

THE UNCAPACITATED SWAPPING PROBLEM ON
A LINE AND ON A CIRCLE

by

S. Anily
A. Pfeffer

 Working Paper No 10/2011 July 2011

Research No. 01200100

This paper was partially financed by the Henry Crown Institute of Business Research
in Israel.

The Institute’s working papers are intended for preliminary circulation of tentative
research results. Comments are welcome and should be addressed directly to the
authors.

The opinions and conclusions of the authors of this study do not necessarily state or
reflect those of The Faculty of Management, Tel Aviv University, or the Henry
Crown Institute of Business Research in Israel.

The Uncapacitated Swapping Problem on a

Line and on a Circle

Shoshana Anily1and Aharona Pfeffer2

Faculty of Management
Tel Aviv University

Tel Aviv 69978, Israel.

Abstract

The uncapacitated swapping problem is defined by a graph con-
sisting of n vertices, and m object types. Each vertex of the graph
is associated with two object types: the one that it currently holds,
and the one it requires. Each vertex holds or requires at most one
unit of an object. The problem is balanced in the sense that for each
object type, its total supply equals its total demand. A vehicle of
unlimited capacity is assumed to ship the objects in order to fulfill
the requirements of all vertices. The objective is to find a shortest
route along which the vehicle can accomplish the rearrangement of
the objects, given designated initial and terminal vertices. The un-
capacitated swapping problem on a general graph, including a tree
graph, is known to be NP-Hard. In this paper we show that for the
line and circle graphs, the problem is polynomially solvable: we pro-
pose an O(n)-time algorithm for a line and an O(n2)-time algorithm
for a circle.
Key Words: Swapping Problem, Stacker Crane Problem, Dial-a-
Ride Problem.

1anily@post.tau.ac.il
2pfeffer@post.tau.ac.il

1 Introduction

The Swapping Problem (SP) is defined by a graph and a number of object
types. More specifically, in the SP, each vertex of a graph may initially hold
an object of a certain type, and it may desire an object of a possibly different
type. The problem is balanced, meaning that for each object type, its total
supply equals its total demand. A vehicle of a given capacity ships the ob-
jects among the vertices. The objective is to compute a shortest route along
which the vehicle can accomplish the rearrangement of the objects. Anily
and Hassin [1], where the SP was first introduced, considers a complete graph
satisfying the triangular inequalities, and a vehicle of a unit capacity. The
SP has many variations with respect to the underlying graph (line, circle,
tree, or general graph), the vehicle’s capacity (one unit, finite, or the unca-
pacitated case), number of vehicles, and the mobility of the objects as some
objects may be preemptive, i.e., they can be dropped at some intermediate
vertices before reaching their destination, and others may be non-preemptive,
meaning that they must be shipped directly to their destination. This last
distinction is irrelevant in the uncapacitated case. Applications for the SP
include inventory repositioning involving a movement of a robot arm in a
factory or a warehouse, especially when dealing with a line or a circle graph,
see Attalah and Kosaraju [5].

The SP is a generalization of two well-known routing problems with one
unit of each object type and all objects being non-preemptive: In the Stacker-
Crane Problem, see Frederickson et al. [10], a single vehicle of a unit capacity
ships the objects, and in the Dial-a-Ride Problem, see Psaraftis [14], the rear-
rangement of the objects is performed by one or more capapcitated vehicles.
In this paper we focus on the single vehicle case.

It is interesting to note that the unit capacity SP on a general graph,
considered in Anily and Hassin [1], is NP-hard, where for some special graph
structures the problem is polynomially solvable. In particular, the unit ca-
pacity SP is polynomial on a line, see Anily, Gendreau and Laporte [2], where
on a circle, it is still an open question. For a comprehensive literature re-
view on the unit capacity SP on various graphs, see Anily, Gendreau and
Laporte [3]. The uncapacitated Dial-a-Ride Problem on a tree was proved
to be NP-hard by de Paepe et al. [7], implying the same complexity result
for the uncapacitated SP on a tree.

In this paper we develop low complexity algorithms for the uncapacitated
SP on a line and on a circle, each consisting of n vertices: (i) for a linear
graph, the algorithm is of linear complexity, i.e., it is O(n); and (ii) for a

1

circular graph, the algorithm is of complexity O(n2).

The paper is organized as follows: Section 2 contains some general nota-
tions and preliminaries for the uncapacitated SP on a line and on a circle.
In Section 3, the line case is solved, and in Section 4 the circle case is solved.
Section 5 contains some concluding remarks. The detailed code of the data
preparation, the algorithms (including all procedures) is deferred to the Ap-
pendix.

2 Notations and Preliminaries

2.1 Line and circle

Let G = (U,E) be a graph with n vertices, where U = {1, . . . , n}, a is the
initial vertex and b is the terminal vertex. The graph G is either a line, or a
circle, where each vertex is connected to at most two other vertices. In both
types of graphs the vertices 1, . . . , n appear consecutively. In the line, vertex
1 is at the left end-point of the line. In the circle, vertex 1 is also connected to
vertex n. Thus, the set of edges E in a line contains n−1 edges, and in a circle
it contains n edges. More specifically, for a line E = {(i, i+1) : 1 ≤ i ≤ n−1}
and for a circle E = {(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(n, 1)}. The edges are
rescaled so that the length of the line and the perimeter of the circle is one
unit. Let x[1], ..., x[n] denote the locations of the vertices on the graph, where
x[1] = 0: On the line let x[n] = 1, and x[i] represents the distance between
vertex 1 and vertex i. W.l.o.g. assume that x[a] ≤ x[b]. On the circle
we consider only the case that the initial vertex coincides with the terminal
vertex (a = b), and w.l.o.g. we assume a = b = 1, and call this vertex the
depot. Generalization to a 6= b is possible. On the circle let vertex n+1 be a
dummy vertex that coincides with vertex 1, i.e., x[n+1] = x[1] = 0. Vertices
2, . . . n are arranged consecutively in a clockwise direction from vertex 1,
where x[i] denotes the length of the clock-wise circular arc, which connects
vertices 1 and i. Note that x[i] is not necessarily the shortest distance between
vertex 1 and i. W.l.o.g., we assume x[i] 6= x[h] for 1 ≤ i < h ≤ n. The next
definition applies for both a line and a circle:

Definition 2.1. A segment between two adjacent vertices is called an interval.

The problem is also defined by m object types or simply, objects, indexed
by j = 1, . . . ,m, in addition to the null object denoted by j = 0. Let
S = {0, 1, . . . ,m}, and S−0 = S\{0} be the set of real objects. Each vertex

2

i is associated with two object (αi, βi) ∈ S2, which means that the vertex
currently holds one unit of object αi, and it demands one unit of object βi.
W.l.o.g. assume that αi + βi > 0 for any i, i /∈ {a, b}, as otherwise vertex i
could be removed from the graph. The total number of units of object j is
nj, where

∑
j∈S nj = n. The problem is balanced in the sense that for each

object in S, its total supply equals its total demand. A feasible route starts
with an empty vehicle leaving vertex a, and terminates at vertex b, after
satisfying the demands of the vertices by objects that were loaded along the
route. All along we assume that given a route, the vehicle loads the supply
of each vertex at the first visit at the vertex, and unloads the demand at the
last visit at the vertex. This assumption is legitimate in view of the fact that
the vehicle has no capacity limits, and there are no time constraints.

2.2 The line:

In this subsection we present a few more definitions for the line:

Definition 2.2. A directed path connecting vertex t to vertex h, is called an
arrow with tail t and head h. An arrow is denoted by the ordered pair of its
tail and its head locations, namely (x[t], x[h]).

Definition 2.3. An arrow (x[t], x[h]) is said to cross any vertex i for which
x[t] < x[i] < x[h] or x[t] > x[i] > x[h].

Following Anily et al. [2], which deals with the unit-capacity SP on a line,
define for each object j ∈ S−0, a minimally balanced partition:

Definition 2.4. A minimally balanced partition of object j ∈ S−0 is a par-
tition of the set of all j’s supply and demand vertices into minimum size
consecutive sets so that each set is balanced, i.e., has an equal number of
supply and demand vertices of object type j.

In each set of the minimally balanced partition of object j, number the
demand (supply) vertices from left to right, and define unit-arrows as follows:

Definition 2.5. For each set in the minimally balanced partition of object
j ∈ S−0, let a j-unit-arrow, or simply a unit-arrow be an arrow connecting
the ith supply vertex to the ith demand vertex in that set.

All unit-arrows of a set in the minimally balanced partition of object j,
follow the same direction, and together they cover all the intervals between

3

The minimally balanced partition of object type 1: {1, 2, 4, 5}, {6, 8}
The minimally balanced partition of object type 2: {3, 4}, {6, 7}
The minimally balanced partition of object type 3: {1, 2, 3, 5}, {7, 8}
∗ At each vertex i = 1, ..., 8 we have its location, x[i], and its supply and demand objects, (αi, βi).
∗∗ The numbers on the unit-arrows refer to the object type associated with them.

Figure 1: The unit-arrows of a SP.

the leftmost and the rightmost vertices in that set. See Figure 1. Anily et
al. [2] shows that for the unit capacity SP on a line there exists an optimal
solution where the object held by the tail of each unit-arrow satisfies the
demand of the head of this unit-arrow. The proof can easily be extended to
any capacity, and in particular to the uncapacitated case.

Property 1. There exists an optimal solution for the SP on a line where the
object held by the tail of each unit-arrow satisfies the demand of the head of
this unit-arrow.

It is possible that a set in the minimally balanced partition for object j
is a singleton. In such a case, the supply at the vertex is used to satisfy its
demand, and the associated unit-arrow (x[t], x[t]) is said to be degenerate.
Let A = (x[t], x[h]) represent a unit-arrow of some object, where t and h
are the vertices of the tail and the head of the arrow, respectively. Let h(t)
denote the vertex index at the head of the unit-arrow whose tail is t. Note
that for any tail t of a unit-arrow, the function h(t) is well defined.

Definition 2.6. A unit-arrow A = (x[t], x[h(t)]) for which t < h(t) (t >

h(t)) is referred to as a right unit-arrow (left unit-arrow).

Definition 2.7. A right (left)-covered interval is an interval that is covered
by at least one right (left) unit-arrow. An interval can be both right-covered
and left-covered.

We further define UA to be the set of all non-degenerate unit-arrows for
all objects. UA contains at most n unit-arrows. In addition, let UAR (UAL)
be the subset of right (left) unit-arrows, where UA = UAL∪UAR. In order to

4

avoid the need of sorting the sets of unit-arrows, we store them in arrays of n

components: The array UA is defined such that UA(i) = h(i), if i is the tail of

a non-degenerate unit-arrow, and UA(i) = 0 if αi = 0. The arrays UA
R

and

UA
L

are associated with the right and left unit-arrows, respectively, where

UA
R
(i) = UA(i) if UA(i) > i, and UA

R
(i) = 0, otherwise; UA

L
(i) = UA(i)

if UA(i) < i, and UA
L
(i) = 0, otherwise. In view of Property 1, the set UA

is an optimal matching between the supplies and demands. As the capacity
of the vehicle is not limited, when having two unit-arrows pointing to the
same direction, where one is totally covered by the other (this may occur
only if these unit-arrows are associated with different object types), then
w.l.o.g. the covered unit-arrow can be removed from UA. This is true as
the shorter unit-arrow can be served while traversing the longer. Therefore,

before generating UA
R

and UA
L
, remove from UA all the unit-arrows which

are covered by others. For this sake, update the array UA by replacing the
head of each covered unit-arrow by 0. From now on we assume that all
covered unit-arrows have been removed before initiating the data. As will be
seen in Section 3, a special attention is paid to unit-arrows that cross either
the initial or the terminal vertices. Therefore, let:

Definition 2.8. A right (left) crossing unit-arrow is a right (left) unit-arrow,
which crosses either vertex a or vertex b.

Definition 2.9. For each unit-arrow A = (x[t], x[h(t)]) define (1) its tail-part
as the distance between the tail of A and vertex a, and denote it by tp(A) =
|x[a]− x[t]|, and (2) its head-part as the distance between the head of A and
vertex b, and denote it by hp(A) = |x[h(t)]− x[b]|.

The next property follows immediately from the fact that UAR and UAL

do not contain any covered unit-arrows:

Property 2. The right (left) crossing unit-arrows in UAR (UAL) satisfy the
property that the longer their tail-part the shorter their head-part.

Finally, we define:

Definition 2.10. Two unit-arrows such that the head or the tail of one is
crossed by the other, are called intersecting. Intersecting unit-arrows can be
in the same direction, or in opposite directions.

In Section 3, a polynomial-time algorithm for solving the SP on a line
for general initial and terminal vertices, is presented. In addition, simplified
algorithms are provided for two special cases, where a = b, and a = 0, b = 1.

5

3 The SP on a line

Let V ∗
Line be the optimal cost of the SP on a line. As all the vertices have to

be visited by the vehicle, the following lower bound follows:

V ∗
Line ≥ 2− (x[b]− x[a]) ≥ 1 (1)

It is easy to see that the middle expression in (1) is a tight lower bound. In
order to derive an upper bound, note that a feasible tour can be obtained by
going from vertex a to one end-point of the line, traverse the entire line back
and forth, and then go to the terminal vertex b. If the tour starts by going
left, the resulting length is x[a] + 2 + x[b], and if the tour starts by going
right, the resulting length is 2 + (1 − x[a]) + (1 − x[b]) = 4 − (x[a] + x[b]).
Thus,

V ∗
Line ≤ min{2 + x[a] + x[b]; 4− (x[a] + x[b])} = 3− |x[a] + x[b]− 1| ≤ 3 (2)

The proposed algorithm is based on the following distinction:

Definition 3.1. A feasible solution to SP on a line is said to be a right (left)
solution if after leaving the initial vertex a, the vehicle visits vertex n (1)
before visiting vertex 1 (n).

Each feasible solution is either a right or a left solution. Accordingly, we
also define right (left) basic routes, which is a path that is contained in any
right (left) solution. See Figure 2.

Definition 3.2. A right basic route consists of three segments: The first em-
anates from a to n, the second emanates from n to 1, and the third emanates
from 1 to b. The total length of this basic route is 2 + x[b]− x[a].

Definition 3.3. A left basic route consists of three segments: The first em-
anates from a to 1, the second emanates from 1 to n, and the third emanates
from n to b. The total length of this basic route is 2 + x[a]− x[b].

If the right (left) basic route doesn’t induce a feasible solution as is, then
it must be augmented at a minimum cost in order to make it a feasible right
(left) solution. The optimal solution is the best between the optimal left and
optimal right solutions. In the next two subsections, the proposed algorithm
deals with each of the two solution types separately. It finds the optimal
cost for each, and returns the shortest feasible route in complexity O(n).
Let V R (V L) be the optimal cost of a right (left) solution, implying that
V ∗

Line = min{V R, V L}.

6

Figure 2: The two types of basic routes

3.1 Right solutions:

Following the right basic route allows servicing all the left unit-arrows while
driving from vertex n to vertex 1, and also the right unit-arrows (x[t], x[h(t)]),
which are covered by the arrow (x[a], 1) or by the arrow (0, x[b]). However, if
there exist right unit-arrows in UAR, which cross both a and b, then the right
basic route needs to be augmented: In such a case, supplies at the tails of
these unit-arrows have already been collected along the right basic route, but
they have not reached their destinations. Let CR be the set of right crossing
unit-arrows in UAR that cross both a and b. I.e., CR = {A = (x[t], x[h(t)]) ∈
UAR| x[t] < x[a] < x[b] < x[h(t)]}. Let fR be the cardinality of CR. If
fR = 0, no augmentation is needed, and the right basic route is feasible as
is. Otherwise, CR is represented by an array CR of size n: for k = 1, . . . , fR,
CR(k) = (tR(k), h(tR(k))), and AR(k) = [x(tR(k), x(h(tR(k))], where tR(k)
denotes the vertex index at the tail of the kth unit-arrow in CR, such that
1 ≤ tR(k) < a ≤ b < h(tR(k)) ≤ n, and tR(1) > tR(2) . . . > tR(fR). In
view of Property 2, h(tR(1)) > h(tR(2)) . . . > h(tR(fR)). That means that
tp(AR(1) < tp(AR(2) < . . . < tp(AR(fR)), (see Figure 3). In order to serve
AR(k) ∈ CR along a tour that contains the right basic route, the vehicle,
before starting the basic route, needs to go left to its tail, or after completing
the basic route (hence already picking-up the supply at tR(k)), it needs to
go right to h(tR(k)) to satisfy its demand, before terminating the tour at b.
However, as the unit-arrows is CR are intersecting crossing unit-arrows, the
vehicle, if it heads left to tR(k) before starting the basic route, then on its way
to tR(k), it picks up all the objects supplied between vertices a and tR(k).

7

∗ Tail-parts: tp(AR(i)) = x[a]− x[tR(i)], for i = 1, 2
∗ Head-parts: hp(AR(i)) = x[h(tR(i))− x[b], for i = 1, 2.

Figure 3: The right crossing unit-arrows

By doing so, it is able to serve all the right crossing unit-arrows AR(`), ` ≤ k
on the first segment of the right basic route. The objects at the tails of the
other unit-arrows in CR, i.e., AR(`), k < ` ≤ fR, are picked-up only while
traversing the second segment of the right basic route, and after reaching b
while completing the right basic route, the vehicle continues to the farthest
head of these unit-arrows in order to satisfy all unsatisfied demands. This
incurs an additional cost of 2 max`>k hp(AR(`)), which according to Property
2 equals 2hp(AR(k + 1)).

Algorithm Right Basic Route computes V R by going over the first fR

elements in array CR(k) = (tR(k), h(tR(k))) and finds minfR

k=1(tp(AR(k)) +
hp(AR(k + 1))), which is the minimum augmentation cost. The algorithm
returns V R, which is the sum of the right basic route cost and the minimum
augmentation cost. The complexity of the proposed algorithm is O(n). In
the next subsection we find the best Left solution.

3.2 Left solutions:

Following the left basic route (recall this structure in Figure 2B) allows a
service to all the right unit-arrows in UAR while driving from vertex 1 to n
along the second segment of the basic route, and also a service to the left
unit-arrows in UAL, which are covered by (i) the arrow (x[a], 0) on the first
segment of the basic route, or (ii) the arrow (1, x[b]) on the last segment
of the basic route. However, if there exist left crossing unit-arrows, or left
unit-arrows covered by the arrow (x[b], x[a]), then the left basic route must
be augmented. For this sake define four sets of left unit-arrows:

• CL
a = {(x[t], x[h(t)]) ∈ UAL|x[h(t)] < x[a] < x[t] ≤ x[b]}

• CL
b = {(x[t], x[h(t)]) ∈ UAL|x[a] ≤ x[h(t)] < x[b] < x[t]}

• CL
ab = {(x[t], x[h(t)]) ∈ UAL|x[h(t)] < x[a] < x[b] < x[t]}

8

∗ Tail-parts: tp(AL(i)) = x[tL(i)]− x[a] for i = 1, 2, 3
∗ Head-parts: hp(AL(i)) = x[b]− x[h(tL(i))], for i = 1, 2, 3.
∗∗ In this example AL(2) ∈ CL

ab, thus B = ∅.

Figure 4: The left crossing unit-arrows in CL.

• B = {(x[t], x[h(t)]) ∈ UAL|x[a] ≤ x[h(t)] < x[t] ≤ x[b]}

By Property 2, CL
ab 6= ∅ implies B = ∅. Let CL = CL

a ∪ CL
b ∪ CL

ab, and
fL, fB, fL

a , fL
b , and fL

ab be the cardinalities of CL, B, CL
a , CL

b , and CL
ab,

respectively. As the number of unit-arrows is no greater than n, it must hold
that fL + fB ≤ n. Define an array CL of size n, whose first fL

a elements
are associated with the crossing unit-arrows in CL

a , the next fL
ab elements

are associated with the crossing unit-arrows in CL
ab, and the last fL

b elements
are associated with the crossing unit-arrows in CL

b : For k = 1, . . . , fL, let
CL(k) = (tL(k), h(tL(k))), where a < tL(1) < tL(2) < . . . < tL(fL) ≤ n.
Using Property 2, 1 ≤ h(tL(1)) < h(tL(2)) . . . < h(tL(fL)) < b. Let
AL(k) = (x[tL(k)], x[h(tL(k))]), k = 1, ..., fL, (see Figure 4). Define tL(0) =
a, tp(AL(0)) = 0, h(tL(fL + 1)) = b, and hp(AL(fL + 1)) = 0. In addi-
tion, define an array B of size n whose first fB elements are associated with
the unit-arrows in B: For ` = 1, . . . , fB, B(`) = (tB(`), h(tB(`))), where
a < tB(1) < tB(2) < . . . < tB(fB) ≤ b. By definition of B and Property 2,
a ≤ h(tB(1)) < h(tB(2)) . . . < h(tB(fB)) < b.

Recall the definition of covered intervals, see Definition 2.7:

Definition 3.4. A coverage of unit-arrows of B is a maximal set of unit-
arrows of B, such that the collection of intervals, which are left-covered by
these unit-arrows is convex, i.e., it is a consecutive collection of the intervals.

Definition 3.5. Each coverage of unit-arrows is associated with a coverage
arrow, which is a left arrow that connects the two end points of the coverage.

A procedure, named Coverage, is run if fB > 0, in order to find all
the coverage arrows of B. Let q (q ≤ fB) be the number of coverage ar-
rows associated with B, and suppose they are named AC(1), . . . , AC(q).

9

Let tAC(i) and hAC(i) be the tail and the head of AC(i), respectively, for
i = 1, . . . , q, such that a < tAC(1) < . . . < tAC(q) ≤ b. The removal of
covered unit-arrows implies that x[tAC(1)] > x[tL(fL

a)], if q · fL
a > 0, and

x[hAC(q)] < x[h(tL(fL
a + 1))] if q · fL

b > 0. Thus, the only coverage arrow
that can cross vertex tL(fL

a) is AC(1), and similarly, the only coverage ar-
row that can cross vertex h(tL(fL

a + 1)) is AC(q). Procedure Coverage uses
two indicators, Ia and Ib. If AC(1) crosses tL(fL

a), the procedure returns
Ia = 1, otherwise Ia = 0. If AC(q) crosses h(tL(fL

a + 1)), the procedure
returns Ib = 1, otherwise Ib = 0. The procedure returns, in addition, the
value ∆(B) which is the total length of the coverage arrows, and a value Γ
which is needed in computing the augmentation cost, as is shown below. The
augmentation is due to the unit-arrows in CL ∪B.

Calculation of the augmentation cost:

Case 1. B = ∅: Under this case the best Left solution is found similarly
to the best right solution: The vehicle starts at a by possibly going
right to tL(k) for some k = 0, 1, . . . , fL, there it makes a u-turn and
goes back to a, and from there it follows the left basic route until
its completion at b. Thereafter, the vehicle continues to the left to
h(tL(k + 1)), there it makes another u-turn in order to go back to b,
where the tour ends. The cheapest resulting total augmentation cost
under this case is 2 minfL

k=0 {tp(AL(k)) + hp(AL(k + 1))}.

Case 2. B 6= ∅: Under this case fL
ab = 0 and CL = CL

a ∪ CL
b .

Case 2.1 The vertices tL(fL
a) and h(tL(fL

a + 1)) are not crossed
by the same coverage arrow: The conditions in this case imply

that x[tL(fL
a)] < x[h(tL(fL

a + 1))], as otherwise there would either
be a single coverage arrow that crosses both tL(fL

a) and h(tL(fL
a +

1)), or B = ∅, contradicting our assumptions. If Ia = 1 then
AC(1) is the coverage arrow that crosses tL(fL

a). In such a case
let t̃ and h̃ be the tail and the head of AC(1), implying that
h̃ < tL(fL

a) < t̃. If Ia = 0, then let t̃ = h̃ = tL(fL
a). Similarly, if

Ib = 1 then AC(q) is the coverage arrow that crosses h(tL(fL
a +1)).

In such a case, let t̂ and ĥ be the tail and the head of AC(q),
implying that ĥ < h(tL(fL

a + 1)) < t̂. If Ib = 0, then let t̂ = ĥ =
h(tL(fL

a + 1)). If IaIb = 1 then q > 1 and t̃ < ĥ, (see Figure
5). The only augmentation whose cost is bounded from above by
2(x[b] − x[a]) is to start driving right from a to t̃, make there a

10

t′ = tL(fL
a), h′ = h(tL(fL

a + 1))

Figure 5: t(fL
a) < h(tL(fL

a + 1)), each of the two vertices is crossed by a
different coverage arrow

u-turn, go back to a, follow the left basic route while serving in
loops the coverage arrows lying between t̃ and ĥ, complete the
left basic route at b and then continue to the left to vertex ĥ,
where it makes another u-turn in order to go back to b. The total
augmentation cost is 2(tp(AL(fL

a)) + hp(AL(fL
a + 1)) + ∆(B) −

[(x[tL(fL
a)]− x[h̃]) + (x[t̂]− x[h(tL(fL

a + 1))]))].

Case 2.2 The two vertices tL(fL
a) and h(tL(fL

a + 1)) are crossed
by the same coverage arrow: Under this case any augmentation
costs at least 2(x[b]− x[a]) as all the intervals in between a and b
are covered by left unit-arrows. In view of the removal of covered
unit-arrows, it must hold that q = 1 and AC(1) covers the fB

unit-arrows of B, and h1 < tL(fL
a) ≤ h(tL(fL

a + 1)) < t1, where t1
and h1, respectively, are the tail and head of AC(1) (see Figure
6). Consider first the case that the vehicle starts the tour by going
right to tL(`), for some ` 6= fL

a and 0 ≤ ` ≤ fL, there it makes
a u-turn in order to go back to a and start the left basic route.
Then, after completing the left basic route at b, it continues to
h(tL(`+1)), where it makes a second u-turn in order to return to b.
Note that such a route ensures the coverage of all the unit-arrows
in B, as either before starting the left basic route (` > fL

a) or after
its completion (` < fL

a), the vehicle traverses all the way from b

to a. In overall there are f l such options. More caution should be
paid if the vehicle starts the tour by going right to tL(fL

a): Note
that here a replication of the form of the tour for ` 6= fL

a may miss
the service to some unit arrows in B. Indeed here one needs to
consider the fB unit-arrows of B, which are covered by AC(1),
as it may be beneficial continuing right from tL(fL

a) to the tail of

11

t′ = tL(fL
a), h′ = h(tL(fL

a + 1))

Figure 6: tL(fL
a) < h(tL(fL

a + 1)); both are crossed by AC(1)

the k−th unit arrow in array B making there a u-turn and then
after completing the left basic route at b, continue left to the head
of the (k + 1)st unit-arrow in B, where another u-turn is made
in order to return to b. Thus, starting by going right to tL(fL

a)
necessitates the need to compare fB + 1 options regarding the
additional right ride before making the first u-turn in order to start
the left basic route. For this sake let tB(0) = tL(fL

a), and tB(fB +
1) = tL(fL

a + 1). In overall, the best augmentation cost for the
fL+fB+1 options in this case, calculated by Procedure Coverage,
is 2 min{minfL

k=0,k 6=fL
a
{(tp(AL(k))+hp(AL(k+1)))}; (tp(AL(fL

a))+

hp(AL(fL
a + 1)) + Γ)}, where Γ = minfB

j=0{x[tB(j)]− (x[tL(fL
a)]) +

(x[h(tL(fL
a + 1))])− x[h(tB(j + 1))]}.

The Algorithm: Left Basic Route returns the best left solution V L. The
complexity for computing V L is O(fL). Based on the results of the last two
subsections we conclude:

Theorem 1. The complexity of the algorithm for computing the optimal
solution for SP on a line with n vertices is O(n).

3.3 Two special cases

Now we consider two special cases: In the first, a = b, meaning that the
initial and terminal points coincide. The second is the problem where the
initial and terminal points are at the two extreme end-points of the line. For
both special cases the proposed algorithm boils down to simpler versions,
though the complexity is obviously the same.

12

3.3.1 a = b

In this case the crossing arrows are the right and left unit-arrows that cross
vertex a. Both the left and right basic routes are of length of 2. As B = ∅,
the best left solution is calculated similarly to the best right solution.

3.3.2 x[a] = 0 and x[b] = 1

In this case, any right solution requires a traversal of the whole line three
times, i.e., V R = 3, which is the worst possible, see (2). In any left solution,
the vehicle traverses the line from its left end-point to its right end-point,
but each time it reaches the tail of a coverage arrow, it makes there a u-turn
and rides back up to the head of the coverage arrow, where it makes again a
u-turn in order to continue to the right end-point. The cost of the optimal
solution is therefore V ∗

Line = V L = 1 + 2∆(B) ≤ 3.

4 The SP on a Circle

Recall that here we assume that the depot is located at vertex 1, and it serves
as both the initial and terminal vertex (a = b = 1). Let V ∗

Circle be the optimal
solution of the SP on a circle, and l(i) = x[i + 1]− x[i], for i = 1, ..., n, is the
length of the i-th interval. V ∗

Circle is bounded from below by the minimum
between the cost of a full traversal of the circle, and the cost of covering the
whole circle twice except of one interval:

V ∗
Circle ≥ min{1; min{2(1− l(i)) : i = 1, ..., n}}. (3)

In order to obtain an upper bound we consider the cheapest among two
feasible tours, which are obtained by going clockwise (hereinafter c.w.) from
vertex 1 to n and back, or by going counter-clockwise (hereinafter c.c.w.)
from vertex 1 to 2 and back. Thus,

V ∗
Circle ≤ 2(1−max{l(1), l(n)}). (4)

Both lower and upper bounds in (3) and (4) can be shown to be tight.

Definition 4.1. A solution to the SP on a circle is said to contain a complete
encirclement (hereinafter c.e.) if the vehicle traverses all n intervals of the
circle in the same direction at least once.

The next property is straightforward:

13

Property 3. Any feasible solution either contains a c.e. (c.w. or c.c.w.),
or it leaves an uncovered interval, while all the others are covered by at least
one ride to each direction.

Let V UC be the optimal solution with an uncovered interval, and V CE be
the optimal solution with a c.e. We calculate these two values in the next
two subsections. V ∗

Circle = min{V UC , V CE}.

4.1 V UC

Let V UC(i) ,i = 1, . . . , n, be the best solution that does not traverse interval
(i, i + 1) in neither direction. As observed above , for i = 1 and i = n,
V UC(i) = 2(1 − l(i)), see the explanation of (4). For 1 < i < n, computing
V UC(i) boils down to solving an appropriate uncapacitated SP on a line,
where the initial and terminal points coincide at vertex 1, the left end-point
of the line is vertex i + 1, and the right end-point is vertex i, implying that
the length of the line is 1 − l(i). The problem can be solved by invoking
the algorithm for the line proposed in Section 3 in its simplified version for
a = b, see Subsection 3.3.1. In view of (4), a further simplification is obtained
by noting that there is no need to calculate V UC(i) for 1 < i < n if l(i) ≤
max{l(1), l(n)}. Algorithm SP-Circle(UC) returns V UC = min{V UC(i)|i =
1, . . . , n}, in complexity O(n2).

4.2 V CE

The problem is solved twice, once for c.w. c.e., whose value is denoted by
V CE(c.w.) and once for a c.c.w. c.e., whose value is denoted by V CE(c.c.w.).
V CE = min{V CE(c.w.), V CE(c.c.w.)}. Clearly, if a c.e. is feasible then V CE = 1.
Otherwise, it is necessary to augment it. W.l.o.g., we describe the algorithm
for V CE(c.w.). For simplicity, if it is not said otherwise, we use c.e. for a c.w.
c.e. As we are going to see, it is sufficient to look at augmentations of the c.e.
that are associated with a pair of vertices (p, f), such that 1 ≤ f < p ≤ n+1,
and consist of three, possibly empty, disjoint subsets of vertices:

1. PL1(p) = {` : p ≤ ` ≤ n};

2. PL2(f) = {` : 1 ≤ ` ≤ f};

3. R(p, f) = {` : f < ` < p}.

14

The tour associated with this partition starts by driving in a c.c.w. direction
to p while picking-up the loads supplied by the vertices in PL1(p); at vertex
p the vehicle makes a u-turn and returns to the depot. This initial segment of
the tour is called the first pre-loading segment. If p = n+1, then PL1(n+1) =
∅ and the first pre-loading option is not used. After completion of the first
pre-loading segment, the vehicle goes c.w. from the depot to vertex f while
picking-up the supplies of the vertices in PL2(f). This second segment of
the tour is called the second pre-loading segment. Note that along the two
pre-loading segments no object is unloaded from the vehicle, as the vertices
in PL1∪PL2 will be visited again later at the end of the tour. By definition,
f ≥ 1, which means that the load of vertex 1 is picked-up at the beginning of
the pre-loading segments, but its demand is satisfied later when the vehicle
returns to the depot after picking-up all objects. The remaining vertices in
U\(PL1(p) ∪ PL2(f)) = R(p, f) are served as follows: From vertex f the
vehicle goes c.w. and whenever it reaches a vertex for the first time, it loads
its supply, and if possible it also unloads its demand. Vertices in R(p, f)
whose demand could not been served at the first visit, are served in loops:
Suppose that j ∈ R(p, f) is the first such vertex, i.e., when j is first visited,
the demands of all vertices in {f + 1, . . . , j − 1} have already been satisfied,
but object βj is not available on the vehicle. The vehicle then continues in
a c.w. direction, until the first time it reaches a vertex k, p > k > j > f ,
where the current accumulated cargo on the vehicle together with object
αk, is sufficient to satisfy the demands of all the yet unserved vertices in
{j, j + 1 . . . , k}. When reaching k, the vehicle makes there a u-turn and
drives back to j while satisfying the demands of the yet unserved vertices.
At j the vehicle makes again a u-turn in order to go back to k. The ride
from k to j in order to satisfy the yet unserved demands, and back to k, is
called a loop. The vehicle then continues the c.w. ride from k to p− 1 while
making loops if necessary. The set LOOP (p, f) ⊂ R(p, f) consists of all the
vertices covered by such loops. In particular, {j, j+1, . . . , k} ⊂ LOOP (p, f).
By definition, the sets PL1(p),PL2(p), and LOOP (p, f) are disjoint. When
reaching p for the second time, the vehicle has completed to pick-up all the
objects, and by riding c.w. to f it can satisfy the demands of the vertices
in PL1 ∪ PL2. At vertex f the vehicle makes a u-turn and it returns to the
depot. Figure 7 demonstrates a c.w. c.e. and the possible components of an
augmentation.

Thus, for given p and f , the problem reduces to solving the SP on a line
with n+ f +(n− p+1) vertices, denoted by L(p, f): The left part of L(p, f)

15

Figure 7: (p, f) = (8, 2), PL1(8) = {8}, PL2(2) = {1, 2}, R(8, 2) =
{3, 4, 5, 6, 7}, LOOP (8, 2) = {4, 5}.

is associated with the c.w. circular arc from vertex p to 1, attached to it is
the middle part of L(p, f) that consists of a c.e. of the circle, and thereafter
attached to it is the last part which is associated with a c.w. circular arc
from vertex 1 to f . Number the vertices on L(p, f) from left to right by
p′, . . . , n′,1, . . . , f ,f + 1, . . . , p − 1, p, . . . , n, n + 1,2′, 3′, . . . , f ′. Let U(p, f)
denote the set of vertices of L(p, f). The initial and terminal vertices are
a = 1 and b = n + 1, respectively. The supply of q′ ∈ {p′, . . . , n′} and of
q ∈ {1, . . . , f} is αq, where its demand is the null object. The supply and
demand of q ∈ {f + 1, . . . , p− 1} are αq and βq, respectively. The supply of
q ∈ {p, . . . , n + 1} and of q′ ∈ {2′, . . . , f ′} is the null object, and its demand
is βq. Thus, in the new problem the total supply equals the total demand,
for each object in S−0, and it is exactly the same as in the original problem
on the circle. See Figure 8.

Observation 1. The SP on line L(p, f) is equivalent to the problem of find-
ing the best SP tour on a circle with a c.w. c.e., and a pre-loading component
that consists of the sets of vertices PL1(p) ∪ PL2(f).

As shown in Section 3, the complexity of the algorithm for solving the SP
on a line is linear in the number of vertices, and as in the worst case there are

16

Figure 8: Line(p, f)

O(n2) different pairs of (p, f) that need to be verified, a direct application
of the above described algorithm requires a complexity of O(n3), even if we
use the special structure of L(p, f). The special structure of L(p, f) is due to
the fact that vertices {p′, . . . , n′} ∪ {1, . . . , f} have no demand, and vertices
{p, . . . , n + 1} ∪ {2′, . . . , f ′} have no supply, implying that right solutions
cost more than left solutions. Therefore, it suffices to focus on left solutions
only. Furthermore, the algorithm that generates left solutions boils down
to a simple version as the structure of L(p, f) is such that all its left unit-
arrows are in the set B, denoted here by B(p, f). In particular, it means that
L(p, f) has no left crossing unit arrows. All unit-arrows in B(p, f) and the
corresponding coverage arrows have their tail at t and their head at h such
that f < h < t < p. The best left solution starts at vertex a = 1, goes to the
left end-point of the line, namely vertex p′, makes there a u-turn and goes
right, while making loops on the coverage arrows in between vertices f+1 and
p−1; thereafter the vehicle continues to the right end-point of the line, namely
to vertex f ′, where it makes a u-turn to go back to the terminal point b =
n+1. Thus, V CE(c.w.) = min1≤f<p≤n+1{1+2(x[f]+(1−x[p])+∆(B(p, f)))},
where ∆(B(p, f)) is the corresponding length of the coverage arrows.

In view of the upper bound in (4), it is sufficient to restrict our search to
pairs of (p, f) for which x[f]+∆(B(p, f))+(1−x[p]) < 0.5−max{`(1), `(n)},
which implies that x[p] − x[f] > 0.5 + max{`(1), `(n)}. Let p and f be

defined such that x[p − 1] ≤ 0.5 + max{`(1), `(n)} < x[p], and x[f] < 0.5 −
max{`(1), `(n)} ≤ x[f + 1]. In addition, let f(p) for p ≥ p, be the maximum

index f such that x[p] − x[f] > 0.5 + max{`(1), `(n)}. Clearly, f(p) ≤
f(p + 1) ≤ f(n + 1) = f . Thus, for any p ≥ p, we need to consider L(p, f)

for 1 ≤ f ≤ f(p). The calculation of p, f , and the sequence f(p) for p ≥ p,

17

takes O(n log(n)) time. Unfortunately, all these insights do not reduce the
magnitude of the complexity, which remains O(n3). In the next subsection
we show that the problem has further properties that make it relatively easy
to solve it iteratively for all possible pairs of (p, f) without invoking each
time the algorithm for a general line. The new method enables us to find
V CE in complexity of O(n2).

4.2.1 Improvement: computing V CE in O(n2)

Below we describe how to calculate ∆(B(p, f)) for all possible pairs (p, f)
in O(n2) time only. The reduced complexity is achieved by updating both
∆(B(p, f + 1)) and ∆(B(p − 1, f)) from ∆(B(p, f)) in constant time on
average. This saving is based on the following claim:

Claim 1. The set LOOP (p, f) as well as ∆(B(p, f)) are (i) non-decreasing
in p for any given f ; and (ii) non-increasing in f for any given p. In par-
ticular, ∆(B(p, f)) ≤ ∆(B(n + 1, 1)).

Proof. As LOOP (p, f) ⊂ R(p, f) = {f + 1, . . . , p − 1}, the smaller is p and
the larger is f (f < p), the load on the vehicle after the pre-loading segments
is larger, and therefore more vertices in R(p, f) get served at the first time
they are visited. As a result the set of vertices served by loops is shrunk.

We present now the recursive method that enables the reduction of the
complexity. Initialization Procedure L(n + 1, 1)-I starts by initializing the
data for line L(n + 1, 1). For 1 ≤ i ≤ n, and j ∈ S−0 let:

• W = (ω(i, j)) is a matrix, where ω(i, j) is the number of left j-unit-
arrows that cover interval (i, i + 1).

• S(i) =
∑

j∈S−0
ω(i, j) is the number of left unit-arrows that cover the

interval;

• Indicator I(i) = 1 if S(i) > 0, and 0 otherwise. Thus, I(i) = 1 implies
that interval (i, i + 1) is covered by a coverage arrow.

• Indicator Y (j) assumes the value 1 if there are no any left j-unit-arrows
in B(n + 1, 1), and 0 otherwise.

Note that Y (j) = 1 implies that along the c.e. all vertices demanding object
j get the object at the first visit of the vehicle there. It is easy to see that
in such a case Y (j) = 1 for any L(p, f). The matrix W , the indicators

18

I(i), the values S(i) for i = 1, . . . , n, and Y (j) for j ∈ S0 that are found
for L(n + 1, 1) by Initialization Procedure L(n + 1, 1)-I, need to be updated
for each possible pair (p, f) and its respective line L(p, f). Updating the
matrix W for L(p, f) from L(p, f − 1) if f > 1, or from L(p− 1, f) if f = 1,
requires O(n) operations, as the number of intervals between f +1 and p− 1
is O(n), meaning that such a procedure is not going to help in reducing the
complexity.

In order to present an O(n2) algorithm we need a more efficient data
structure. Considering L(n + 1, 1), note that for each j ∈ S−0, ω(1, j) = 0,
as the demand of vertex 1 is satisfied only at the end of the c.e. In general,
the values ω(i, j) for i = 2, . . . , n− 1 satisfy the following properties:

• If j /∈ {αi+1, βi+1} then ω(i + 1, j) = ω(i, j).

• If j = αi+1, then ω(i + 1, j) = (ω(i, j)− 1)+, where x+ = max{x, 0}.

• If j = βi+1 and ω(i, j) > 0, then ω(i + 1, j) = ω(i, j) + 1.

• If j = βi+1, and ω(i, j) = 0, then ω(i + 1, j) ∈ {0, 1}, depending on the
current load on the vehicle.

Thus, for a given j, ω(i, j) as a function of i, is a step function that assumes
non-negative integer values, starting at 0 for i = 1, and changing in steps of
a size of at most 1 unit. These properties continue to hold for any L(p, f).

Next, the proposed data structure for L(p, f) is described. For illustration
purposes, assume that matrix W , and the indicators I(i) and Y (j) for i =
1, . . . , n and j ∈ S−0, which are associated with L(p, f), are given. (In
practice, these values are calculated by Initialization Procedure-I only for
L(n+1, 1), and these are used as input by initialization Procedure L(n+1, 1)-
II to produce the proposed data structure). Suppose that in the solution
for L(p, f), for some k > f , ω(k − 1, j) = 0, ω(k, j) = 1, ω(i, j) ≥ 1 for
i = k + 1, . . . , ` − 2 < p − 2, ω(` − 1, j) = 1, and ω(`, j) = 0. Then, [k, `]
is said to be a 1-block of j, vertex k is said to be the starting vertex of the
block, and vertex ` is said to be the ending vertex of the block. This means
that in the SP solution of L(p, f), each of the intervals inbetween vertices k

and ` is covered by at least one left j-unit-arrow. Note that object j can be
associated by a number of non-overlapping 1-blocks. In general, define:

Definition 4.2. An h-block of j is a maximal set of consecutive intervals
where each is covered by at least h left j-unit-arrows. h is said to be the level
of an h-block of object j.

19

Clearly, the blocks are nested in the sense that any h-block of j is also
an h′-block of j for h′ ≤ h. Storing and updating blocks instead of matrix
W consume less memory and time. More precisely, we show that the blocks
require O(n) space, where the matrix - O(n2). For this sake, note that the
number of blocks for any line L(p, f) is bounded from above by n and that
the number of blocks is non-increasing as p gets smaller and f gets larger.
In order to see this note that given a certain h-block [k, `], h ≥ 1, of object
j, j ∈ S−0, then at the interval (k, k + 1) the demand for j has increased by
1, i.e., βk = j, and at the interval (`, ` + 1) the demand for j has decreased
by 1, i.e., α` = j. As each vertex is associated with at most a single unit
of supply and a single unit of demand, then each vertex may be the initial
(terminal) vertex of at most one block, implying that the total number of
blocks is bounded by the number of vertices in between f + 1 and p − 1,
namely p − f − 1 < n. Moreover, the number of levels for each object is
bounded by nj, where nj is the number of units of object j in the problem,
and

∑
j∈S−0

nj ≤ n.

The information about the left unit-arrows associated with L(p, f), and,
in particular, the output of Initialization Procedure L(n + 1, 1)-I, is stored
by using pointers rather than a matrix. Next we describe the pointers:

1. For each j ∈ S−0, satisfying Y (j) = 0, i.e., an object that is associated
with at least one left j- unit-arrow, define pointer first(j) to point to
the minimum index vertex k, f < k < p, with βk = j, which is served
by a loop in L(p, f). This means that k is the starting vertex of the
first 1-block of j.

2. For any k which is the starting vertex of an h-block of j, define the
following pointers:

(a) Pointer end(k) points to the ending vertex of the block that stars
at k. This means that for some h ≥ 1, ω(i, j) ≥ h for k ≤ i <
end(k) and ω(end(k), j) = h− 1.

(b) Pointer nxtblck(k) points to the starting vertex of the next h-block
of j, if such one exists, i.e., ω(i, j) ≤ h−1 for i = end(k), . . . , nxtblck(k)−
1 and ω(nxtblck(k), j) = h. If k is the starting vertex of the last
h-block of j, then let nxtblck(k) = 0.

(c) Pointer nxtlvl(k) points to the starting vertex of the next (h+1st)-
block of j, if such one exists. For example, nxtlvl(first(j)) points
to the starting vertex of the first 2-block of j, nxtlvl2(first(j))
points to the starting vertex of the first 3-block of j, etc. If h is

20

the highest block level for object j, and k is the starting vertex
an h-block of j, then let nxtlvl(k) = n + 1.

(d) Let pointer prvlvl(`) = k if and only if nxtlvl(k) = `.

Initially, first(j) for j ∈ S−0, nxtlvl(i), prvlvl(i), end(i), nxtblck(i) are
set to 0, for i = 1, . . . , n. Initialization Procedure L(n+1, 1)-II uses as input
matrix W found by Initialization Procedure L(n + 1, 1)-I, and scans it for
setting the blocks and the pointers described above. More specifically, the
second Initialization Procedure uses stacks of maximum size bounded by n,
in order to facilitate the initialization of the pointers. Let SK be a stack of
current size ns. The following operations on stacks are common:

1. Function TOP [SK] returns the last element inserted to the stack, with-
out removing it from the stack.

2. Function POP [SK] removes the last element from the stack.

3. Function PUSH[SK, e] inserts a new element e as the last element of
the stack.

For each column j ∈ S−0 with Y (j) = 0, the procedure opens an empty stack
SK. After scanning the first i elements of column j, the stack contains at its
h position, if it is not empty, the starting vertex of the h-block of j, where
the ending vertex of this block has not yet been scanned, i.e., its ending
vertex is in {i + 1, . . . , n}. A block whose starting vertex has been scanned
but its ending vertex has not been scanned is said to be an open block. In
addition, we use an auxiliary function g : {1, . . . , n} → {0, 1, . . . , n}, where
g(h) indicates the starting vertex of the block of j at level h that has been
opened. By construction, the update of g(h) is upwards. g(h) = 0 means
that no block of j at level h has been opened. Initially, set g(h) = 0, for
h = 1, . . . , n.

Initialization Procedure L(n + 1, 1)-II performs the following steps in or-
der to set the pointers for object j: first(j) = min{i : ω(i, j) > 0}, and
nxtlvl(first(j)) = n+1, where nxtlvl(i) = n+1 means that i is currently at
the highest indexed open block for object j. Add first(j) to the stack by ap-
plying PUSH[SK, first(j)], and increase ns by 1. Set also g(1) = first(j).
For i = first(j) + 1, . . . , n do the following:

1. If ω(i, j) 6= ω(i− 1, j) and ns 6= 0, then let ` = TOP [SK].

2. If ω(i, j) > ω(i− 1, j) do the following:

21

• Increase ns by 1;

• If g(ns) > 0 then let nxtblck(g(ns)) = i;

• If g(ns) = 0 then let nxtlvl(`) = i; prvlvl(i) = `; nxtlvl(i) = n+1
and prvlvl(n + 1) = i;

• Insert i to the end of the stack by applying PUSH[SK, i];

• Let g(ns) = i;

3. If ω(i, j) < ω(i− 1, j) do the following:

• Reduce ns by 1;

• Remove ` from the stack by applying POP [SK];

• Let end(`) = i;

• If nxtlvl(`) = n + 1 then let nxtlvl(prvlvl(`)) = n + 1 and
prvlvl(n + 1) = prvlvl(`);

For any L(p, f), ∆ denotes the length of the respective coverage arrows.
Initially, for L(n + 1, 1), ∆ := ∆(B(n + 1, 1)) and the cost V := 1 + 2∆
are calculated by Initialization Procedure L(n + 1, 1)-I. Let (p∗, f∗) be the
currently optimal (p, f)-pair and V is the currently optimal cost. Initially,
set (p∗, f∗) = (n + 1, 1) and V = 1 + 2∆(B(n + 1, 1)). Next the recursive
update of the data is described:

• Update of data of L(p, 1) based on L(p + 1, 1) for p = n, n− 1, . . . , p :

Let ∆ ← ∆(B(p + 1, 1)). If αp = 0 or Y (αp) = 1, then the data for
L(p, 1) is the same as for L(p + 1, 1). Otherwise, the only data that we
need to update is with respect to object αp. A comparison between the
load of the vehicle when it starts the tour at vertex 2, after completing
the pre-loading components, reveals that in L(p, 1) the vehicle contains
the extra object αp relative to its load in L(p+1, 1). Therefore, the up-
date of the S(i) values for L(p, 1) is by reducing their respective values
in L(p + 1, 1) by 1, for each interval (i, i + 1), 2 ≤ i < p − 1, which is
covered by a 1-block of αp. For all i ∈ {2, . . . , p−2}, for which S(i) has
dropped to 0, set I(i) := 0 and ∆← ∆−li, as the the coverage arrows in
L(p, 1) do not cover interval (i, i+1) that was covered in L(p+1, 1). Set
∆(B(p, 1))← ∆. If 1 + 2(∆ + 1− x[p]) < V , then let (p∗, f∗)← (p, 1),
and V ← 1+2(∆+1−x[p]). In addition, if L(p+1, 1) does not contain
any 2-blocks of object αp, i.e., in L(p + 1, 1) nxtlvl(first(αp)) = n + 1,
then delete the 1-blocks of αp and set Y (αp) = 1 and first(αp) = 0.

22

Otherwise, update the data for L(p, 1) from the data of L(p + 1, 1) by
deleting the 1-blocks of αp, which are not 2-blocks of αp, and making
the h-blocks of αp to be the (h−1)-blocks of αp, for h ≥ 2. This is done
by setting first(αp) ← nxtlvl(first(αp)). Up to here, the amount of
data that has been stored for L(p, 1), p ∈ {p, . . . , n + 1}, is O(n2).

• Update of data of L(p, f) based on L(p, f − 1) for p = n + 1, n, . . . , p

and f = 2, . . . , f(p) : The procedure is similar to the one described
above. Let ∆ ← ∆(B(p, f − 1)). If αf = 0 or Y (αf) = 1, then
the data for L(p, f) is the same as for L(p, f − 1). Otherwise, the data
with respect to object αf need to be updated. A comparison between
the load of the vehicle when it starts the tour after completing the
pre-loading components reveals that in L(p, f) the vehicle contains the
additional object αf relative to its load in L(p, f − 1). Therefore, the
update of the S(i) values for L(p, f) is by reducing their values in
L(p, f − 1) by 1, for each interval (i, i + 1), f < i < p − 1, which is
covered by a 1-block of αf . For all i ∈ {f + 1, . . . , p − 2}, for which
S(i) has dropped to 0, set I(i) := 0 and ∆ ← ∆ − li, as the coverage
arrows in L(p, f) do not cover interval (i, i + 1) that was covered in
L(p, f − 1). Set ∆(B(p, f)) ← ∆. If 1 + 2(∆ + x[f] + 1 − x[p]) < V ,
then let (p∗, f∗)← (p, f), and V ← 1+2(∆+x[f] + 1−x[p]). In addi-
tion. if L(p, f − 1) does not contain any 2-blocks of object αf , i.e., if in
L(p, f − 1) nxtlvl(first(αf)) = n+1, then update the data for L(p, f)
by deleting the 1-blocks of αf and setting Y (αf) = 1 and first(αf) = 0.
Otherwise, update the data for L(p, f) from the data of L(p, f − 1) by
deleting the 1-blocks of αf , which are not 2-blocks of αf , and making
the h-blocks of αf to be the (h−1)-blocks of αf , for h ≥ 2. This is done
by setting first(αf) ← nxtlvl(first(αf)). At the end of this process,
the algorithm returns the optimal pair (p∗, f∗), and the optimal c.w.
c.e. solution V CE(c.w.)(p∗, f∗) = 1 + 2(∆(B(p∗, f∗)) + x[f ∗] + 1− x[p∗]).

The only concern regarding the complexity of the proposed algorithm is with
respect to the number of updates of the S(i) values for i = 1, . . . , n. The total
number of updates of these values is at most

∑n
i=1 S(i), because the values

are integer and at each update one of them is reduced by one unit. The S(i)
values are initially determined by Initialization Procedure L(n+1, 1)-I. Note
that at its maximum, which is also its initial value, S(i) ≤ n− i, as each of
the n − i vertices in {i + 1, . . . , n} can be the tail of no more than one left
unit-arrow that covers interval (i, i + 1). Thus,

∑n
i=1 S(i) ≤

∑n
i=1(n − i) =∑n−1

i=1 i = 0.5n(n− 1), meaning that at most O(n2) such updates are needed.

23

Therefore, the complexity of Algorithm SP −Circle(CE)(c.w.) is O(n2). In
an analogous way also V CE(c.c.w.) is calculated, and the best of the two is
returned as V CE.

5 Concluding Remarks

The uncapacitated SP on general graphs, including the same problem on
a tree de Paepe at al. [7], is known to be NP-hard, see the Introduction.
In this paper, we investigate the problem on two simple graphs, line and
circle. In both cases we propose algorithms of low complexity to solve them
to optimality. For the line, the algorithm is linear in the number of vertices,
the best complexity that can be expected. For the circle, the best algorithm
we could generate has a complexity which is the square of the number of
vertices.

Similarly to the uncapacitated SP, also the unit capacity SP is known
to be polynomial on a line, see Anily, Gendreau and Laporte [2], and NP-
hard on general graphs. In particular, the unit capacity SP on a tree, for
both the preemptive and non-preemptive cases, see Anily, Gendreau and
Laporte [3], and Frederickson and Guan [9], respectively, are NP-hard like
the uncapacitated SP on a tree. However, it is still an open question whether
the unit-capacity SP on a circle is polynomially solvable like its uncapacitated
version on a circle, or whether there is a further inherent complexity in the
problem that makes it NP-hard. We do hope that this research will encourage
researchers in the field to investigate this open problem.

Acknowledgement

The research of the first author was partially funded by the Israeli Institute
for Business Research.

References

[1] Anily, S. and R. Hassin (1992), The Swapping Problem. Networks 22:
419-433.

[2] Anily, S., M. Gendreau and G. Laporte (1999), The Swapping Problem
on a Line. SIAM Journal on Computing 29: 327-335.

[3] Anily, S., M. Gendreau and G. Laporte (2006), The Preemptive Swap-
ping Problem on a Tree.

24

[4] Anily, S. and G. Mosheiov (1994), The Traveling Salesman Problem with
Delivery and Backhauls. Operations Research Letters 16 : 11-18.

[5] Attalah, M.J. and S.R. Kosaraju (1988), Efficient Solutions to Some
Transportation Problems with Applications to Minimizing Robot Arm
Travel. SIAM Journal on Computing 17: 849-869.

[6] Charikar, M. and B. Raghavachari (1998), The Finite Capacity Dial-a-
Ride Problem. Proceedings of the 39th Annual Symposium on Founda-
tions of Computer Science: 458-467.

[7] de Paepe, W., J.K. Lenstra, J. Sgall, R. Sitters, and L. Stougie (2004),
Computer-Aided Complexity Classification of Dial-a-Ride Problems. IN-
FORMS Journal on Computing 16: 120-132.

[8] Frederickson, G.N. and D.J. Guan (1992), Preemptive Ensemble Motion
Planning on a Tree. SIAM Journal on Computing 22: 1130-1152.

[9] Frederickson, G.N. and D.J. Guan (1993), Non-preemptive Ensemble
Motion Planning on a Tree. Journal of Algorithms 15: 29-60.

[10] Frederickson, G.N., M.S. Hecht and C.E. Kim (1978), Approximation
Algorithms for some Routing Problems. SIAM Journal on Computing
7: 178-193.

[11] Guan, D.J. (1998), Routing a Vehicle of Capacity Greater than One.
Discrete Applied Mathematics 81: 41-57.

[12] Kubo, M. and H. Kasugai (1990), Heuristic Algorithms for the Single
Vehicle Dial-a- Ride Problem. Journal of the Operations Research Soci-
ety of Japan 33: 354-365.

[13] Pfeffer, A. (2004), Uncapacitated Swapping Problems on a Line. M.Sc.
Thesis (in Hebrew), The Recanati Graduate School of Business, Tel-
Aviv University.

[14] Psaraftis, H. (1983), Analysis of an O(n2) Heuristic for the Single Vehicle
Many-to-Many Euclidean Dial-a-Ride Problem. Transportation Research
17B: 133-145.

25

6 Appendix: The algorithms

This Appendix contains the algorithms.

Subsection 3.1

Procedure CR

1:set fR = 0, CR(`) = (0, 0) for ` = 1 to n, k = 1, i = a− 1.
2: while i > 0 do begin:

3: if UA
R

(i) > b then fR ← fR + 1, CR(k) = (i, UA
R

(i)), k ← k + 1
4: i← i− 1.
5: endwhile.
6: return fR; CR.
—————————————————————————————
Algorithm: Right Basic Route(CR;fR;tp(AR(k));hp(AR(k));k = 1, . . . , fR)

1: if fR = 0 then do begin

2: V R = 0
3:otherwise
4: set V R = hp(AR(1))

5: for k = 1 to fR − 1 do begin

6: if tp(AR(k)) + hp(AR(k + 1)) < V R then V R = tp(AR(k)) + hp(AR(k + 1)).
7: endfor
8: if tp(AR(fR)) < V R then V R = tp(AR(fR)).
9:endif
10: return V R ← (2 + x[b]− x[a]) + 2V R.

Subsection 3.2

Procedure CL and B
1: set: fL = 0, fL

a = 0, fL
b = 0, fL

ab = 0, fB = 0. kL = 1, kB = 1, i = a + 1.

for ` = 1 to n, CL(`) = (0, 0) and = B(`) = (0, 0).

2: while i ≤ n if 0 < UA
L

(i) < a do begin:

3: fL ← fL + 1,

4: if i ≤ b then fL
a ← fL

a + 1; otherwise fL
ab ← fL

ab + 1.

5: CL(kL) = (i, UA
L

(i)), kL ← kL + 1 and i← i + 1.
6: endwhile.
7: while i ≤ b if UA

L
(i) ≥ a do begin:

8: fB ← fB + 1, B(kB) = (i, UA
L

(i)), kB ← kB + 1 and i← i + 1.
9: endwhile.
10: while i ≤ n and UA

L
(i) < b do begin:

11: fL ← fL + 1, fL
b ← fL

b + 1,

12: CL(kL) = (i, UA
L

(i)), kL ← kL + 1 and i← i + 1.
13: endwhile.
14: return fL,fB , fL

a , fL
b , fL

ab, CL; B.
—————————————————————————————
Procedure: Coverage(B; fB ; fL

a ; fL
b ; tL(fL

a); h(tL(fL
a + 1)))

1: set tB(0) = tL(fL
a); h(tB(fB + 1)) = h(tL(fL

a + 1)); Γ = 0; ∆(B) = 0; Ia = 0; Ib = 0;

2: for k = 1 to fB do begin

3: tAC(k) = 0, hAC(k) = 0, AC(k) = (0, 0)
4: endfor.
5: q = 1; h′ = h(tB(1)); t′ = tB(fB)

6: if x[h′] < x[tL(fL
a)] then Ia ← Ia + 1.

7: if x[t′] > x[h(tL(fL
a + 1))] then Ib ← Ib + 1.

8: for k = 2 to fB + 1 do begin

9: if x[h(tB(k))] > x[tB(k − 1)] then do begin

10: tAC(q) = tB(k − 1); hAC(q) = h′; AC(q) = (x[tAC(q)], x[hAC(q)]),

11: if k ≤ fB then h′ = h(tB(k));
12: q ← q + 1;
13: endif.
14: k ← k + 1.
15: endfor.
16: q ← q − 1

17: ∆(B) =
∑q

k=1(x[tAC(k)]− x[hAC(k)])
18: if q ∗ Ia ∗ Ib = 1 then do begin

19: Γ = x[h(tL(fL
a + 1))]]− x[tL(fL

a)];

20: δ = x[tB(0)]− x[h(tB(1))]

21: for j = 1 to fB do

22: if x[tB(j)]− x[h(tB(j + 1))] < δ

then δ = x[tB(j)]− x[h(tB(j + 1))]
23: endfor.

26

24: Γ← Γ + δ;
25: endif
26: return for k = 1 to q tAC(k); hAC(k); AC(k) = (tAC(k), hAC(k))
27: return q; Ia; Ib; ∆(B); Γ;
—————————————————————————————
Algorithm: Left Basic Route(CL; fL; fL

a ; fL
b ; B; fB ; tL(fL

a); h(tL(fL
a + 1)); tp(AL(k)), hp(AL(k)) for k = 1 to

fL)

1: set V L = 0, tp(AL(0)) = 0, hp(AL(fL + 1)) = 0; Ia = 0; Ib = 0;

2: if fB = 0 then do begin (Case 1)

3: if fL > 0 then do begin

4: V L = 2{tp(AL(0)) + hp(AL(1))}
5: for k = 1 to fL do begin

6: if 2{tp(AL(k)) + hp(AL(k + 1))} < V L then

7: V L = 2{tp(AL(k)) + hp(AL(k + 1))}
8: endfor.
9: endif
10:else do begin (Case 2)

11: run Procedure:Coverage(B; fB ; fL
a ; fL

b ; tL(fL
a); h(tL(fL

a + 1)))

12: output q; Ia; Ib; ∆(B); Γ; tAC(k) and hAC(k) for k = 1, . . . , q
13: if q ∗ Ia ∗ Ib 6= 1 then do begin (Case 2.1)

14: V L = 2

{
tp(AL(fL

a)) + hp(AL(fL
a + 1)) + ∆(B)−

Ia

(
x[tL(fL

a)]− x[hAC(1)]

)
− Ib

(
x[tAC(q)]− x[h(tL(fL

a + 1))]

)}
.

15: endif
16: else do begin V L = 2{tp(AL(fL

a)) + hp(AL(fL
a + 1)) + Γ} (Case 2.2)

17: for k = 1 to fL do begin

18: if k 6= fL
a then

19: if 2{tp(AL(k)) + hp(AL(k + 1))} < V L then

20: V L = 2{tp(AL(k)) + hp(AL(k + 1))}
21: endfor.
22: endif
23: V L ← (2 + x[a]− x[b]) + V L

24: return V L.

Subsection 4.1

Algorithm SP-Circle(UC)
1: input: for i = 1 to n, x[i]; x[n + 1] = 1;
2: for i = 1, . . . , n do begin l(i) = x[i + 1]− x[i]; x′[i] = 0; endfor
3: if l(1) > l(n) then I = 1 otherwise I = n.

4: set V UC = 2(1− l(I))
5: for i = 2 to n− 1 do begin
6: if l(i) > l(I) then do begin

7: for j = i + 1 to n do x′[j] =
x[j]−x[i+1]

1−l(i)

8: for j = 1 to i do x′[j] =
1−x[i+1]+x[j]

1−l(i)
9: solve problem SP-Line(x′[1], x′[1]) let V be its solution

10: if (1− l(i))V < V UC then do begin

11: V UC = (1− l(i))V ; I = i;
12: endif
13: endif
14: endfor
15: return I; V UC

Subsection 4.2

Initialization Procedure L(n + 1, 1)-I
1: Input: for j = 1 to m, ω(1, j) = 0; and Y (j) = 0; ∆(B(n + 1, 1)) = 0;

for j = 0 to m, σ(j) = 0 and for i = 1 to n, I(i) = 0; S(i) = 0.
2: i = 1; σ(α1) = 1.
3: for i = 2 to n do begin
4: for j = 1 to m do ω(i, j) = ω(i− 1, j)
5: σ(αi)← σ(αi) + 1
6: σ(βi)← σ(βi)− 1
7: if σ(αi) < 0 then ω(i, αi)← |σ(αi)|
8: if σ(βi) < 0 then ω(i, βi)← |σ(βi)|
9: S(i) =

∑m
j=1 ω(i, j);

10: if S(i) > 0 then I(i) = 1;
11: endfor
12: ∆(B(n + 1, 1)) =

∑n
i=1 I(i)l(i);; V = 1 + 2∆(B(n + 1, 1));

13: if
∑n

i=1 ω(i, j) = 0, then Y (j) = 1.
—————————————————————————————
Initialization Procedure L(n + 1, 1)-II

27

1: Input: ω(i, j) for i = 1 to n, j = 1 to m; Y (j) for j = 1 to m; stack SK;
2: for j = 1 to m do begin
3: if Y (j) = 0 then do begin
4: first(j) = 0; ns = 0;
5: for i = 1 to n do begin
6: g(i) = 0; end(i) = 0; nxtlvl(i) = 0; prvlvl(i) = 0;

nxtblck(i) = 0;
7: endfor
8: i = 2
9: while ω(i, j) = 0 do i← i + 1 endwhile
10: first(j) = i;
11: PUSH[SK, first(j)]; ns← ns + 1; g(ns) = first(j);
12: for i = first(j) + 1 to n do begin
13: if ns 6= 0 then ` = TOP [SK];
14: if ω(i, j) > ω(i− 1, j) do begin
15: ns← ns + 1;
16: if g(ns) > 0 then nxtblck(g(ns)) = i;
17: if g(ns) = 0 then do begin
18: nxtlvl(`) = i; prvlvl(i) = `; nxtlvl(i) = n + 1;

prvlvl(n + 1) = i;
19: endif
20: PUSH[SK, i]; g(ns) = i;
21: endif
22: if ω(i, j) < ω(i− 1, j) do begin
23: ns← ns− 1; POP [SK]; end(`) = i;
24: if nxtlvl(`) = n + 1 then do begin
25: nxtlvl(prvlvl(`)) = n + 1; prvlvl(n + 1) = prvlvl(`);
26: endif
27: endif
28: endfor
29: endif
30: endfor
—————————————————————————————
Algorithm SP-Circle(CE)(c.w)
Input: p∗ = n + 1, f∗ = 1; p;
1: for p = n downto p do begin

2: for f = 1 . . . f(p) do begin
3: if f = 1 then do begin
4: work on a copy of the data for L(p + 1, f);
5: ∆ = ∆(B(p + 1, f)); j = αp;
6: endif
7: if f > 1 then do begin
8: ∆ = ∆(B(p, f − 1)); j = αf ;
9: endif
10: if j > 0 and Y (j) = 0 then do begin
11: i = first(j);
12: while i > 0 do begin
13: for t = i to end(i)− 1 do begin
14: S(t) = S(t)− 1;
15: if S(t) = 0 then do begin
16: I(t) = 0; ∆ = ∆− l(t);
17: endif
18: endfor
19: i← nxtblck(i);
20: endwhile
21: ∆(B(p, f)) = ∆;
22: if 1 + 2(∆ + x[f] + 1− x[p]) < V then do begin
23: p∗ = p; f∗ = f ; V = 1 + 2(∆ + 1− x[p]);
24: endif
25: if nxtlvl(first(j)) = n + 1 then do begin
26: Y (j) = 1; first(j) = 0;
27: endif
28: else first(j)← nxtlvl(first(j));
29: endif
30: endfor
31: endfor
32: Return V , p∗, f∗

28

