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Regular cooperative balanced games with

applications to line-balancing

Shoshana Anily∗and Moshe Haviv†

December 2, 2013

Abstract

The conventional definition of a cooperative game G(N,V ) with a
set of players N = {1, . . . , n} and a characteristic function V, is quite
rigid to alterations of the set of players N . Moreover, it may necessi-
tate a large input of size that is exponential in n. However, the char-
acteristic function of many games allows a simple, efficient and flexible
presentation of the game. Here we deal with a set of games that we
call regular games, which have a simple presentation: In regular games
each player is characterized by a vector of quantitative properties, and
the characteristic function value of a coalition depends only on the vec-
tors of properties of its members. We show that some regular games
in which players can cooperate with respect to some of their resources
and whose immediate formulation does not fit the framework of mar-
ket games, can nevertheless be transformed into the form of market
games and hence they are totally balanced. In particular, they lead
to a core allocation based on a competitive equilibrium prices of the
transformed game.

1 Introduction

A general cooperative coalitional game is defined by a set of n players,
N = {1, 2, . . . , n}, that can break up into subsets. Any subset S of N ,
∅ ⊆ S ⊆ N , is called a coalition, where N itself is called the grand-coalition.
Each coalition S is associated with a real non-negative value denoted by
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V (S), where V (∅) = 0. The value V (S) is the total cost inflicted on the
members of coalition S if they cooperate. The function V : 2N → < is called
a characteristic function. The pair G = (N,V ) is said to be a cooperative
game with transferable utility. The total cost incurred by all players of
N depends on the partition of N into disjoint coalitions, so that if N is
partitioned into m disjoint coalitions, S1∪S2∪. . .∪Sm = N, 1 ≤ m ≤ n, then
the total cost is

∑m
i=1 V (Si). This conventional definition of a cooperative

game has the advantage of being general and simple, i.e., any coalitional
game can be casted into this framework. Yet, its main drawback is its input
size. Specifically, in order to fully describe a game G = (N,V ), 2n − 1
values are needed to be specified. The input size burden imposes a practical
restriction on the size of games (number of players) that can be studied. For
example, consider a simple game, where V (S) ∈ {0, 1} and V (N) = 1. This
game, as simple as it looks, necessitates the specification of V (S) for any
S ⊂ N. Thus, the generality of the common presentation of games comes at
the cost of its limitations.

In this paper we discuss some structured coalitional games, especially
games that arise in operations and service management, that allow a much
more efficient presentation. We call the class of games that we focus on
Regular Games: In a regular game each player is characterized by a vector of
quantitative properties, called vector of properties and the cost of a coalition
of size m ≥ 1 is a function Vm of the m vectors of properties of its members,
but it is otherwise independent of the identity of the players, or the number
of players in the grand-coalition. Two consecutive functions Vm and Vm+1

for m ≥ 0 are linked through a simple relation. That means that all is needed
in order to describe a regular game G = (N,V ) is the permissible domain of
vectors of properties, the vector of properties of each player in N , a function
Vm that maps m vectors of properties into <, and the linking relation that
states Vm+1 in terms of Vm,. Thus, the input size to describe such a game
is of size O(n). This proposed form of presentation for regular games, has
the advantage of being flexible, meaning that the modifications required
when changing the set of players N by adding, removing or duplicating
some players are marginal: all is needed is an update of the collection of the
vectors of properties of the new set of players.

Next we review the main concepts in cooperative games that are relevant
to this paper. Given a game, the first question is whether the grand-coalition
is the socially optimal formation of coalitions. A sufficient condition for that
is the sub-additivity of its characteristic function: A game G = (N,V ) is
called subadditive if for any two disjoint coalitions S and T , V (S ∪ T ) ≤
V (S) + V (T ). Sub-additivity ensures that the socially best partition of the
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players of N to disjoint coalitions is when all players cooperate and join
the grand-coalition. Subadditive games bear the concept of economies of
scope, i.e., when each player, or set of players, contributes its own skills
and resources, the total cost is no greater than the sum of the costs of
the individual parts. On top of forming the grand-coalition, players of N
need to establish a way that allocates the cost V (N) among themselves,
so that no group of players may resist this cooperation and decide to act
alone. Several concepts of stability have been proposed in the literature.
The most appealing is the core: A vector x ∈ <n is said to be efficient if∑n
i=1 xi = V (N), and it is said to be a core cost allocation of the game if it

is efficient and if
∑
i∈S xi ≤ V (S) for any S ⊂ N .

The collection of all core allocations, called the core of the game, forms
a simplex in <n as it is defined by a set of linear constraints with n decision
variables. As the number of constraints that define the core is exponential
in n, more specifically it is 2n − 1, finding a core allocation for a given
game may be, in general, an intricate task. Indeed, this issue coupled with
the possibility that the core is empty, makes the problem of finding a core
allocation a real challenge in some games. Moreover, even if we can prove
the non-emptiness of the core, the question of finding a cost allocation in
the core may be non-trivial.

A cooperative game G = (N,V ) is said to be balanced if its core is non-
empty, and totally balanced if its core and the cores of all its subgames are
non-empty. Subadditivity is a necessary condition for total balancedness as
if there exist disjoint coalitions S and T for which V (S)+V (T ) < V (S∪T ),
the subgame (S ∪ T, V ) has an empty core since any efficient allocation of
V (S ∪ T ) among the players of S ∪ T will be objected by at least one of
the coalitions S or T . The literature provides two main conditions that are
sufficient in order establish the total balancedness of a game.

• Condition 1. A game G = (N,V ) is a concave game if its characteris-
tic function is concave, meaning that for any two coalitions S, T ⊆ N ,
V (S ∪ T ) + V (S ∩ T ) ≤ V (S) + V (T ). Clearly, concave games are
subadditive but not the other way around. It was shown in [15] that
the core of a concave game possesses n! extreme points, each of which
being the vector of marginal contribution of the players to a different
permutation of the players.

Remark 1. A game is called an Average Convex Game if for any two
disjoint coalitions S, T ⊂ N, the following inequality holds:

∑
i∈S(V (S∪

T )− V (S ∪ T\{i})) ≤
∑
i∈S(V (S)− V (S\{i})). This set of games in-

cludes as a proper subset the set of convex games. In [6] it is proved
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that the Shapley Value, see [15], of an average convex game is in the
core of the game, proving that such games are also totally balanced.

• Condition 2. A market game, see e.g., Chapter 13 in [13], is defined
as follows: Suppose there are ` types of inputs. An input vector is a
non-negative vector in <`+. Each of the n players possesses an initial
commitment vector wi ∈ <`+, 1 ≤ i ≤ n, which states a nonnegative
quantity for each input. Moreover, each player is associated with a
continuous and convex cost function fi : <`+ → <+, 1 ≤ i ≤ n. A
profile (zi)i∈N of input vectors for which

∑
i∈N zi =

∑
i∈N wi is an

allocation. The game is such that a coalition S of players looks for
an optimal way to redistribute its members’ commitments among its
members in order to get a profile (zi)i∈S of input vectors so as the sum
of the costs across the members of S is minimized. Formally, for any
∅ ⊆ S ⊆ N ,

V (S) = min {
∑
i∈S

fi(zi) : zi ∈ <`+, i ∈ S and
∑
i∈S

zi =
∑
i∈S

wi} (1)

Remark 2. In [13] it is assumed that the functions fi(zi), 1 ≤ i ≤ n,
are non-increasing but as noted in [4] page 163 footnote 2, this in fact
is not required.

• Condition 3. A regular market game which is sub-additive and ho-
mogeneous of degree one as defined in [2]. Some preliminaries given in
Section 2 are needed, so we elaborate on this condition in the sequel.

Market games are not necessarily concave, but they are well-known to
be totally balanced, see [14], Corollary 3.2.4. Unlike concave games whose
core is fully characterized and has a closed form (see Condition 1), just a
single core allocation based on competitive equilibrium prices, is known for
general market games, see [13], p. 266. In fact, [16] proves that a game is a
market game if and only if it is totally balanced. In particular, any concave
game is a market game. However, if a game is not naturally formulated as
a market game (see (1)), then the task of reformulating it as a market game
(or showing that such a formulation does not exist), may be as intricate as
proving directly that it is totally balanced (or that it is not). Thus, it seems
that except for games that are either originally stated as market games, or
are easily transformed to market games, this approach has its limits.
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The above stated conditions for total balancedness hold for general games.
Apparently, regular games are not esoteric; many well-known games are reg-
ular and therefore deepening our understanding on the total balancedness
of such games is valuable and important. In this paper we provide a couple
of techniques that can help in analyzing the core of some regular games.

In the next section we rigorously define regular games. In Section 3
we present a class of regular games that we call Aggregation Games. For
aggregation games that are non-monotone, a constructive technique that
generates an auxiliary monotone aggregation game whose core is a subset
of the core of the original game, is presented. We show by an example that
sometimes the total balancedness of the auxiliary game is easier to identify,
and such an authentication proves that the original game is totally balanced.
In Section 4 we present a class of Regular Market Games. In particular, we
develop a reduction technique that transforms certain games into market
games, for which a specific core cost allocation based on competitive equi-
librium prices can be derived. In Section 5 we present and study two regular
queueing games that deal with servers’ cooperation and show that they are
regular market games and therefore they are proved to be totally balanced.

2 Regular games

Consider a cooperative game G = (N,V ) that is defined by its set of players
N and its characteristic function V that satisfies the following conditions:
Each player i ∈ N is fully characterized by the quantities of a given number
κ ≥ 1 of resources that he/she owns. Let index the resources that are
considered by ` = 1, . . . , κ, so that player i ∈ N is associated with a vector
yi ∈ <κ, called a vector of properties, and yi` specifies the quantity of resource
`, 1 ≤ ` ≤ κ, owned by player i ∈ N. Moreover, the characteristic function
value of coalition S ⊆ N, namely V (S), is a function only of the |S| vectors of
properties that characterize the members of S and is otherwise independent
of the players’ identities or the number of players in N . As we are going
to show, under certain conditions it is possible to generalize the definition
of such games and their characteristic function to any set of players, not
necessarily those who are physically involved in the particular game G =
(N,V ). Note that this extension is both in terms of different set of players
and in the number of players. I.e., the characteristic function in such games
can be applicable to any collection of vectors of properties. We call such
games Regular Games. Apparently, the class of regular games is quite large
and it contains many well-known and interesting games. In this section
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we will formalize the notion of regular games and propose an alternative
definition and framework for such games.

As said above, regular games deal with situations where each player is
fully characterized by a vector of properties, which represents her own initial
amount of the κ ≥ 1 resources. Some of the κ resources can be shared
among the members of a coalition, where the other resources are individual
resources that are not sharable. The characteristic function V (S) of any
coalition S ⊆ N, is the cost induced by the members of S when the sharable
resources are used by coalition S according to the rules of the game. In some
games all resources are sharable, and in other games only some resources
are sharable and the others are serving as characteristics (parameters) of the
players. As an example of these two types of resources, consider a number of
service stations that provide different kinds of services. Each service station
is associated with its own capacity and its own stream of customers. As
the service stations differ in their service, the customers cannot switch upon
arrival from one station to another, i.e., they are bounded to get the service
from the specific station they came to. However, the service stations can
share their service capacities in the sake of minimizing the overall congestion
of the system. In this example, each service station is assigned a vector of
properties of size 2 for its service rate and its arrival rate. The capacity is a
sharable property where the arrival rate is non-sharable.

We first stress the difference between non-regular and regular games by
two examples. Consider first simple games mentioned in Section 1.

Example 1 A simple game is a coalitional game G = (N,V ) where V (S)
is either 0 or 1, for any S ⊂ N , and V (N) = 1. A coalition S for which
V (S) = 1 is called a winning coalition. A player who belongs to all winning
coalition is a veto player.

In general, in a simple game the players are not associated with any
quantitative property and their affect on the cost of a coalition that they
join is not systematic.

Example 2 A majority game G = (N,V ) where |N | = n ≥ 3 is odd: the
game is defined by the characteristic function V (S) = 1 if |S| ≥ n/2, and
V (S) = 0 otherwise. Here we could assume that each player is associated
with a vector of properties of size 1, so that the single entry of the vector is
1, and the cost of a coalition depends on the sum of the vectors of properties
of the players that belong to the coalition. However, the game is non-regular
as the cost of a coalition is a function of the total number of players n. That
means that the cost of a specific coalition may drop from 1 to 0 by adding
players and increasing n.
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Next we present a well-known game, the airport game, see [11] and [12],
which is later shown to satisfy the conditions of a regular game:

Example 3 An airport with a single runway serves m different types of
aircrafts. An aircraft of type k, 1 ≤ k ≤ m, is associated with a cost ck ≥ 0
of building a runway to accommodate aircrafts of its type. Let Nk be the
set of airport users that use an aircraft of type k landing in a day, and
N = ∪mk=1Nk is the set of all airport users. The characteristic function
for any S ⊆ N is given by V (S) = max{ck|S ∩ Nk 6= ∅, 1 ≤ k ≤ m}
and V (∅) = 0. This conventional presentation of the airport game reveals
its limitations as it is defined just for the given set of airport users, and,
moreover, for each given aircraft type k, 1 ≤ k ≤ m, it is defined just for the
landings in the set Nk. It is easy to see that this definition for the game can
be easily generalized to any set of players each of which having its parameter
ck as its vector of properties. This will formally be done below.

In a regular game each potential player j is associated with a vector of
properties yj of size κ ≥ 1, that may be required to satisfy some feasibility
constraints of the form yj ∈ D, where D ⊆ <κ. Let y(m) denote a sequence
of m vectors of properties y1, . . . , ym in D. The following two definitions
formally define a regular game:

Definition 1 An infinite sequence of symmetric functions V0, V1, . . . , Vm, . . .
is said to be Infinite Increasing Input-Size Symmetric Sequence (IIISSS) of
functions for given integer κ ≥ 1, and a subset D of <κ, if

• V0 ≡ 0;

• For any m ≥ 1, Vm : Dm → <.

• There exists a vector y0 ∈ D such that V1(y
0) = 0 and for any given

sequence of m − 1 vectors of properties y(m−1) = (y1, . . . , ym−1) ∈
Dm−1, Vm−1(y

(m−1)) = Vm(y(m−1), y0).

For a given IIISSS of functions (Vm)m≥0, Vm receives as input m vectors
of size κ, each is a member of the set D, and it returns a real value. As
the functions Vm are symmetric, the order of the m input vectors has no
affect on the value of the function. In other words, let φ(y1, . . . , ym) be any
permutation of (y1, . . . , ym) ∈ Dm. The symmetric property of the function
Vm implies that Vm(y1, . . . , ym) = Vm(φ(y1, . . . , ym)). The third item of
the definition guarantees that the definition of the various functions of the
IIISSS of functions is consistent, i.e., it excludes the possibility that there
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exist two functions V` and Vk for ` 6= k, `, k ≥ 1, where each is defined
by a different mathematical expression. This is achieved by requiring to
have a null vector of properties y0 ∈ D that connects the different functions
through a forward recursion. For example, suppose that each player i is
associated with a certain real number αi that represents its liability and
that the value of a coalition is the average liability of its members. In such
a case let κ = 2, player i is associated with a vector yi = (αi, 1), the null
vector is y0 = (0, 0) and D = {(0, 0)} ∪ {(x, 1) : x ∈ <}. Given m vectors
of properties y(m) ∈ Dm, yi = (αi, βi) ∈ y(m), i = 1, . . . ,m, the value
Vm(y(m)) =

∑m
i=1 αi/

∑m
i=1 βi, i.e., Vm(y(m)) is the average of the liabilities

of the non-null vectors in D. Note that the choice of y0 as the zero-vector
is natural for a null vector and it holds in many other games. But in some
games y0 is not necessarily the zero vector. Consider a similar example to
the above one with a characteristic function that returns for any coalition
the product of the liabilities in the coalition divided by the number of players
in the coalition, i.e., Vm(y(m)) = Πm

i=1αi/
∑m
i=1 βi. In such a case the null

vector y0 = (1, 0), and V1(y
0) is defined as 0.

Definition 2 A game G = (N,V ) is called regular if there exists a set
D ∈ <κ, such that player i, i ∈ N , is associated with a vector of properties
yi ∈ D, and there exists an IIISSS of functions V` : D` → <, ` ≥ 0, such
that for any S ⊆ N , V (S) = V|S|(y

i|i∈S).

Observation 1 A market game G = (N,V ), as defined in Condition 2 in
Section 1, is not necessarily a regular game, as either the cost function of
a player depends on non-quantitative properties, or alternatively, the game
cannot be presented by an IIISSS of functions. Section 4 considers a class of
regular games that are also market games, to be called regular market games.

In the next two sections we identify two types of IIISSS of functions that
generate many well-known regular games.

Condition 3 for total balancedness, mentioned in the Introduction, is
based on the following theorem, which is proved in [2]:

Theorem 1 A regular game based on IIISSS of functions which are both
sub-additive and homogeneous of degree one1 is totally balanced.

1An IIISSS of functions V0, V1, V2, . . . is said to be sub-additive if for any two finite
(not necessarily disjoint) sequences of vectors of properties in D, (yiA)|i∈A and (yiB)|i∈B ,
V(|A|+|B|)((y

i
A)|i∈A, (yiB)|i∈B) ≤ V|A|((y

i
A)|i∈A) + V|B|((y

i
B)|i∈B). It is said to be homoge-

neous of degree one if for any m ≥ 1, Vm|A|((y
i(j)
A )i∈A, j=1,...,m) = V|A|((y

i
A)i∈A), where

y
i(j)
A for j = 1, . . . ,m and i ∈ A are m replicas of yiA.
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3 Aggregation games

In an aggregation game, all resources are sharable, i.e., individual properties
do not exist. Moreover, when two players, say i and j, cooperate, their
combine effect on the cost of the coalition they join, is as if they were
replaced by a single new player having a vector of properties g(yi, yj), for
some symmetric function g : D2 → D that satisfies the commutative and the
associative laws. That means that g(yi, yj) = g(yj , yi), for i 6= j, and that
g(g(yi, yj), yk) = g(yi, g(yj , yk)) for k /∈ {i, j}. Such a function g is called
an aggregation function. For simplicity denote the aggregation function of
m vectors of properties by gm−1 : Dm → D, i.e., gm−1(y1, . . . , ym) ∈ D. A
given cost function for one player, namely V1, together with an aggregation
function g : D2 → D, generate a corresponding IIISSS of functions in the
following way: Vm(y1, . . . , ym) = V1(g

m−1(y1, . . . , ym)). Next we present two
example for aggregation games:
Contd. of Example 3: In the airport game κ = 1, D = <+

0 , g : D2 → <,
where the aggregation function g(c1, c2) = max(c1, c2) for any (c1, c2) ∈
D2, and gm−1(c1, . . . , cm) = max(c1, . . . , cm) for any (c1, . . . , cm) ∈ Dm.
For any c ≥ 0, V1(c) = c. Thus, Vm(c1, . . . , cm) = V1(max(c1, . . . , cm)) =
max(c1, . . . , cm). This game is totally balanced, as for any instance of the
game G = (N,V ) with n players that are indexed, without loss of generality,
in a non-decreasing order of ci for i = 1, . . . , n, namely, c1 ≤ c2 ≤ . . . ≤ cn,
the cost allocation xi = 0 for i = 1, . . . , n− 1 and xn = cn, is in the core.

Example 4 In [1] we dealt with what seems to be the simplest (but most
revealing) possible model of cooperation in service systems. This model is
based on the assumption that when a set of servers cooperate, they work
as a single server whose service rate is the sum of the individual service
rates. Moreover, this combined server serves their joint stream of arrivals.
More precisely, let N = {1, . . . , n} be a set of n M/M/1 queueing systems.
They can cooperate in order to minimize the steady-state congestion in the
combined system. Queueing system i is associated with its own exponential
service rate µi and its own Poisson arrival rate of customers λi, λi < µi,
i ∈ N . Cooperation of a set S ⊆ N in this model results in a single
M/M/1 queue whose capacity is µ(S) =

∑
i∈S µi, and whose arrival rate

λ(S) =
∑
i∈S λi. For any coalition S ⊆ N the congestion of S is given by

V (S) =
λ(S)

µ(S)− λ(S)
.

Next we present this game as a regular aggregation game: each player,
namely each queueing system, is associated with a vector of properties of
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size κ = 2, y0 = (0, 0), and D = {0, 0} ∪ {(λ, µ)|0 ≤ λ < µ} ⊂ (<+)2.
Let V1(y

0) = 0, and for (λ, µ) ∈ D\{0, 0)}, V1(λ, µ) = λ
µ−λ . The aggre-

gation function g that combines two vectors of properties in D into one is
g((λ1, µ1), (λ2, µ2)) = (λ1 + λ2, µ1 + µ2), thus
gm−1((λ1, µ1), . . . , (λm, µm)) = g(

∑m
i=1 λi,

∑m
i=1 µi). Let Vm(y1, . . . , ym) =

V1(g
m−1((λ1, µ1), . . . , (λm, µm))). Thus, if gm−1((λ1, µ1), . . . , (λm, µm)) 6=

y0, then Vm(y1, . . . , ym) =
∑m
i=1 λi/

∑m
i=1(µi − λi), and otherwise

Vm(y1, . . . , ym) = 0.
It was shown in [1] that this game, which is neither concave nor it pos-

sesses the shape of a market game (see (1)), is totally balanced. In fact,
the non-negative part of the core has been fully characterized in [1]. In
particular, xi = λi

λ(N)V (N), i ∈ N , is a core allocation.

Aggregation games are not necessarily monotone, meaning that adding
players to a coalition may affect the cost of the coalition in either way: the
cost may increase, decrease or it may stay intact. In fact, the game presented
in Example 4 is not monotone. In [1] we suggest a procedure that may be
helpful in analyzing the total balancedness of such games. For that sake we
define below an auxiliary game that may be easier to analyze:

Definition 3 Any non-monotone regular aggregation game G = (N,V ) is
associated with another aggregation game G̃ = (N, Ṽ ) called its auxiliary
game where Ṽ (S) = min{V (T ) : S ⊆ T ⊆ N}.

The following Theorem follows from [1]:

Theorem 2 • The auxiliary game G̃ = (N, Ṽ ) of a non-monotone ag-
gregation game G = (N,V ) is a monotone aggregation game, with
Ṽ (∅) = 0, Ṽ (N) = V (N), and Ṽ (S) ≤ V (S).

• If the auxiliary game G̃ = (N, Ṽ ) is totally balanced, then the game
G = (N,V ) is also totally balanced.

• If the auxiliary game G̃ = (N, Ṽ ) is concave, then the non-negative
part of the core of the game G = (N,V ) coincides with the core of the
auxiliary game.

Proof:

• The auxiliary game G̃ = (N, Ṽ ) is monotone by definition, i.e., for any
S1 ⊂ S2 ⊆ N, Ṽ (S1) ≤ Ṽ (S2). Moreover, by definition, Ṽ (∅) = 0,
Ṽ (N) = V (N), and Ṽ (S) ≤ V (S).

10



• By considering the inequalities that define the core of G it is easy to
see that any core allocation of the auxiliary game G̃ is a core allocation
of G.

• If the auxiliary game G̃ is concave, then by [15] each of the n! extreme
points of the core is a vector of marginal contribution of the players
to a specific permutation of the players. As the auxiliary game G̃ is
monotone, all the extreme points of its core are non-negative vectors,
implying that its core is non-negative. Suppose by contradiction that
there exists a non-negative core allocation (x1, . . . , xn) of G that is not
a member of the core of G̃. That means that there exists a coalition
S ⊂ N so that Ṽ (S) <

∑
i∈S xi ≤ V (S). But, Ṽ (S) < V (S) implies,

by definition, that there exists a coalition T so that S ⊂ T ⊆ N
and Ṽ (S) = V (T ). Therefore, V (T ) <

∑
i∈S xi ≤ V (S). The first

inequality together with the vector x ≥ 0 violates the fact that x is a
core allocation of G, because V (T ) <

∑
i∈S xi ≤

∑
i∈T xi.

In the problem analyzed in [1], and described in Example 4, the total
balancedness of the game could be proved by showing that the auxiliary
game is concave. This insight enabled us to fully characterize the non-
negative part of the core.

The following example shows that an aggregation game is not necessarily
balanced:

Example 5 Consider a cooperative game G = (N,V ), N = {1, 2, 3}, where
each player i is associated with a vector of properties of size 1, namely
yi = (αi), where αi ∈ {0, 1}. For any coalition S ⊂ N of players let V (S) =
−maxi∈S αi. Let y0 = (0). This game is an aggregation game with g(yi, yj) =
max{yi, yj}, V1(y0) = 0 and otherwise V1(y

i) = −αi. Consider N = {1, 2, 3}
with α1 = α2 = 1, and α3 = 0, thus V ({1}) = V ({2} = V ({1, 2}) =
V ({1, 3}) = V ({2, 3}) = V (N) = −1, and V ({3}) = 0. The core of this
game is empty. In fact, this game is a variant of a simple game, see Section
1, where V (S) ∈ {0,−1} for any S ⊂ N and V (N) = 1. In general, simple
games are not regular games, but this specific one is.

4 Regular market games

As commented on market games in Observation 1, not all market games
as defined in Condition 2 in Section 1, are regular games. We refer to all

11



regular games that are proved to be also market games as regular market
games. Clearly, such games are totally balanced as they are a subclass of
market games. In this section we characterize a class of regular games whose
IIISSS of functions, see Definitions 1 and 2, can easily be transformed into a
market game as given by Equation 1. In addition, we present another class
of regular games whose IIISSS of functions may not be identified at first
glance as market games, but still they are convertible into market games.

In contrast to aggregation games, where players were amalgamated into
one “big” player that used all their properties as given by their vector of
properties, players in regular market games keep their individuality through
individual quantitative properties that cannot be shared with their mates
in a coalition. In market games, on the other hand, players keep their
individuality, but sometimes through non-quantitative properties. In regular
market games each player is associated with a vector of properties in D so
that the first s ≥ 1 properties are sharable among the players in an additive
way, and the remaining κ − s ≥ 0 properties are individual properties that
cannot be shared. Let the set SP = {1, . . . , s} for some s ≤ κ be the set of
sharable properties, and the set IP = {s+ 1, . . . , κ} be the set of individual
properties that players do not share. The set D is a subset of <κ where
the first s entries of the vectors are non-negative. In particular, the null
vector y0 = ~0 ∈ D is the zero vector in <κ. For any vector of properties
y ∈ D, let Y (y) = {y′ ∈ D|y′` = y` for ` ∈ IP}. The set Y (y) contains all
vectors of properties in D that their individual properties, i.e., the entries
in IP, coincide with those of y. Let the set E = {y ∈ <κ : y` ≥ 0, ` ∈
SP, and y` = 0 for ` ∈ IP}. In addition, let f : D → <, and h : E → <,
be two continuous functions with f(~0) = h(~0) = 0 such that for any y ∈ D

V1(y) = min{f(x) + h(y − x)|x ≤ y, and x ∈ Y (y)}, y ∈ D (2)

Equation (2) implies that y − x ∈ E. Equation (2) is well defined as the
minimization is over a closed set where the first s entries of the vector x are
non-negative and they are bounded from above by the respective entries of
the vector y. We call the function h the extra function. The extra function
can be null. In such a case, V1(y) = f(y) for any y ∈ D.

Theorem 3 The class of regular market games contains all regular games
that are defined by the following IIISSS of functions where V0 ≡ 0, V1 is given
by Equation (2), where the function f is convex in the shared properties, the
extra function h is linear in the shared properties, y0 = ~0, y1, . . . , ym ∈ D,
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and for m ≥ 2

Vm(y1, . . . , ym) = min{
m∑
i=1

V1(ỹ
i) :

ỹi ∈ Y (yi) for i = 1, . . . ,m, and
m∑
i=1

ỹi =
m∑
i=1

yi} (3)

Proof: It is easy to verify that Equation (3) generates regular games, see
Definition 1, as symmetry of the functions Vm, m ≥ 2, is direct. It remains
to show that this game boils down to a market game. This is alos straight-
forward using the conditions of the Theorem together with Equation (3):
Rewrite the cost function of player i, namely the function V1, as a paramet-
ric function of its shared properties, where the parameters are her individual
properties. The game then looks the same as in Condition 2 of Section 1.

The following corollary is now immediate.

Corollary 1 Regular market games are transformable to market games,
thus they are totally balanced. Moreover, a core allocation for the game that
is based on competitive equilibrium prices of the transformed game, exists.

Note that the total balancedness of the games described in Theorem 3
can be argued alternatively by showing that they meet Condition 3 above.
The added value of Theorem 3 and Corollary 1 is the fact that it points out
a specific core allocation which Condition 3 does not. We exemplify this
advantage in the two line-balancing games described in Section 5.

Example 6 This example considers a loss system that consists of a number
of servers, each is associated with its own stream of customers. The system
has no waiting room, meaning that a customer who finds her server busy
is lost for good. It is well known that the loss probability in case of an
arrival rate of λ and service rate of µ is λ/(µ + λ). Suppose there exists a
set N of n servers. The arrival and service rates of server i are λi and µi,
respectively, 1 ≤ i ≤ n. Servers can cooperate so as to minimize their total
loss rate among themselves. Assume that the servers in a coalition cannot
redirect customers but they can reallocate their total service capacity so as
to minimize the loss rate. Suppose that there is a cost αi per customer lost
at server i. In addition, there is an option to rent out some of the capacity
of the coalition at a revenue of r per unit rate of capacity. Thus, each player
is associated with the shared property µi > 0, and the individual properties
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λi > 0, and αi > 0, implying that κ = 3, s = 1, and y0 = (0, 0, 0) is the
null vector. Also, D = {(µ, λ, α) : λ ≥ 0, µ ≥ 0}. For y = (µi, λi, αi) ∈ D,
y 6= y0, let

V1(y) = min
ci
{ αiλ

2
i

ci + λi
− r(µi − ci) : 0 ≤ ci ≤ µi}.

This game is a regular market game as for any vector (ci, λi, αi) ∈ D\{y0}
define function f((ci, λi, αi)) =

αiλ
2
i

ci+λi
and the extra function h(x, 0, 0) = rx.

As f is convex in the shared property, and the extra function is linear in
the shared property, the resulting game is reducible to a market game, and
therefore the game is totally balanced, and a core cost allocation based on
equilibrium competitive prices can be calculated once the game is reduced
to the form of Equation (3).

Future research should aim at identifying more regular games that are
reducible to regular market games, as such results helps to shade light on
the total balancedness of regular games. In the next section we present two
examples of cooperative games in queueing systems that that are reducible to
regular market games, and based on that a core cost allocation is computed.

5 Applications in line-balancing problems

Line balancing and resource pooling in service operations are an important
practice. These two concepts are widely used for achieving a competitive
advantage of a firm over its rivals. Some papers have considered resource
pooling in the context of cooperative games, see e.g. [1], [7], [8], [9], [17],
[18] and [19]. In this section we present two line balancing models, where
the basic system consists of a number of M/M/1 queueing systems. The
first model redistributes the arrival rates while holding the original servers’
capacities intact, and in the second, the capacities are redistributed, while
the original arrival rates are preserved. Outsourcing/renting out is allowed.
In particular we answer the question of how to allocate the total cost among
the servers in order to ensure stability of the grand-coalition.

5.1 The unobservable routing game with outsourcing

Consider a system that provides one kind of service by a number of servers,
where each is associated with its own capacity. Each customer is a-priori
assigned to a single server. This description fits, for example, clinics that
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specialize in one kind of treatment as vision correction surgeries, in remote
locations or in under developed countries; the servers are ophthalmologists,
and the customers are their clients. The clients are usually pre-examined by
one of the specialists at their village. Upon arrival, a central controller routes
the clients among the different ophthalmologists. The central controller has
also the option of outsourcing some clients to another facility, which provides
the same type of service, in order to reduce the congestion, but this comes
at a cost. The objective is minimizing the sum of the congestion cost at the
facility plus the outsourcing cost.

The unobservable routing game with outsourcing is defined as follows:
Each server i ∈ N = {1, 2, . . . , n}, is associated with an exponentially dis-
tributed service time with mean µ−1i > 0, and a stream of Poisson ar-
rivals at a rate λi ≥ 0. A central controller reroutes the total arrival rate
λ(N) =

∑n
i=1 λi among the servers, with the option of outsourcing some at

a constant cost per unit rate outsourced. Congestion is measured by the
mean steady-state number of customers in the system under the optimal
split of arrivals to the servers. For simplicity, assume that the cost per unit
of congestion is one, and accordingly the cost per unit rate of arrivals out-
sourced is b > 0. Define a game G = (N,V b) where each coalition of servers
S ⊆ N is associated with a cost V b(S) that represents the optimal cost over
all possible routings of the arrival rate λ(S) among the servers of S and the
external service provider.

Lemma 1 The unobservable routing game with outsourcing is a regular
market game, thus it is totally balanced for any value of b.

Proof: For any given b ≥ 0, the game can be formulated as a regular market
game, see Section 4, with a single shared property, which is the arrival rate,
and a single individual property, which is the service rate: Let D = {(λ, µ) :
λ ≥ 0, µ > 0} ∪ {(0, 0)}. Let f((z, µ)) = z

µ−z if z < µ, and if z ≥ µ, let
f((z, µ)) = ∞. f((z, µ)) represents the congestion cost at a server with an
arrival rate z and service rate µ. It is easy to see that f is convex in z. Let the
extra function h((x, 0)) = bx represent the outsourcing cost of x customers
per unit time. Thus, V1((λ, µ)) = min{f((z, µ)) +h((λ− z, 0)) : 0 ≤ z ≤ λ}
and Vn((λi, µi)|i=1...n) for any n ≥ 2 is defined as in Equation (3).

In order to compute the core cost allocation that is based on competitive
equilibrium prices we first need to reduce the game G = (N,V b) to the form
of a market game. For that sake we let the function φb(λ, µ) :

φb(λ, µ) = V1(λ, µ) = min{ z

µ− z
+ b(λ− z)| 0 ≤ z ≤ λ}.
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Any server with a capacity rate µ ≤ b−1 is closed at optimality regardless of
the arrival rate, as it is cheaper to outsource customers then serving them
by such a slow server. For such servers let zb(µ) = 0, and φb(λ, µ) = bλ.
Otherwise, namely if µ > b−1, let zb(µ) be the maximum rate of customers
that this server serves them all before starting to use the outsourcing option,

i.e., zb(µ) is the solution of the equation
d( z
µ−z )

dz = b. In general, for any µ > 0

zb(µ) = max{0, µ−
√
µ/b}. (4)

Note that zb(µ) is non-decreasing in b. Also, for any µ > 0,

φb(λ, µ) =


λ

µ−λ if λ ≤ zb(µ)
zb(µ)

µ−zb(µ) + b(λ− zb(µ)) otherwise,

and hence

V b(N) = min{
n∑
i=1

φb(zi, µi) :
n∑
i=1

zi = λ(N) and zi ≥ 0 for i = 1, . . . , n}. (5)

Let the convex functions gbi (z) = φb(z, µi). The game G = (N,V b) is equiv-
alent to the following market game:

V b(N) = min{
n∑
i=1

gbi (zi) :
n∑
i=1

zi = λ(N) and zi ≥ 0 for i = 1, . . . , n}. (6)

For simplicity, index the servers in a non-increasing order of their capac-
ities, i.e., µ1 ≥ µ2 ≥ . . . ≥ µn. In the solution of (6), slow servers having a
capacity µ ≤ b−1 are not open no matter what is λ(N), as outsourcing is
cheaper. If b > 1/µn, the set of open servers depends on the total arrival
rate so that it shrinks as λ(N) gets smaller. For a given λ(N), as b increases
the set of open servers grows. In general, for given λ(N), the set of open
servers is of the form {1, . . . , i∗(b)}, where i∗(b) represents the index of the
slowest open server, and is non-decreasing in b. Let z∗ = (z∗1 , . . . , z

∗
n) be an

optimal solution of Equation (5). Note that z∗i ≤ zb(µi) implies that z∗i is the
optimal rate of customers served by server i ∈ N, where z∗i > zb(µi) implies
that the rate of customers served by server i is zb(µi) and a of z∗i − zb(µi), is
outsourced. Thus, if z∗ = (z∗1 , . . . , z

∗
n) is an optimal solution to Equation (5),

then the optimal routing to server i ∈ N is min{z∗i , zb(µi)}. The following
lemma proves that the optimal routing of customers is unique, and it gives
some structural properties that the vector z∗ satisfies.
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Lemma 2 The cooperative game G = (N,V b) defined in (5), has a unique
optimal routing of customers to the servers. In addition, either for all i ∈ N
it holds that z∗i ≥ zb(µi) or for all i ∈ N it holds that z∗i < zb(µi) or z∗i = 0.

Proof: Note that the vector (z∗1 , . . . , z
∗
n) that solves V b(N) is not necessarily

unique. In spite of that we claim that the rate of customers that are routed
to each server is unique. The proof is based on the form of the function
φb. For a given server with capacity µ ≥ b−1, the cost function φb(λ, µ)
consists of two parts: one is the congestion cost that is paid for customers
that are served by the server, namely min{zb(µi), z∗i }), and the second is the
outsourcing cost, namely max{z∗i − zb(µi), 0}. As the congestion cost part
in φb(λ, µ) that is denoted by f(z, µ) = z

µ−z for z ≤ µ is strictly convex in
z < µ, the congestion that is assigned to each server at optimality is unique.

In addition, the convexity of φb implies that at optimality, the marginal
cost of increasing congestion at a server is the same at all open servers,
and this marginal cost is bounded from above by b. If this marginal cost
is less than b then the outsourcing option is not exercised. Therefore, it is
impossible that at optimality there exists two servers i, j ∈ N with zb(µj) >
0, such that z∗i ≥ zb(µi) and z∗j < zb(µj), as this means that the marginal
cost of serving a customer at server j is lower than b, where z∗i is already
using the outsourcing option for its last customer. Such a solution can be
improved by increasing z∗j and decreasing z∗i by the same small quantity.

In the rest of this subsection we show how to compute the characteris-
tic function V b(N). We distinguish between two cases according to if the
outsourcing option is utilized/not utilized by the grand-coalition N. In par-
ticular, note that if λ(N) ≥

∑n
i=1 µi then the outsourcing option must be

used by the grand-coalition N no matter how large b is. The values V b(S),
for any S ⊆ N , are computed in the same way.

Claim 1 For a fixed b, the outsourcing option is not used by the grand-
coalition N in the game G = (V b, N) if and only if λ(N) ≤

∑n
i=1 z

b(µi) =∑
{i∈N and µi≥1/b}(µi −

√
µi/b).

Proof: The proof follows from the definition of zb(µi) which is the maximum
arrival rate that server i can serve at a marginal cost that is bounded from
above by the outsourcing cost rate b.

For fixed b and λ(N), regardless if the outsourcing option is exercised by
the grand-coalition N or not, not necessarily all servers in {i ∈ N and µi ≥
1/b} are open. In fact, some of the slow servers may still be closed. Indeed,
there exists a constant Θ such that the outsourcing option is used if and
only if b < Θ. For the sake of specifying Θ we consider two cases:
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• Case 1: The outsourcing option is not used by N . The solution to this
model is described in [3] (see also [5], p.65). This case holds if λ(N) <∑n
i=1 µi and b ≥ Θ. Denote the last open server in this case by i∗ :

i∗ = min

{
i ∈ N : µi+1 ≤

(
∑i
j=1 µj − λ(N))2

(
∑i
j=1
√
µj)2

}
,

the optimal congestion level is

V b(N) =
(
∑i∗
i=1
√
µi)

2∑i∗
i=1 µi − λ(N)

− i∗

and the now unique optimal routing rate to any open server i, 1 ≤ i ≤
i∗, is

z∗i = µi − (
i∗∑
j=1

µj − λ(N))

√
µi∑i∗

j=1
√
µj
. (7)

Note that as 0 ≤ zi < µi,
∂f(zi,µi)

∂zi
= µi

(µi−zi)2 . As z∗i > 0 for i ≤ i∗, the

KKT conditions imply that µi
(µi−z∗i )2

= Θ ≤ b, where Θ is the Lagrance

multiplier of the constraint Σn
i=1zi = λ(N). Also, as this derivative at

zero equals µ−1i , for any closed server i ∈ {i∗ + 1, . . . , n}, 1/µi ≥ Θ.
Using Equation (7) for i ≤ i∗, results in

Θ =
(
∑i∗
k=1
√
µk)

2

(
∑i∗
k=1 µk − λ(N))2

. (8)

Note that Θ is associated with the grand-coalition. In order to stress
the dependence on the coalition, let Θ(S) for S ⊆ N be defined in
a similar way, so that Θ = Θ(N). The extreme case where no sub-
coalition of N uses the outsourcing option occurs if only if for any
S ⊆ N, λ(S) <

∑
i∈S µi, and b ≥ maxS⊆N Θ(S) ≡ b̄. By using

the ratio form of Θ(·) in Equation (8), it is possible to show that
b̄ = max{ µi

(µi−λi)2 : i ∈ N}. In this special case the vector z∗ is

unique as the function f(z, µ) is strictly convex in z, 0 ≤ z < µ,
and the core allocation based on competitive equilibrium prices al-

locates a cost xi = f(z∗i , µi) − Θ(z∗i − λi) =
z∗i

µi−z∗i
− Θ(z∗i − λi) to

server i ∈ N. That means that any server that is not open under
the grand coalition, i.e., i ∈ {i∗ + 1, . . . , n} pays Θλi = α(N)λi due
to the service of his/her customers by other servers. An open server
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still pays for the congestion that he/she faces under the optimal al-
location, but he/she is either compensated by Θ for an extra unit
rate of arrivals (beyond λi) that he/she serves, or he/she needs to
pay Θ per unit rate of arrivals of his/her λi that is routed to other
servers. Equivalently, as z∗i = µi −

√
µi/Θ, an open server i ≤ i∗ pays

xi = 2
√
µi
√

Θ−Θ(µi − λi)− 1.

Upon completion of the analysis of Case 2, we present a core cost
allocation based on competitive equilibrium prices for the general case,
i.e., when some coalitions outsource option and the others do not. The
possibility of deriving a closed form core allocation for the general case
is most pronounced since all we need to deal with is the grand-coalition.

• Case 2: The outsourcing option is used by N . In this case Θ = b. Let
µ0 =∞ and

i∗(b) = max{k : k ≥ 0, µ−1k < b}. (9)

– If b ≤ µ−11 , i∗(b) = 0, meaning that all servers are closed and
the total arrival rate λ(N) is outsourced. In fact, the condition
b ≤ µ−11 implies that it is not profitable to serve any customer
in-house, i.e., V b(S) = bλ(S) for all S ⊆ N. Thus, in this case, a
single core allocation xi = bλi for i ∈ N, exists.

– If µ−11 < b < Θ, the set of open servers is {1, . . . , i∗(b)}. Thus, for

all i ∈ {1, . . . , i∗(b)}, ∂φb(zi,µi)
∂zi

|z∗i = b.

The solution in this case is not unique as the functions φb(z, µi)
are linear for z > zb(µi) and with the same slope b. Any solution
of the form z∗i = zb(µi) + δi, for δi ≥ 0, i ∈ N, that satisfies∑
i∈N z

∗
i = λ(N) is optimal.

Some algebra shows that

V b(N) = bλ(N)−
∑

i≤i∗(b)
(1−

√
µib)

2 (10)

As discussed above, also in this range not necessarily all sub-
games of (N,V b) have their cost function of the form of equation
(10), as some coalitions may not use the outsourcing option. In
spite of that we present a core allocation for the general game.
Note that the second term in the righthand side of (10) is the gain
due to the option of in-house servicing of some of the customers.
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The core allocation for the general case of G = (N,V b), which is based
on competitive equilibrium prices uses Equation (6) that presents the game
as a market game:

xi = gi(z
∗
i )−Θ(z∗i − λi) for i ∈ N (11)

where Θ is specified in Equation (8) if the grand-coalition is not using the
outsourcing option, and Θ = b if it does. As we see, Equation (11) provides
a cost allocation that is in the core, where only the value for the grand-
coalition, i.e., V b(N), needs to be solved.

For completeness we show that the game is not concave, ruling out the
possibility of using Condition 1 in Section 1 for proving total balancedness.

Example 7 Let N = {1, 2, 3}, with µ1 = µ2 = 100, λ1 = λ2 = 1, µ3 = 1,
λ3 = 0.99 and b > b̄ = 104 so outsourcing is not used by any coalition.
Let S = {1, 3} and T = {2, 3}. We have here V b({1}) = V b({2}) = 0.01,
V b({3}) = 99. In coalition S server 1 is open and likewise server 2 is open
in coalition T . Thus, V b(S) = V b(T ) = 0.02. In coalition S ∪ T servers 1
and 2 are open, each getting half of the total traffic. Hence, V b(S ∪ T ) =
2( 1+0.495

100−1−0.495). It is easy to see V b(S ∩ T ) = V b({3}) = 99. Hence, V b(S ∪
T ) + V b(S ∩ T ) > V b(S) + V b(T ), proving that V b(·) is not concave.

The next example shows a case where at least two servers are paid by
the others under any core allocation, and hence no core allocation, which
is either non-negative, or consisting of a single negative entry, exists. This
is in contrast with our former paper [1], dealing with the model presented
in Example 4, where we showed that under the type of cooperation defined
there, the non-negative part of the core is non-empty, and if there exist core
cost allocations with negative entries, then there exist also core allocations
with a single negative entry. A negative entry means that a server is being
paid in order to join this coalition. In other words, he/she is more than
compensated for the waiting costs of servicing his/her own customers.

Example 8 Let b > b̄, n = 10, (µ1, . . . , µ10) = (100, 78, 70, 65, 50, 45, 30, 20, 10, 5)
and (λ1, λ2, . . . , λ10) = (80, 60, 45, 20, 10, 20, 8, 12, 1, 4). V (N) = 9.57, which
is attained when the first 8 servers are open. Let the vector (x1, . . . , x10)
denote a core cost allocation. Let `i = V (N)− V (N\{i}) and note that for
any game xi ≥ `i, i ∈ N . In particular, x1 > `1 = 3.09. Addionally, by
considering coalition {1, 4}, we get x1 + x4 ≤ 3.02 and hence x4 ≤ −0.07.
Likewise, by considering coalition {1, 5}, we get x1 + x5 ≤ 2.86 and by the
same reasoning we conclude that x5 ≤ −0.23. That means that any core
allocation comes with both servers 4 and 5 being paid by the others.
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5.2 A capacity sharing model

Consider a garage with a set of n service stations N = {1, . . . , n}. Each
station provides maintenance to a particular brand of cars. It is modeled
as an M/M/1 system, where station i is responsible for servicing a Poisson
arrival rate of λi cars. Initially, station i is staffed by a team of workers
so that its service time is exponentially distributed with parameter µi >
λi. The management is considering restaffing by reshuffling the existing
manpower of capacity µ(N) =

∑
i∈N µi, among the stations in order to

minimize cost. The management also considers possible reduction of the
manpower. The cost of a certain configuration of capacities is given by the
total congestion cost minus the savings due to the capacity reduction. For
simplicity assume that the unit cost of congestion is normalized to 1, and
the savings per unit reduction in the capacity rate is b ≥ 0. The respective
game G = (N,V b) is formulated below as a regular market game, where each
player i ∈ N is associated with a single shared property, which is its surplus
capacity µi − λi, and a single individual property λi. Let f(zi, λi) = λi

zi
be

the congestion cost at server i ∈ N due to a surplus capacity of zi > 0. Let

φb(z, λ) = min{f(x, λ)− b(z − x)| 0 < x ≤ z} (12)

denote the optimal cost of a server whose arrival rate is λ and its initial
surplus capacity is z. Clearly, ∂f(z,λ)

∂z = − λ
z2

, z > 0. Let zb(λ) be the value

of z for which this derivative equals −b. Thus, zb(λ) =
√

λ
b , and

φb(z, λ) =

{
λ
z if z ≤ zb(λ)
λ

zb(λ)
− b(z − zb(λ)) otherwise.

The cost of the grand-coalition is

V b(N) = min{
n∑
i=1

φb(zi, λi) :
n∑
i=1

zi = µ(N)−λ(N) and zi ≥ 0 for 1 ≤ i ≤ n}.

(13)
The values V b(S) for any S ⊂ N are defined in the same way. The

following Lemma is similar to Lemmas 1 and 2.

Lemma 3 The capacity sharing game G = (N,V b) defined in (13) and (12)
is a regular market game, and therefore it is totally balanced. In addition,
there exists a unique optimal allocation of surplus capacities to the servers.

Proof: We prove only the last part as the rest follows directly from the proof
of Lemma 1 and the convexity of the functions φb(zi, λi) in zi. Similarly to
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the proof of Lemma 2 for the unobservable routing game with outsourc-
ing, the vector (z1, . . . , zn) that solves (13) is not necessarily unique. How-
ever, the surplus capacities allocated to the servers, namely (x1, . . . , xn) (see
Equation (12)) are unique in view of the fact that the function f(z, λ) used
in (12) is strictly convex. Thus, there exists a unique optimal reallocation
of the total excess capacity with a possible reduction of the manpower.

In order to derive a core cost allocation for the capacity sharing game
we distinguish between two cases: The first case, where the surplus capacity
is not reduced, happens when b is small enough. Let Θ be a constant such
that the surplus capacity for the grand-coalition N is not reduced if and
only if b ≤ Θ. Later we will specify the value of Θ.

• Case 1: the surplus capacity is not reduced. The total surplus capac-
ity of µ(N) − λ(N) is distributed among the servers. The optimal
allocation of the surplus capacity and the optimal cost are described

in [10]: z∗i = (µ(N)− λ(N))
√
λi∑

j∈N

√
λj
, for i ∈ N, and

V b(N) =
(
∑
i∈N
√
λi)

2

µ(N)− λ(N)
.

Note that ∂φb(zi,λi)
∂zi

= ∂f(zi,λi)
∂zi

= −λi
z2i

, for i ∈ N. At optimality, there

exists a Lagrange multiplier, Θ, such that − λi
z∗2i

= Θ ≤ −b ,i ∈ N , as

the surplus capacity is not reduced. Substituting into the constraint
Σi∈Nzi = µ(S)− λ(S), the z∗i results in

Θ = − (
∑
i∈N
√
λi)

2

(µ(N)− λ(N))2
. (14)

The value of Θ is associated with N . Let Θ(S) be the respective value
for any S ⊆ N.
There exists b such that for b ≤ b, the surplus capacity of any coali-
tion S ⊆ N is fully used internally. It is easy to show that b =
minS⊆N Θ(S) = mini∈N

λi
(µi−λi)2 . In this range the game (N,V b) and

all its sub-games do not use the capacity reduction option. The core
cost allocation based on competitive equilibrium prices in this case is
xi = f(z∗i , λi)−Θ(z∗i − (µi − λi)), 1 ≤ i ≤ n. Some algebra leads to

xi = 2

√
λi∑

j∈N
√
λj
V b(N)− µi − λi∑

j∈N (µj − λj)
V b(N), 1 ≤ i ≤ n.
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This cost allocation is shown in [18] to be in the core of G = (N,V b)
in a different way.

• Case 2: the surplus capacity is reduced. The marginal analysis here
implies that Θ = −b. This means that for any server i ∈ N the optimal

surplus capacity is zb(λi) =
√

λi
b . The equalities ∂φ(zi,λi)

∂zi
|z∗i = −b for

i ∈ N, imply that z∗i = zb(λi) + δi =
√
λi/b+ δi, where δi ≥ 0, and the

total reduction of capacity is
∑
i∈N δi = µ(N)− λ(N)−

∑
i∈N

√
λi/b.

Substituting into (13) gives φb(z∗i , λi) =
√
λib− bδi, implying that

V b(N) = 2
√
b
∑
i∈N

√
λi − b(µ(N)− λ(N)) .

The core allocation for the general case of G = (N,V b) that is based on
competitive equilibrium prices, uses Equation (13):

xi = φb(z∗i , λi)−Θ(z∗i − (µi − λi)) for i ∈ N (15)

where Θ is given by Equation (14) if the grand-coalition is not reducing
its excess capacity, and Θ = −b in case it does. As we see, Equation (15)
provides a cost allocation that is in the core, where only the optimization
problem for the grand-coalition needs to be solved.

The next example shows that the game G = (N,V b) is non-concave.

Example 9 Using the same queueing system as stated in Example 7 with
b < b = 1/992, leading to never opting to save by reducing the surplus
capacity under any coalition, results in a game which is not concave: The
value of V b({1}) is large in comparison with the value of any other coalition
so concavity is ruled out. Specifically, V b(S) = V b(T ) = 0.04 where V b(S ∩
T ) = V b({3}) = 99 and V b(S ∪ T ) > 0. Hence, V b(S ∪ T ) + V b(S ∩ T ) >
V b(S) + V b(T ), showing that V b is a non-concave set function.

6 Conclusion

The main contribution of this paper is in addressing and formalizing the
notion of regular games and their use. This class of games is quite large and
includes many well-known games in operations management and queueing
systems. We present two classes of such games: aggregation games and
regular market games. We describe a couple of techniques that in some
cases may help in proving that a given game is totally balanced, either by
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defining an auxiliary convex game whose core is contained in the core of the
original game, or by reducing it to a market game. The latter case leads
to the identification of a specific core allocation, the one which is based on
the equilibrium competitive prices of the game it is reduced to. This is a
feature which does not hold if one establishes total balancedness through the
approach suggested in [2], namely identifying that the regular game is sub-
additive and homogeneous of degree one. Further investigation of regular
games may yield new general interesting results on cooperative games.
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