℓÞ for ℓ¼ 1;…;8
and picking up maxf0;V ð1Þ;V ð2Þ;…;V ð8Þg.

Theorem 6. If ρ¼ 0:5 and p≠w2 then the optimal solution is simple.

Proof. In view of Theorem 5 the optimal solution for ρ¼ 0:5 is
either simple or semi-continuous. By Lemma 3, a necessary
condition for a semi-continuous policy to be optimal is pow1. It
remains to show that if pow1, ρ¼ 0:5 and p≠w2, there does not
exist an optimal semi-continuous policy. If pow2, the only
possible optimal semi-continuous policy obtained requires
ρo0:5, see Fig. 7. If w2opow1, the only possible optimal semi-
continuous policy obtained requires sohc which is equivalent to
ρo0:5, see Fig. 9, concluding the proof. □
7. High shortage cost: ρ40:5 and p∉fw1;w2g

We now analyze the case where the customer's shortage cost is
higher than the customer's holding cost, i.e., ρ40:5. Theorem 7
states that when ρ40:5 it is suboptimal to have intervals of
continuous sales, unless the optimal price satisfies p∈fw2;w1g.

Theorem 7. Suppose ρ40:5. If the optimal price is not in fw2;w1g
then the optimal solution does not contain continuous-sales intervals.

Proof. First we exclude semi-continuous policies. By Lemma 3
semi-continuous policies may be optimal only for pow1. Accord-
ing to Figs. 7–9, if p≠w2, there does not exist a semi-continuous
optimal policy if ρ40:5. Moreover, from Figs. 5 and 6, a simple
policy with continuous sales cannot be optimal. □

Theorem 7 implies that if ρ40:5, the optimal price p satisfies
pow1. In the next two theorems we prove that for ρ40:5 and
p≠w2 the optimal policy is sales at replenishment instants only.

Theorem 8. Consider an optimal solution sol for an instance I
defined by ρ40:5, c;hf ;hc; s and K, with monotone non-decreasing
no-sale intervals of lengths x1 ≤⋯≤xk. Define the associated instance
I′ with c′¼ c, h′f ¼ hf , K ′¼ K , and h′c ¼ s′¼ 2hcs=ðhc þ sÞ. Note that
ρ′¼ 1

2 and hH′c ¼Hc . Denote the profits for these instances by VðsolÞ
and V ′ðsolÞ. Then VðsolÞ≤V ′ðsolÞ.

Proof. Denote by Di the total sales to customers arriving during
the ith no-sale interval. Clearly D1 ≤⋯≤Dk, and the sequence
D1;…;Dk depends on Hc but not on ρ. However, ρ does affect the
timing of the sales in the sales points. The sales at time TI þ x1 þ
⋯þ xl for ℓ¼ 1;…; k−1 are ð1−ρÞDl þ ρDlþ1.Since Dl ≤Dlþ1, the
coefficients of ρ are nonnegative in all of these cases. It follows
that the holding cost with ρ4 1

2 is at least as large as the holding
cost of the firm with ρ¼ 1

2 and the same value of Hc. Since the total
revenue is the same, the profit decreases with ρ, for ρ40:5, while
Hc is kept constant. Therefore VðsolÞ≤V ′ðsolÞ. □

Theorem 9. Suppose ρ40:5 and that the optimal price is not in
fw2;w1g. Then optimal solution is sales at replenishment instants
only.

Proof. Consider an instance I with ρ40:5 and its associated
instance I′ as in Theorem 8. Consider any non-simple solution sol
with monotone nondecreasing no-sale intervals as in Lemma 4. By
Theorem 6, if ρ¼ 0:5 and p≠w2 then there is an optimal simple
solution sol′ to I′. Then,

VðsolÞ≤V ′ðsolÞ≤V ′ðsol′Þ ¼ V ðsol′Þ:
The first inequality follows from Theorem 8, the second by
optimality of sol′ to I′, and the equality since the value of a simple
solution depends on Hc but not on ρ. Therefore sol′ is a better
solution for I than sol. According to Lemma 7 an optimal solution
for I does not contain a continuous-sales interval, implying that
the optimal policy for I is simple with sales only at replenishment
instants. □

Corollary 10. When ρ4
1
2
the optimal solution is the best among the

simple solutions with discrete or continuous sales, see Figs. 2–4, and
the best solution obtained under the assumption p¼w2.

8. High shortage cost: ρ40:5, and p¼w2

In this section we consider instances in which the optimal price
is p¼w2.

Lemma 11. The optimal solution consists of an initial interval of
length TI≥0 with continuous sales to both types, and sales to
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1-customers only after this. These sales consist of k≥0 no-sale
intervals all of length Δ1, and possibly another no-sale interval of
length αΔ1 with 0≤αo1 which starts at TI.

Remark 12. This section assumes p¼w2, and therefore only
1-customers buy in no-sale intervals. In view of Lemma 3, all
no-sale intervals have a length of at most Δ1. Considering the first
case in the proof of Lemma 4, which is the case relevant here as
there is no loss of 1-customers, the profit is not affected by the
order of the no-sale intervals, except for the last one which must
be the longest one.

Proof. By Lemma 4 there exists an optimal solution with non-
decreasing no-sale intervals. If the claim does not hold then there
exists an index 1o i≤k such that xi−1 ≤xioΔ1. We claim that
increasing xi while decreasing xi−1 by the same amount increases
the profit. First note that the change does not affect sales since
only 1-customers are involved and all no-sale intervals remain
bounded by Δ1. For comparing holding costs assume w.l.o.g. that
xi−1 starts at 0, and we mark x¼ x1. Let x1 þ x2 ¼ τ and by
assumption x≤τ=2. It is sufficient to show that the holding cost
is increasing in x. The inventory holding costs associated with
customers born in ½0; τ�, for τoT , in the given solution amount to

C1ðxÞ ¼ λ1hf fx½ð1−ρÞxþ ρðτ−xÞ� þ τðτ−xÞð1−ρÞg:
If τ¼ T the last term in the curly brackets should be removed. The
derivative with respect to x for τoT is proportional to

2ð1−2ρÞxþ τ½2ρ−1�≥2ð1−2ρÞ τ
2
þ ð2ρ−1Þτ¼ 0;

where the inequality follows since ρ≥0:5 and x≤τ=2. If τ¼ T the
derivative with respect to x is proportional to 2xð1−2ρÞ þ
ρτ≥τð1−2ρÞ þ ρτ¼ τð1−rÞ≥0 for the same reasons as above. That
means that the holding cost is increasing in x. Performing a
sequence of changes of this type we end up with a solution as
claimed and its cost is not greater than that of the original
solution.

Therefore, for ρ40:5 and p¼w2, if the optimal solution is not
simple then it falls in one of the following two options:
�
 A semi-continuous solution with TI ¼ T−Δ1 and of profit V ð7Þ,
see Fig. 8.
�
 A solution which is neither simple nor semi-continuous. Such a
solution consists of a continuous-sales interval ½0; TI �, 0≤TIoT ,
followed by kþ 1 no-sale intervals. The first of these intervals,
i.e., the one starting at TI, may be empty, and in any case its
length is strictly less than Δ1. All the other k no-sale intervals
are of length Δ1. In the sequel of this section we consider this
type of policies that are neither simple nor semi-continuous,
namely, policies with kþ ⌈α⌉≥2.

The following observation states that the possibility of 0oαo1
and k¼0 can be excluded:

Observation 13. Consider a problem with ρ40:5. If there exists an
optimal policy with p¼w2 whose cycle contains a single no-sale
interval (which is also a no-stock interval), then its length is Δ1.

The proof follows directly from Figs. 2 and 8.

8.1. 0oαo1 and k≥1

In this subsection we prove that the possibility of 0oαo1 can
be excluded from consideration also when k40.

Using Remark 12, we assume without loss of generality that the
no-sale interval of length αΔ1 starts at TI. Fix T and k, then TI þ αΔ1

is also fixed at value T−kΔ1, and dα=dTI ¼ −1=Δ1. The terms in the
profit function that are affected by the choice of α are: The profit
from sales to 2-customers, λ2ðw2−cÞTI; the holding costs on sales in
½0; TIÞ, 0:5hf ðλ1 þ λ2ÞT2

I ; the holding costs on sales at TI, hf λ1ραΔ1TI;
and the holding costs on sales at TI þ αΔ1, hf λ1ð1−ρÞαΔ1ðT−kΔ1Þ. We
use dα=dTI ¼ −1=Δ1 to obtain that the derivative of the profit V
with respect to TI is proportional to λ2ðw2−cÞ−hf ½TIλ2þ
αλ1Δ1ð2ρ−1Þ�.

The second derivative is proportional to 2ρλ1−λ.
�
 Suppose 2ρλ1≥λ. In this case, for any given T and k≥1, the profit
function V is a convex function of TI and therefore it is
maximized at one of the extreme values α¼ 0, α¼ 1.
�
 Suppose 2ρλ1oλ. In this case, for any given T and k≥1, the
profit function V is a concave function of TI, and therefore the
there is another candidate which satisfies the first-order
optimality conditions. We will show that this solution cannot
be optimal.

Equating the derivative of V with respect to TI to 0 gives,

TI ¼
w2−c
hf

−αΔ1λ1
2ρ−1
λ2

: ð2Þ

Thus,

T ¼ TI þ ðαþ kÞΔ1 ¼
w2−c
hf

þ kΔ1−αΔ1
2ρλ1−λ

λ2
: ð3Þ

For this solution, with at least two no-sale intervals, to be
optimal, the cost of carrying inventory to TI þ αΔ1 must be
smaller than the profit from selling there:

TI þ αΔ1 ¼
w2−c
hf

−αΔ1
2ρλ1−λ

λ2
≤
w2−c
hf

;

or equivalently 2ρλ1≥λ, contradicting the assumption of the
claim. Therefore, an improved solution can be obtained by
canceling the sale at TI þ αΔ1. The effect of this cancelation
is that some customers who previously bought there will
buy instead at TI and by that save the firm inventory
holding costs. Others who previously bought there will
not buy at all, and by assumption this also increases the
firm's profit.

8.2. α¼ 0

Denote V ðTÞ ¼ VkðTÞ if T ¼ TI þ kΔ1, where k≥1. Thus,

VkðTÞ ¼ λðw2−cÞ−
1
T

λ2ðw2−cÞkΔ1 þ
1
2
hf λT

2
I þ λ1hf

�

� TIðk−1þ ρÞΔ1 þ k
k−1
2

Δ2
1

� �
þ K

�

¼ λðw2−cÞ
1
T

λ2ðw2−cÞkΔ1 þ
1
2
hf λðT−kΔ1Þ2 þ λ1hfΔ1

�

� ðT−kΔ1Þðk−1þ ρÞ þ k
k−1
2

Δ1

� �
þ K

�
:

Substituting TI ¼ T−kΔ1 gives VkðTÞ ¼ E−ðBT þ C
TÞ, where

E¼ λðw2−cÞ þ ðw1−w2Þ
2hf
Hc

½λ2kþ λ1ð1−ρÞ�;

B¼ 1
2
hf λ;

C ¼ K þ kΔ1 λ2ðw2−cÞ þ
1
2
hfΔ1ðλ2k−λ1ð2ρ−1ÞÞ

� �
;

BC ¼ 1
2
λhf K þ 2kðw1−w2Þ

Hc
λ2w2 þ

ðw1−w2Þhf
Hc

ðλ2k−λ1ð2ρ−1ÞÞ
� �� �

:

If Co0 then Vk(T) is decreasing in T and obtains its maximum
at the lower boundary, T ¼ kΔ1 and TI¼0, so that there are sales to
1-customers only. Using the results of Glazer and Hassin (1986) for



Fig. 10. Solution with k no-sale intervals.
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Fig. 11. Optimal number of intervals (above) and the value function (below).

Table 1

Minimum ρ≥0:5 such that k no-sale intervals are optimal, and the values V ð9Þ
k

k¼ 1;…;7 at this ρ. ðw1;w2 ; λ1 ; λ2 ;Khf ;KHc ; cÞ ¼ ð8:1;7:7;19:3;1:6;635;345;0Þ.

k ρ V ð9Þ
1 V ð9Þ

2 V ð9Þ
3 V ð9Þ

4 V ð9Þ
5 V ð9Þ

6 V ð9Þ
7

1 0.500 5.077 4.940 4.705 4.373 3.948 3.433 2.830
2 0.605 3.730 3.730 3.630 3.430 3.136 2.747 2.268
3 0.682 2.729 2.831 2.831 2.731 2.534 2.241 1.855
4 0.761 1.722 1.928 2.030 2.030 1.930 1.733 1.442
5 0.839 0.708 1.017 1.222 1.323 1.323 1.224 1.028
6 0.919 0 0.101 0.409 0.613 0.714 0.714 0.615
7 0.999 0 0 0 0 0.101 0.202 0.202
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a single type of customers, such a structure with k41 is not
possible. Therefore, we assume that C40. In this case Vk(T) is
concave with maximum at T ¼

ffiffiffiffiffiffiffiffiffi
C=B

p
. The solution is given in

Fig. 10. Note that V ð9Þ
1 ¼ V ð7Þ, i.e., the case k¼1 is the semi-

continuous case of Fig. 8.
9. Summary

The nine possibilities for an optimal solution are:
�
 Sales at replenishment instants to 1-customers only, with
value V ð1Þ.
�
 Sales at replenishment instants without loss of any customer,
with value V ð2Þ.
�
 Sales at replenishment instants to all 1-customers but only a
fraction of the 2-customers, with value V ð3Þ.
�
 Continuous sales to 1-customers only at price w1 and value V ð4Þ.

�
 Continuous sales to all customers at price w2, with value V ð5Þ.

�
 Continuous sales to all customers followed by a no-stock

interval with sales to all 1-customers but only a fraction of
the 2-customers. This is a semi-continuous policy at price lower
than w2, and value V ð6Þ.
�
 Continuous sales to all customers followed by a no-stock
interval with sales to 1-customers only. This is a semi-
continuous policy at price w2, and value V ð7Þ.
�
 Continuous sales to 1-customers followed by a no-stock inter-
val with sales to 1-customers only. This is a semi-continuous
policy at price higher than w2 but lower than w1, and value V ð8Þ.
�
 Continuous sales to all customers at price w2 during an initial
interval followed by k no-sale intervals in which 2-customers
are lost, with value V ð9Þ

k .

We note that with a single type of customers, Glazer and Hassin
(1986) proved that the optimal solution is either simple or semi-
continuous. Indeed, multiplicity of no-sale intervals in our
generalized model comes with p¼w2, meaning that if w1 ¼w2

the solution requires continuous sales, without a no-sale interval.
We conducted an intensive computational study, but since

there are seven parameters, there does not seem to be a mean-
ingful way to describe the results. We concentrate here on the
interesting case, which is not possible with homogeneous custo-
mers, where V ð9Þ

k is optimal for k≥2, is obtained only with high
values of Khf and KHc, for example when the fixed cost K is high.
Fig. 11 shows the optimal solution value as a function of
ρ, for ðw1;w2; λ1; λ2;Khf ;KHc; cÞ ¼ ð8:1;7:7;19:3;1:6;635;345;0Þ.
(For these values of the parameters we have V ðiÞ ≤0 for
i¼ 1;…;5.) The values of V ð9Þ

k are given in Table 1 for k¼ 1;…;7.
Future research should address the possible structures of

optimal policies for a general number of customer types. In
particular, is the optimal policy for a discrete number of customer
types greater than 2 is still either simple, semi-continuous, or
consisting of a continuous sales interval followed by a number of
no-sale intervals? A challenging extension assumes a continuous
probability distribution F(w) on the proportion of customers with
a reservation price no greater than w.

Another line of research that may be of interest is to check the
benefit of dynamic pricing and price promotions within the
framework of our model. An interesting future question is how
customers will react if the next period selling price is uncertain.
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