
80 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

contributed articles

THE SOFTWARE VALUE gap is the unexploited potential
of an IT division to increase the value of the overall
organization. In today’s dynamic business environment,
most companies depend on value creation from
software solutions delivered by IT.a These solutions are
crucial for day-to-day running, controlling, and growing
the business, as well as complying with regulatory
requirements. In many cases, the availability of suitable
software solutions is a prerequisite for launching new
business initiatives and innovation.

In most companies demand for software solutions
and functionality exceeds the IT budget (or capacity
of the related human resources) for development and
maintenance by up to 500%, especially when accounting
for the “hidden queue” of software solutions.9 This oc-
curs since even the most prosperous companies cannot
afford to allocate unlimited resources to IT, as it would
adversely affect the value of the overall organization.b

a Value creation through a software solution is the marginal
discounted cash flow originating from use of the solution.

b A company’s value is its discounted cash flow.

Corporate boards and top executives
decide periodically on an affordable IT
budget, meaning business needs are
only partially met. Moreover, the even-
tual software delivery flow is too small,
late, and expensive. The software value
gap is particularly disturbing in major
industries (such as financial services,
telecommunications, insurance, air-
lines, health care, and Internet retail),
as well as in governmental agencies.

Conventional Approaches
One approach to reducing the soft-
ware value gap is to invest in IT re-
sources by hiring more IT employees
and subcontractor employees, out-
sourcing projects to subcontract-
ing companies (onshore and/or off-
shore), or purchasing off-the-shelf
software packages. However, the ex-
tent to which companies are able to
add more employees or budget is lim-
ited. Moreover, mere investment of
additional money in IT is no solution.
Outsourcing software development
and purchasing software packages
both involve allocating significant in-
ternal IT resources for requirements
definition, systems analysis, integra-
tion with other software solutions,
data migration, databases, data ware-
houses, implementation, and main-
tenance. In many cases, the extent of
software-solution deployment is lim-
ited by the ability of the organization
to define and agree on its needs, and
later to implement, assimilate, and
adopt new systems.

Another approach is to increase
software development productivity by
implementing one or more of the fol-
lowing methods:

Reducing
the Software
Value Gap

DOI:10.1145/2594413.2594422

How to cope with the growing demand
for software solutions at no extra cost.

BY SHIMEON PASS AND BOAZ RONEN

 key insights
 Software solutions delivered by IT

divisions usually do not achieve full
value creation potential.

 A comprehensive approach is needed to
boost productivity and ensure IT
value creation.

 Throughput enhancement and lead-time
reduction can be achieved with simple
managerial tools.

http://dx.doi.org/10.1145/2594413.2594422

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 81

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 M
I

C
H

E
L

A
N

G
E

L
U

S

 ˲ Agile, Scrum, and Extreme Program-
ming development methodologies;12

 ˲ Critical Chain methodology and
tools for reducing lead times of soft-
ware development projects and im-
proving due-date reliability;1,7

 ˲ Lean techniques to create a frugal
IT organization;2

 ˲ DevOps techniques;8 and
 ˲ Requirements management and

software reuse.3
Yet another approach is to priori-

tize software development requests
through some prioritization criterion.
The extent these conventional ap-
proaches begin to close the software
value gap is variable and usually not
too great. Hence, they leave room for
further improvement.

Scope of the Software Value Gap
To understand why software develop-

ment and maintenance do not create
enough value for the organization we
list and analyze the generic problems
associated with the typical IT develop-
ment and maintenance environment.
Analyzing them through the focused
Current Reality Tree, or fCRT, points
to the root causes of the software value
gap.11 We start by listing the generic
undesirable effects, or UDEs, associ-
ated with software solutions develop-
ment and maintenance,6 in uncompro-
mising language:

 ˲ Software-solutions development
does not create enough value for the
organization (the leading UDE);

 ˲ Inadequate software solutions pro-
ductivity;

 ˲ Cost of the IT division too high;
 ˲ Delivered software solutions often

abandoned;
 ˲ Software solutions in the “realiza-

tion portfolio”c not maximizing value;
 ˲ No effective selection mechanism

for software portfolio selection;
 ˲ Excessive ineffective time of IT

developers;
 ˲ Requirements not properly defined;
 ˲ Software solutions that meet needs

only partially;
 ˲ Lead times too long;
 ˲ Performance measurement lack-

ing or misleading;
 ˲ No effective focus on value;
 ˲ Internal customers’ involvement

insufficient; and
 ˲ Lack of an efficient, effective meth-

odology for managing IT resources.
Here, we arrange the UDEs in a

fCRT (see Figure 1) where arrows in-
dicate the causality relationship be-

c The realization portfolio consists of software
solutions selected for development.

contributed articles

82 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

tween UDEs, pointing from the caus-
ing UDE to the resulting UDE. The
process of fCRT building starts with
putting the leading UDE on top. UDEs
that are the causes of the leading UDE
are then picked from the list and put
below it and connected through the
causality arrows. The process contin-
ues by adding more UDEs below the
UDEs already in the tree that are caus-
ing them and subsequently adding the
required causality arrows. The bottom
UDEs of the fCRT are not associated
with other UDEs causing them; they
are thus considered the root causes
for the software value gap.

This analysis identifies the two
main root causes: lack of effective fo-
cus on value and lack of an effective IT
resources management methodology.

Root causes of the software value
gap are not just the result of IT divi-
sion management practices but the
behavior and norms within the or-
ganization as a whole. Reducing the
gap means creating more value to
companies and other organizations
through better response to their busi-
ness needs. This greater value can be
realized by addressing two options:
select the most valuable IT systems
for development and maintenance
(effectiveness) and enhance produc-
tivity in the IT division (efficiency).
Here, we outline a comprehensive ap-
proach that enables a breakthrough
toward reducing the software value
gap through existing resources.
Moreover, it synergistically comple-
ments the conventional approaches
outlined earlier.

Focus on Value
Since demand for software solutions
significantly exceeds supply, IT divi-
sions are, by definition, permanent
bottlenecks in their organizations and
hence unable to satisfy all specified
corporate IT needs.d Unfortunately,
selection of projects for inclusion in
the realization portfolio typically re-
flects the organizational power of the
requesting division or the length of
stay of the request in the to-do queue
rather than real economic value for
the organization.

d Permanent bottlenecks are resources that
will remain bottlenecks, since demand is
extremely large.

Figure 1. fCRT of the software value gap.

Root causes

Leading UDE
Software
 solutions

development
does not create
enough value

Software solutions
productivity
inadequate

Software
solutions

in realization
portfolio do not
maximize value

Cost of
IT division

too high

Excessive
ineffective time

of IT developers

Delivered
software solutions

are abandoned
often

Lack of
effective selection

mechanism for
portfolio selection

Lead times
too long

Software
solutions

meet needs
only partially

Requirements
not specified

properly

Internal
customers’
involvement
not sufficient

Lack of effective
focus on value

Lack of efficient
and effective
IT resources
management
methodology

Figure 2. Focusing matrix for selecting software solutions (not to scale).

Excluded
from current
realization
portfolio

C

100 – 500

50 – 100

50
 –

 1
0

0

10 – 50

10
 –

 5
0

5
–

10 >
5

> 10

E

A

D F

B

G

Ease
($ millions)

($ millions)
Value

> 500

>1
0

0

contributed articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 83

One way to change this counterpro-
ductive reality is to apply the strategic-
gating process that results in a portfo-
lio of software-development projects
that maximizes value for the organiza-
tion.5 Counterintuitively, the portfolio
leading to maximum value in many
cases consists of only a small num-
ber of projects. The strategic-gating
process consists of evaluation and se-
lection that prioritizes IT requests ac-
cording to their expected contribution
to value creation relative to their IT re-
sources requirement. It also ensures
requests are well in line with the com-
pany’s strategy and plans for growth.

The strategic-gating process is
done annually or (preferably) quarter-
ly. The requesting division provides
for each software-solution request a
value-creation estimate backed by a
business plan, while IT experts pro-
vide a rough-cut estimate of their
total cost of ownership, or TCO. Soft-
ware solutions required by regula-
tions are given an infinite value since
they are mandatory.

It is advisable to exclude very small
software solutions and change re-
quests (CRs) from the strategic-gating
process and put aside 15%–25% of the
overall IT budget, allocating it among
the various divisions. A high propor-
tion of effort/budget dedicated to CRs
usually increases internal users’ satis-
faction, while a large proportion of re-
sources devoted to large- and mid-size
software solutions contributes more
to the organization’s overall value.
Determining the desired balance is a
strategic decision.

Selecting software solutions can be
done through the following procedure:

 ˲ Software solutions are listed and
tagged with value-creation and TCO es-
timates (see Table 1);11

 ˲ Software solutions are mapped in
a focusing matrix according to their
value creation and TCO (see Figure 2);11

 ˲ Candidates for incorporation in
the realization portfolio are selected
mainly from the upper-right-hand
quadrant of the matrix (highest value,
lowest cost); and

 ˲ Selection continues until the avail-
able TCO budget for the relevant peri-
od is exhausted.

Value creation is also the appro-
priate criterion for approval of scope
changes during delivery of software

solutions. There is a spectrum of po-
tential scope changes, from small
modifications of features to substan-
tial scope change or even a project
swap. A scope change is justifiable if
the result creates positive net value—
the estimated increase in value cre-
ation of the software solution due to
scope-change minus the cost of scope-
change realization minus the cost of
project disruption minus the cost of
possible delay in delivery.

Strategic-Gating Process
To demonstrate the numerical and
graphical strategic-gating mecha-
nism, consider an example in which
seven software solutions are proposed
by various corporate divisions for the
strategic-gating process. The solu-
tions’ total estimated TCO budget is
$188 million. Selection is required
since the approved TCO budget for
the forthcoming year is limited to
$110 million; Table 1 lists the soft-

ware solutions that are then mapped
in a focusing-matrix according to their
value creation and ease of realization,
as in Figure 2. The most valuable soft-
ware solutions reside mainly in the
top-right-hand quadrant of the fo-
cusing matrix. Software solutions are
picked by top corporate management
with the aid of the matrix up to the to-
tal TCO limit of $110 million. In this
strategic-gating process, corporate
management picked software solu-
tions A, C, D, F, and G as the realiza-
tion portfolio.

Selecting software solutions for
inclusion in the realization portfolio
can also be achieved by ranking the
software solutions according to their
specific contribution, or ratio between
the value of the software solutions and
their TCO.11 However, the focusing ma-
trix allows management to adjust the
portfolio according to strategic con-
siderations and account for intangible
aspects of the business and the market.

Table 1. Software solutions selection through the focusing table.

Software Solution Value ($ millions) Ease = TCO ($ millions)

A Customer relationship management 550 45

B Asset management 45 29

C Bills transparency Regulation 10

D Call-centers knowledgebase 170 15

E Human resources 25 55

F Business intelligence upgrade 145 25

G Campaign management upgrade 55 9

Total TCO 188

Figure 3. Conceptual focusing matrix.

Value

Ease

Very
important

Less
important

Difficult

White
Elephants

Low-Hanging
Fruit

Oysters Pearls

Easy

contributed articles

84 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

To be effective,
performance
measures must
be properly
linked to the goal
of value creation.

In the conceptual focusing matrix
(see Figure 3), the top-right-hand quad-
rant is designated “pearls” since it con-
tains the most valuable candidates for
selection. The three other quadrants
are designated “oysters” (valuable yet
hard to crack), “low hanging fruit” (eas-
ily accomplished but less valuable),
and “white elephant” (to be avoided).
This terminology facilitates communi-
cation among managers.

Top management takes the final
strategic-gating decision, deciding to
include in the realization portfolio oys-
ters if it views them as having strategic
importance beyond the value-creation
estimate. Likewise, top management
could consider inclusion of low-hang-
ing fruit if it considers it appropriate
for achieving quick successes.

An outside observer might doubt
whether division heads, being eager to
promote their software-solutions re-
quests, would deliberately exaggerate
estimates of value creation. To obviate
this risk, every request for a software
solution must be backed by a busi-
ness plan (or at least a mini-business
plan). In addition, the division heads
must commit to the anticipated value
creation and consequently include the
derived cash-flow estimates in their
revenue targets. A follow-up mecha-
nism concerning how to achieve these
value-creation targets should be linked
to the organization’s key performance
indicators and incentive systems.

Waste Can Be Avoided
Research shows at least 50% of IT de-
velopers’ time is wasted11 due to the
following reasons:

 ˲ Rework due to incomplete or poor-
ly defined needs and requirements
(“incomplete kit”);

 ˲ Rework due to frequent changes
in requirements and scope up to the fi-
nal delivery stages; most such changes
are not “must have” but only “nice to
have”;

 ˲ Software solutions developed and
delivered but eventually not used (hap-
pens all too often);

 ˲ Over-specification of requirements
to include functionality and features
seldom or never applied; and

 ˲ Having too many activities as-
signed to individual developers, lead-
ing to wasteful context switching
among activities (bad multitasking).

Waste cannot be totally eliminat-
ed but can be reduced significantly
through seven simple managerial prac-
tices, or remedies:

The complete-kit concept.e To avoid
waste of IT resources due to rework,
the organization, as a whole, should
adopt and implement the complete-
kit concept.10,11 Projects should not be
approved for development if their busi-
ness rationale, requirements, business
plan, or statement of work are only
partial or vague. Likewise, tasks should
not be assigned to individual develop-
ers if the requirements/specifications/
design are incomplete or fuzzy. The
content of the complete-kit definitions
for the requirements and specifica-
tions is listed jointly by the requesting
divisions and IT personnel.

Since requesting divisions must
provide complete kits of require-
ments and specifications, they must
understand their needs and the re-
quired software solutions. This would
minimize the extent of requirements
changes with resulting rework and
the number of projects developed and
delivered but eventually abandoned.
Moreover, implementation of the
complete-kit concept usually leads to
improved communication and collab-
oration between business divisions
and the IT division.

Also needed are definitions of com-
plete kits for tasks and activities per-
formed along a project’s life cycle; for
instance, the system-analysis files giv-
en to programmers by their managers
must contain a complete kit of infor-
mation to enable them to do their jobs
properly. Likewise, files given to testers
must contain the complete kit of infor-
mation to enable testers to complete
their jobs properly.

Eliminating over-requirements,
over-specifications, overdesign. Scru-
tiny of software-solution require-
ments usually reveals a high degree
of over-requirements. Significant
portions of functionality and features
required for a software solution are
nice to have rather than must have.
In many cases IT professionals tend
to introduce over-specification and
overdesign to be on the safe side in

e The complete-kit for a task is the list of all
items required to complete the task without
interruption.

contributed articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 85

their view or to make the project more
challenging. Coman and Ronen4 es-
timated the amount of work-force
time wasted over these phenomena
exceeds 30%. Needed is a change in
attitude. Managers and programmers
alike, in and out of IT, are responsible
for challenging functionality and fea-
tures they view as over-required, over-
specified, or overdesigned. These is-
sues should be raised multiple times
during the delivery cycle. For exam-
ple, during the kick-off meeting, over-
requirements should be identified
and eliminated from the scope of the
system to be developed. In team meet-
ings concerning risk management,
control gates, and design reviews,
over-requirement, over-specification,
and overdesign should likewise be
identified and eliminated.

25/25 practice. The 25/25 rule
says management should attempt
to discontinue and stop work on ap-
proximately 25% of the projects in the
pipeline. In the remaining projects,
unneeded or over-required features
(approximately 25%) should be re-
moved. All software solutions in the
pipeline should be examined on a
quarterly basis by top management
through the focusing matrix. Busi-
ness situations might have changed,
and value creation might be lowered
significantly. Likewise, for some soft-
ware solutions the remaining delivery
costs end up being much higher than
expected. In such cases, where proj-
ects lose their value-creation poten-
tial, top management must stop proj-
ect delivery, disregarding the “sunk
costs” already invested in them. In
some organizations, many projects
can be eliminated this way, freeing up
to 25% of the IT division’s budget or
capacity.

Similarly, the team must scrutinize
most complicated and costly software
solutions remaining in the pipeline to
detect over-requirements, over-speci-
fications, and overdesigns and elimi-
nate them. This practice removes un-
necessary functionality and features,
reducing the cost of delivering these
solutions by up to 25%.

Split large and risky solutions
among releases. In organizations
where software is launched in peri-
odical (such as quarterly) releases, we
recommend refraining from develop-

ing and implementing large software
solutions in a single release, especial-
ly when delivery involves significant
business and technical uncertainty.
Splitting the software solution, if pos-
sible, among two or three consecutive
releases ensures the requesting divi-
sion gains a better understanding of
its needs and solution requirements;
technical risk is also reduced. This
practice yields a better fit with busi-
ness needs while reducing the hazard
of rework due to changes in require-
ments and the probability of eventual
neglect of the software solution.

Performance measurement. Sys-
tematic measurement of performance
is a powerful, proven means to en-
hance performance, including avoid-
ance of waste. However, to be effec-
tive, performance measures must be
properly linked to the goal of value
creation.

Performance measures are not sup-
posed to be “perfect” or “scientific”
or cover all extreme cases. Defining
perfect measures is generally difficult
or impossible. The main purpose of
performance measures is to enable
improvement over time. Measures that
are not perfect yet make sense and are
measured in a consistent manner over
time are good enough. Though other
performance measures can be added
as long as they are in line with the or-
ganization’s overall business goal, we
suggest a basic set of seven periodical
performance measures covering most
operational aspects of IT:

Throughput of IT division. T = total
estimated value creation of software
solutions delivered during the mea-
surement period;

Productivity of IT division. Prod =

the amount of CR-equivalent units de-
veloped during the measurement pe-
riod; a possible definition is the total
of {number of large software solutions
multiplied by 9 + number of medium-
size software solutions multiplied by
3 + number of change requests} deliv-
ered during the measurement period;

Operating expenses. OE = TCO ex-
penses for IT during the measurement
period;

Work in process. WIP1 = number of
software solutions open in develop-
ment at the measurement instance;
WIP2 = average number of released ac-
tivities per developer in the IT division
at the measurement instance;

Lead time. LT = average time span
from requirements introduction until
delivery for all large software solutions
during the measurement period;

Quality. Q1 = number of critical
defects detected during the first six
months following delivery for all soft-
ware solutions; Q2 = average scope
stabilityf of all software solutions de-
livered during the measurement pe-
riod; and

Due-date performance. DDP1 = per-
centage of software solutions delivered
on time during the measurement peri-
od; DDP2 = percentage of development
activities delivered on time during the
measurement period.

These measures are solid perfor-
mance indicators and useful in creating
an effective incentives system for the
head and managers of the IT division.

Short lead times. Long lead times
calling for over-requirements and un-
necessary changes in scope can be
prevented by substantially shortening
project lead times through practices
we discuss later.

Net value creation for scope-change
requests. To prevent introduction
of unnecessary requests for scope
change, the approval criterion is the
existence of positive net value creation
discussed earlier.

These seven remedies help avoid
waste within an IT division. To under-
stand their potential for productivity
enhancement consider the following
example IT division whose profes-
sionals experience approximately 50%

f Scope stability reflects the extent of changes
introduced into the scope definition of the
software solution.

Figure 4. Effective vs. ineffective time
(before improvement).

Ineffective time
50%

Effective time
50%

contributed articles

86 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

participated in a six-day seminar cov-
ering the value-creation managerial
philosophy, methodology, and tools,
including presentations, discussions,
and hands-on assignments. At the end
of the seminar, top management ap-
proved an implementation plan for the
following six major value drivers, as
well as for the IT division itself:

 ˲ Identifying and managing IT divi-
sion bottlenecks;

 ˲ Implementing strategic gating and
25/25 mechanisms;

 ˲ Implementing the complete-kit
concept in the main work processes of
the division and its subcontractors;

 ˲ Implementing high-level and low-
level tactical gating while eliminating
over-requirements, large activities, and
bad multitasking;

 ˲ Avoiding ineffective times; and
 ˲ Defining performance measure-

ments for the IT division.
All managers in the IT division, up

to team leaders, participated in follow-
on three-day seminars covering value-
creation enhancement, forming sev-
eral task force teams to address value
drivers.

Top management reported three
main results (within three years):

Productivity. Increased 120% from
109 CR-equivalent units to 241 CR-
equivalent units per quarter (see Fig-
ure 6);

Operating expenses. Annual TCO
budget practically constant; and

Due-date performance (DDP1). In-
creased from 69% on-time delivery to
76% on-time delivery.

We found similar results in seven
other companies we studied.

Value Leverage
Predicting the effect of the strategic-
gating mechanism is difficult, as it is
situation-dependent, reflecting the
actual value and ease of all potential
software solutions proposed for a
specific situation and the realization
portfolio that would have been select-
ed by the IT division in the absence of
a strategic-gating mechanism being
in place. However, the effect of im-
plementing IT productivity improve-
ment on the value of the company can
be clearly shown.

Value-leverage example. Consider a
company in which approximately 30%
of revenue depends on or originates

waste of their work-time capacity due
to several sources (see Figure 4). Sup-
pose by applying one or more of the
remedies to major waste sources,
waste is not totally eliminated but
rather conservatively cut to 40%. This
means productive time actually grows
from 50% to 60% with the same re-
sources (see Figure 5). Increasing ef-
fective time from 50% to 60% is like
adding 20% trained and experienced
resources at no extra cost in terms
of, say, wages, recruitment, training,
mentoring, working space, worksta-
tions, or software licenses.

Controlled Release
A proven practice for improving IT
efficiency is to control the release of
projects into the system, as well as
the release of tasks to individual de-
velopers, enabling fast flow of work
through the system, shorter lead
times, and increased productivity. At
the same time, it allows better utiliza-
tion of the bottleneck resources of the
IT division.

High-level tactical gating controls
the release of projects onto the de-
velopment floor according to a pre-
defined prioritization mechanism;
starting too many projects at once
could bring chaos, so staggering proj-
ects is preferred. Low-level tactical
gating is a mechanism for controlling
the release of tasks to developers ac-
cording to a predefined prioritization
mechanism. Managers and team lead-
ers release new tasks to their subor-
dinates only if they have fewer than
three or four released tasks, or two
to four weeks of work. The require-
ments/specifications/design of these
tasks must also comply with the com-
plete-kit policy. Instead of assigning
large tasks to a developer, we recom-
mend dividing large tasks into smaller
activities taking five to 10 days each. In
addition, according to low-level tacti-
cal gating, IT managers should spare
bottleneck developers as much as
possible day-to-day interruptions like
customer support and unnecessary
meetings. Synchronized implemen-
tation of high- and low-level tactical-
gating mechanisms results in shorter
lead times and faster flow of projects,
as well as improved due-date perfor-
mance and software quality.

Telecom Case Study
B is a multibillion-dollar telecommu-
nication company whose business
depends on its IT division in all activi-
ties, including sales, marketing, opera-
tions, engineering, customer service,
billing, and finance. B’s top manage-
ment has decided to implement the
value-creation methodology and tools
throughout the organization. It also

Figure 5. Effective vs. ineffective time
(following waste reduction).

Effective time
60%

Ineffective time
40%

Figure 6. Productivity improvement over time.

350

300

250

200

150

100

50

0

Change Request-Equivalent Units Per Quarter

20
0

9
Q

2

20
0

9
Q

3

20
0

9
Q

4

20
10

 Q
1

20
10

 Q
2

20
10

 Q
3

20
10

 Q
4

20
11

 Q
1

20
11

 Q
2

20
11

 Q
3

contributed articles

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 87

from new software solutions. The pre-
vious year’s revenue totaled $1.29 bil-
lion. Its real variable costs (RVCs) were
$210 million (16.3% of revenue). The re-
sulting throughput (all revenues minus
RVC) was $1.08 billion. The company’s
fixed costs totaled $910 million, hence
its earnings before interest, tax, depre-
ciation, and amortization, or EBITDA,
the previous year was $170 million (see
Table 2).

Now suppose the company can con-
sistently achieve annual revenues of
$1.29 billion. If we use a conservative
EBITDA multiplier of 10, the compa-
ny’s market value is $1.70 billion.

Suppose the IT division succeeds
in implementing the kind of improve-
ment practices described here, there-
by increasing the amount of software
solutions delivery by 20%. Suppose,
too, that the value-creation potential
of these additional 20% software so-
lutions is on average only 25% com-
pared to average projects in the cur-
rent realization portfolio. Since only
30% of the revenue originates from
the introduction of new software so-
lutions, the additional revenue for the
following year would be $1.29 billion
multiplied by 30% multiplied by 20%
multiplied by 25% = $19 million. RVC
will probably increase proportionally
to $213 million, or still approximately
16% of revenues.

If the IT division achieves this in-
crease in productivity of software so-
lutions with the same resources, and
does it without adding human resourc-
es or assets to the company, then fixed
costs are unchanged. Our own calcu-
lation shows the corporate EBITDA
would grow to $186 million, a 9.4%
increase over the previous year (see
Table 3). Using the same EBITDA mul-
tiplier of 10, the market value of the
company reaches $1.86 billion without
adding significant resources or other
investment. Our experience shows
that implementing the strategic-gating
mechanism adds even more value to
the company overall.

These improvement steps require
a change in an organization’s over-
all culture, thus the leadership of the
CEO, CIO, and top management team.
The strategic-gating mechanism and
IT division’s internal improvement
activities are synergic and must be im-
plemented concurrently. If the busi-
ness divisions have doubts regarding
the IT division’s commitment to in-
troduce required improvements, they
would be reluctant to participate in
the strategic-gating selection mecha-
nism or submit project requests in the
form of complete kits. Likewise, if IT
management does not define requests
according to the complete-kit concept
free of over-requirements, it will have

little motivation to improve its own
processes. The culture of splitting
large software solutions into “stages”
or “releases” can be introduced at a
second stage, once the other improve-
ment steps are in place.

Conclusion
This approach to reducing the software
value gap complements conventional
approaches outlined here through a
high degree of synergy. Its ability to
add value has proved to be achievable
without further investment. Improve-
ment is possible in several months.
Success along these lines is easier to
accomplish when the initiative for the
improvement project comes from the
CEO or the board of directors and the
CEO becomes the “owner” of the proj-
ect. Reducing the software value gap
for enhanced value creation comple-
ments other value-creation activities
when other sectors of the organization
(such as marketing, sales, R&D, engi-
neering, project management, and op-
erations) pursue them.

References
1. Anderson, D.J. Agile Management for Software

Engineering. Prentice-Hall, Upper Saddle River, NJ,
2003.

2. Bell, S.C. and Orzen, M.A. Lean IT. Productivity Press,
New York, 2011.

3. Boehm, B.W. Software Engineering Economics.
Prentice-Hall, Upper Saddle River, NJ, 1981.

4. Coman, A. and Ronen, B. Icarus’ predicament:
Managing the pathologies of overspecification
and overdesign. International Journal of Project
Management 28, 3 (Apr. 2010), 237–244.

5. Cox, J.F. III, Boyd L.H., Sullivan T.T., Reid R.A., and
Cartier, B. The TOCICO Dictionary, Second Edition.
McGraw-Hill, Inc., New York, 2012.

6. Goldratt, E.M. It’s Not Luck. North River Press, Croton-
on-Hudson, NY, 1994.

7. Goldratt, E.M. Critical Chain. North River Press,
Croton-on-Hudson, NY, 1997.

8. Loukides, M. What Is DevOps? O’Reilly Media, Inc.,
Sebastopol, CA, 2012.

9. Martin, J. Applications Development Without
Programmers. Prentice-Hall, Englewood Cliffs, NJ,
1982.

10. Ronen, B. The complete kit concept. International
Journal of Production Research 30, 10 (1992),
2457–2466.

11. Ronen, B. and Pass, S. Focused Operations
Management. John Wiley & Sons, Inc., Hoboken, NJ,
2008.

12. Schwaber, K. Agile Project Management with Scrum.
Microsoft Press, Redmond, WA, 2004.

Shimeon Pass (shimeon@passmgmt.com) is a senior
consultant and implementation facilitator at Focused
Management Ltd., Tel Aviv, Israel.

Boaz Ronen (boazr@post.tau.ac.il) is the Professor Simon
I. Domberger Chair for Innovative Value Creation and a
professor of technology management and value creation
in Recanati Business School, Tel Aviv University, Israel,
and a senior consultant at Focused Management Ltd., Tel
Aviv, Israel.

Copyright held by Author/Owner(s). Publication rights
licensed to ACM. $15.00

Table 2. Profit-and-loss summary.

Last year ($ millions)

Revenue 1290

Real variable costs 210 [16.3%]

Throughput 1080

Fixed costs 910 [70.5%]

Earnings before interest, tax,
depreciation, and amortization

170 [13.2%]

Table 3. Value creation, as seen in the profit-and-loss summary.

Last year
(million $)

Next year
(million $)

Revenues 1290 1309

Real Variable Costs 210 [16.3%] 213 [16.3%]

Throughput 1080 1096

Fixed costs 910 [70.5%] 910 [69.5%]

EBITDA 170 [13.2%] 186 [14.2%]

∆(EBITDA) [~∆Value] +9.4%

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

