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Abstract

Expected bond returns (EBR) are the ex-ante expectations implied by the market prices and the
data set available when bond prices are quoted. Our discrete-time model can be used to
estimate the rating-adjusted EBR and its risk premium components, including a certainty
equivalence premium which is related to the systematic risk aversion. We apply the model to
U.S. corporate bond transaction data, using rating agency transition matrices and industry
specific recovery rates. We demonstrate that our model credit risk premium (CRP) is a
“cleaner” measure of credit risk compared to the commonly used bond-spread. Whereas CRP
versus duration term structure shows clear separation between rating groups, their parallel bond
spread term structures are highly mixed raising doubts on their informational value.
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A Model of Implied Expected Bond Returns

1. Introduction

In this paper we propose a model to estimate ex-ante expected bond returns (EBR). Applying
this model to market data, using rating transition matrixes and industry specific recovery rates,
we compute EBR’s for corporate bonds. These expected returns differ from the usually
computed yields to maturity (ytm) which are the promised returns. The difference between the
ytm and the EBR is a new measure of credit risk that we call the credit risk premium (CRP).
We demonstrate that the commonly used bond-spread (ytm less the risk-free rate) is a relatively
poor measure of credit-risk compared to the CRP.

We show that our reasonably simple model introduces new clarity to bond risk premia and
provides evidence for the informational value of credit ratings which is often lost when bond-
spreads are used. The most dramatic evidence of this can be found in Figures 9, 10, and 11 at
the end of the paper, where we show that our measure of the CRP leads to separation of the
yields on bonds into clearly stratified term structures.

Following the presentation of the model and its theoretical foundations, we discuss the practical
estimation issues and present results using two samples of corporate bond transactions, in two
periods of September-December in the years 2004 and 2011, taken from the Fixed Income
Securities Database (FISD).

Whereas the stock pricing literature focuses on expected returns, the bond literature deals
predominantly with yield to maturity and spreads. The yield to maturity (ytm) of a defaultable
bond is its promised return based on promised future cash flows, if the bond is held to maturity
and its issuer doesn’t default. Given the positive probabilities of default on these bonds, it is
clear that ytm is quite different from the bond’s expected return.

Asset pricing theory typically focuses on expected returns. Good examples are the single-
factor capital asset pricing model (CAPM) and the multi-factor arbitrage pricing theory (APT);
in these models the expected return is derived from the appropriate risk factor loadings. Due
to low liquidity of corporate bonds and data availability, empirical research of corporate bonds
using such models is relatively rare. There are some exception, for examples, Gebhardt,
Hvidkjaer, and Swaminathan (GHS, 2005) explore factor models for corporate bond expected
returns, formulating beta sorted portfolios in the sense often found in stock returns analysis.
However, typical to such models, the GHS “expected” returns are actually ex-post realized
returns that are regressed on various factors and bond characteristics.* Our model, on the other
hand, assumes that the expectations are embodied in ex-ante (“forward looking™) observables
such as bond ratings and market prices.

Campello, Chen and Zhang (2008) also propose an estimation methodology for expected
excess bond returns, which in their paper are then used to estimate the excess equity returns.
They define the expected excess return on a corporate bond as the difference between the bond
yield spread and the sum of the expected default loss rate and the expected tax compensation.
Their bond excess return model is based on Jarrow (1978) which assumes a diffusion process
of the bond yield to maturity (a geometrical Brownian motion).

In this paper we take another approach to the estimation of expected bond returns. Our model
infers the expected returns from the current market price combined with a projection of future

! For additional cross section bond realized returns analysis see also Fama and French (1993) and Elton et al
(2001).



cash-flows. If one has a projection of expected cash-flows, the discount rate that matches the
current market price (i.e. the IRR) is by definition the expected returns on these risky cash-
flows. Obviously, the computed expected return is as good as the cash-flow projection is.
Hence, in the equity market, where the future cash-flows are usually unknown, the
implementation of this approach is highly questionable. In the bond market, on the other hand,
we know the promised payoffs.2 Hence ytm, the promised return, is very useful for bonds while
there is no such parallel value in the equity market since “the promised” payoffs of a common
stock are unknown. Our proposed model of EBR uses this approach. It calculates the discount
rate that matches the current bond price to the expected bond payoffs. It calculates these
expected payoffs using the promised payoffs and a term structure of default probability. For
practical implementation we suggest using a Markov process of rating transition matrices to
estimate the default probability term structure.

Although the literature on bond credit risk is vast, there are very few papers that focus on the
expected returns of risky bonds modeling and estimation. A notable exception is Yu (2002),
who develops a continuous-time expected returns model based on Jarrow, Lando and Yu
(2005). Yu’s model is relatively complex, using the one-factor CIR interest rate dynamics
under the physical and the risk-neutral measure and an exponentially affine model of bond
prices. Our model, on the other hand, is very simple, intuitive, easy to understand and to
implement.

It is important to note here that our model does not attempt to forecast returns. We present a
model of implied expected returns which are derived from the information set available to the
modeler when a price to a bond is quoted. Whereas there is a long literature on cashflow-related
expected returns of stocks,® we are not aware of a similar research in the corporate bond market
except for Yu (2002). The risk factor approach (e.g. CAPM, Fama-French, and the APT) which
is widely used in the equity market has been researched mainly in the treasury bond market,
examples include Cochrane (2005 and 2008).4

We believe that this paper, in addition to its detailed presentation and discussion of the EBR
model and the informational content of the CRP, bridges the gap between promised and
expected yields of bonds.® Furthermore, we believe this model could be useful for research,
such as Campello et al. (2008) that require expected bond returns as an input, and for practical
applications of practitioners. An attractive attribute of the model is its applicability not only
for data aggregation - it can also be applied to a single bond transaction as we demonstrate in
the last part of this paper.

2 This is surely the case for straight bonds.
3 Recent examples include Campbell and Thompson (2008), Maio (2012), and others.

4 The few notable examples of the risk approach in the estimation of expected corporate-bond returns are listed
above.

> An example of the inappropriateness of the ytm is the computation of the weighted average cost of capital

(WACC = E r. +2 r (1—T )j Whereas the cost of equity re is typically computed from the security market
\Y, V

line and hence represents the expected return to equity holders, the cost of debt rp is usually computed as the ytm

of the firm’s debt. These two measures are incompatible. A more consistent measure of the cost of debt is the
debt’s expected return.

& Examples of individual bond transaction EBR applications include using abnormal credit risk premium for an
implied bond rating application and for the estimation of implied recovery rates. We have preliminary encouraging
results for both applications. These issues are beyond the scope of this paper.



The structure of the remainder of the paper is as follows: In Section 2 we present the model
and develop the relations among its components. Section 3 addresses practical implementation
issues, describes the data, presents and discusses a sample of estimation results. Section 4
concludes.

2. The discrete-time term-structure model of expected bond returns and
yield decomposition

In this section we present the model for the estimation of expected bond returns (EBR), bond
spreads and bond premia. The model also provides an intuitive economic meaning to the yield
decomposition, including the credit risk premium (CRP) and the certainty equivalence
premium (CEP) embedded in risky bond yields. We start with a single period model which we
then extend to multiple periods. The first multiple period model applies to zero coupon bonds.

We then present a coupon-bond model in which a few special cases can be solved analytically,
however, the general case straight coupon-bond requires a numerical solution.

2.1  Expected bond returns: introduction and basic relations

We present below the basic definitions and relations that are used in our model. The bond yield
to maturity (ytm) is commonly defined as the solution to equation (1):

_ < prom(CF,)

@ = L+ ytm)'

where:
t=1,...,T are the payment dates

prom(CFy) is the promised cash flow at date t (typically coupon payment when t<T and
coupon plus principal att =T)
p is the bond market price at t = 0.

We define the expected bond return (EBR) as the solution to equation (2):

@) -y ELCRL

t:l 1+ EBR)

where E(CF) is the expected cash flow of the bond at time t. The expectation is with respect
to the “real” (often called “physical”) probability measure and not the “risk neutral”
probabilities. The EBR is thus the discount factor that prices the expected payments.

Since the default risk is the only effect included in the expected payoffs, in the nominators of
equation (2) compared to equation (1), the EBR differs from the bond’s ytm by a credit risk
premium (CRP):

A3) ytm = EBR + CRP
It is easy to show that CRP > 0 by equating the price at t = 0 in equations (1) and (2), since

prom(CFy) > E(CF) always. CRP =0 when the expected payoffs equal the promised payments,
in a (credit) risk free bond. EBR is not the risk free rate, it is a risk-adjusted discount rate based



on the bond’s market price. Therefore CRP is not the commonly used bond spread; it is a new
measure of credit risk.

We now calculate the expected cash flows E(CFt). Assume a discrete time processes in which
the bond may be in one of two states: solvent or default. Further, assume that the bond state is
observed at discrete points in time during the life of the bond, t =0, 1, .., T-1, T (see Figure 1).
As time progresses from t to t+1 the solvent bond may default at a probability =n(t, t+1) or
remain solvent at a probability 1- n(t, t+1). Hence, at any time t, the probability of default is
npt and the probability of the solvent state is mst as expressed in equations (4) and (5)
respectively.

[INSERT FIGURE 1]
4) oy =ﬂ(t—l,t)ﬁ(l—ﬂ(i -1i))

() w5 = [(1-7(i-1i))

i=1

We assume that at time t a firm pays its debt holders the promised payoffs prom(CF) in the
solvent state, and in the default state the residual market value of the bond is & principal, where
dt is the recovery rate of the bond at time t. Hence, the expected cash flow at time t is given by
equation (6).

(6) E[CF]=nx,, - prom(CF)+x,, -5, - principal

To simplify the discussion we assume in this section a frictionless market in which all securities
are perfectly liquid and traded without transaction costs (and no taxes).” Even in such markets
EBR is higher than the yield to maturity of an equivalent risk free bond with identical promised
payoffs. A risk averse investor requires a premium to bear the risk of a lottery with expected
payoffs E[CF] compared to a security that pays a fixed amount of E[CF{]. We call this lottery
risk premium the certainty equivalence premium (CEP), which for the case of a zero-coupon
bond (or for a flat term structure of r and CEP) can be expressed by:?

) CEP=EBR-r.

Before we turn to discuss the practical estimation of EBR of coupon bonds we analyze zero
coupon bonds EBR and bond premia.

2.2  Single Period Model

To establish the basic relations and gain some essential intuitions, we start with a single-period
model where we observe two traded bonds described graphically in Figures 2a and b:

R is the risk free gross return for the period (1 +r)

" These assumptions are used to develop the model in this section. In our data analysis we compensate for this
assumption partially (by using AAA returns as a proxy to the risk-free rate).

8 We adopted this term since adding this premium to the risky lottery return makes the investor indifferent between
receiving E[CF] for sure (at risk free rate) and the expected value of the stochastic, risky lottery outcome, CF (at
risk free rate + CEP).



p is the price of the risky bond
7 is the physical (“real”) probability of default
o0 1s the recovery rate on the risky bond.

There are a few common definitions of recovery rate. We use a widely accepted definition: the
residual value of the bond, immediately after the credit event, normalized by its face value.

[INSERT FIGURE 2a,b]

Proposition 1: In a frictionless one-period setting the following relations hold:

e The expected bond return is given by:

(8) EBR=—E[payOff]—1=1—7z(ﬂj—1.
p p p

e The credit risk premium is given by:

) CRP = ytm—EBR = z(ﬂj |
P
e The certainty equivalent premium is given by:
(10) CEpzl—ﬂ(ﬁj—R.
p Y

Proof: Equation (8) follows directly from the definition of EBR and the setup of Figure 2:

E[payoff] 1.(1-z)+5-7 _1_7{1—5]
p p p p

Equation (9) is derived by substituting the EBR of (8) into the definition of CRP of equation
(3)and 1 +ytm =1/p, as 1 is the promised payoff of the single period. To derive equation (10),
we use the definition of CEP above, it is the difference between the EBR of the risky bond and
the ytm of a comparable credit-risk free bond in a frictionless market. In our single period
setting it requires subtracting r from equation (8), resulting in:

EBR+1=

CEP = EBR—FZi—ﬂ(gj—l—r,
p P

which, when we write R = 1+r gives (10). =
Discussion:

We find it useful to present the above relations of EBR, CRP, and CEP in terms of expected
loss and yield reduction. In our subsequent discussion loss = promised payoffs less residual
value, normalized by face value (which equals 1 in the above exposition).® Hence loss = 1-6,
and thus we intuitively define yield reduction as the loss divided by the bond price p.
Equation (8) leads to a simple definition of the EBR and the CRP:

% This parallels the usual definition of loss given default (LGD) which is prevalent in the credit literature; see for
example Schuermann (2004).



EBR = E -1-r- 170 = ytm — z(yield reduction)
p

p
(11) EBR = ytm — E[yield reduction] , and

CRP = E[yield reduction] = (1+ ytm) - E[loss]

where the expectations are under the physical probability measure.’® Equation (11) gives an
intuitive meaning to the credit risk premium: CRP is the expected yield reduction on the bond.
It is a fraction of the gross promised yield (1+ytm) which is proportional to the expected loss
of face value.

For further discussion of Proposition 1 and its results see Appendix C.

2.3 Multiple Period Model

We now extend the results of the previous sub-section to a multi-period framework. There is
a vast volume of research and publications on tree models for bond pricing. We mention just
a few of them. Black, Derman, and Toy (1990) impose a structure of a risk free interest tree
based on market observed prices and volatilities. Jarrow and Turnbull (1995) focus on the
default process and its integration into an interest rate (bond price) tree. Broadie and Kaya
(2007) construct a binomial tree that can incorporate various “real-life” features, yet it is
actually a versatile and practical implementation of structural models whereas our model is of
the reduced-form type. We take a different approach: Using the process of Figure 1 we avoid
the structure imposed in these richer tree models. We limits our model to two states (solvent
and default); this is adequate to our model and estimation process. We present first the case of
a zero coupon bond and then a few special cases of coupon bonds in a frictionless market. The
general straight coupon bond requires a numerical solution and is presented in a subsequent
section.

Zero coupon bond

Consider a zero coupon bond which can default at maturity, T. The risky bond pays the
promised face value 1 if it does not default and its recovery value 6 if it defaults. The same is
relevant for the case where default might occur prior to T and the recovery is adjusted to the
money market at T.* We maintain the prior notations and since we have a single payoff at T
we suppress the time notation - the bond defaults at a probability p and does not default at a

probability 1- 7tp. This is the physical measure, we use asterisk to denote the risk-neutral
measure. We also denote by Rt the (gross) risk-free interest rate for the period t=0 to t=T.

10 Throughout this paper we use E[-] for the expectation under the physical probability measure and E*[-] under
the risk neutral measure. We use similar notation for probabilities (e.g. m and ©*). We extract the “real”
probability of default from historical data as explained in section 3.1 “Practical Implementation” below, see
equations (29), (30) and their explanation.

1 This is known as the “Recovery of Treasury” model, where bondholders recover a fraction of the present value
of face. For this definition and others, including further references, see for example Uhrig-Homburg (2002). This
discussion is beyond the scope of this paper. To analyze such a case we need additional assumptions that we
avoid in our present model and to account for the probability measure of default before maturity T.



Proposition 2: Consider a T-period zero-coupon bond in a friction-less market. Denote the
probability of default at time T by 7zp, the bond price by p, the recovery rate by &, and the
current one-period gross (i.e., one plus) interest rate by R1.*> Then the following relations hold:

e The expected bond return is given by:

(12) EBR([l_ﬁD (1_5)]J1T -1

p

e The credit risk premium is given by:

1-[1-7, (1~ 5)]1’T

uT

(13) CRP = ytm — EBR =

e The certainty equivalent premium is given by:

[1- 7, (15)]]“ _R

CEP =
(14) ( )

Proof: Equation (12) follows directly from the definition of EBR and our above assumptions:

eBR {[ﬂo ~6+(1—7ro)-1J}m _1([1—% (1—5)]]1” .

p P
To derive (13) we required an expression for ytm which by its definition is given by:
(15) ytm=p~T -1

Using (12) and (15) and the definition of CRP results in equation (13):

1 ) ([17z0 (15)]}” ) 1-[1-7, 1-8)]

CRP = ytm — EBR = (— —

p p
Equation (14) then follows directly from the relation of EBR and the risk-free rate in a
frictionless world:
[1-7,1-6)])"
CEP=EBR-r =1+EBR-R = -R . -
p

The above and subsequent relations hold for the general case, where the term structures are not
flat. Each return and premium value is a function of the maturity T which is omitted in our
expressions for ease of notation.

12 In the prior section we use R for the single period gross risk free rate for single period model. Here we use R;
in the multiperiod model to avoid confusion with Ry. Actually Ry = (RT)¥T. Thus when the term structure is not
flat Ry # R = a one period ahead rate.



For completion and for later use in the empirical section of this paper, equation (16) expresses
the bond price using risk-neutral pricing.

(16) p=[ry-5+(1-7,)1]/R, =[1-7, (1-8)]/R,

Hence p = PV{1 — E*[loss]} for a unit face value, where PV is the present value using the risk-
free rate and E* denotes the expected value under the RN probabilities.

Consol bonds

The above analysis can be extend to the case of a consol bond with some simplifying
assumptions, such as annual coupon payments and whole periods only. These assumptions can
be easily relaxed for practical cases.

Proposition 3: Consider a consol bond with face value of one in a friction-less market. Assume
a constant per period probability of default zn, and a promised constant coupon rate ¢ per
period. Denote the bond price by p and the recovery rate by 6. Then the following relations
hold:

e The expected bond return is given by:

(17) EBR = ytm{1+ P (é—lﬂ—% = ytm-r, [1_ ytm(é_lﬂ
c c

e The credit risk premium is given by:

(18) CRP:n{ —yt—m((S—c)} [PQJ
C

p

Proof: We start with the well-known bond yield (ytm) and price relation:

(19) p=>. :

i= (l + ytm) ytm

which is consistent with the known par-valued bond relation (when p = face = 1)

We now turn to the EBR — price relation, following equation (2) and (4)-(6) and assuming a
constant per period default probability np:*

(20) p= Z

(1-7, +5-72'D-(1—7rD)i_1
(1+EBR)i

With simple arithmetic we have:

13 This assumption is very common in many models using constant hazard rate. This assumption ignores rating
transitions supported partially by the transition matrix whose diagonal elements are much larger than the adjacent
elements.



where E[CE]=c-(1-7,)+ 7, is the expected cashflow at the end of period 1, and we
define:
1-7, E[CF,]

1-q EBR+7z, ' P ERR s -

(21) gq= thus

1+EBR

The last result is not surprising when one uses Gordon's model where period 1 payment is
E[CF1] and the period growth rate is -np . Using some arithmetic we express EBR as a function
of the other model-assumed and market-observed parameters:

(22) EBR = ytm[1+ T, (é—lﬂ—% = ytm -7, {1— ytm(é— ﬂ
C C

The right most expression in (22) is CRP by definition, which proves equation (18), where we
use the relation p = c/ytm from equation (19).m

The final result on the right hand side of (18) seems very intuitive. CRP is linearly related to
the per-period default probability. The multiplication factor of np depends on the payoff upon
default. p is the price of the consol at any coupon date, immediately after coupon payment.
The recovery less the coupon is the return on the market price p.** One minus (3-C)/p is the
fraction loss on the market price. This loss occurs at a probability 7p, thus CRP is a per-period
expected loss (under the physical measure) intuitively.

Finite maturity straight bond

We now relax the above assumption of infinite life of a consol bond. Under the above
assumptions and variable definition assume that the bond matures after T coupon periods and
promises to pay its unity face value together with its last coupon, if it doesn’t default at any
time during its life.

Proposition 4: Consider a T-period coupon bond with unity face value, paid at maturity, in a
friction-less market. Assume a constant per period probability of default zp, and a promised
constant coupon rate c per period. Denote the bond price by p and the recovery rate by 6. Then
the following relations hold:

e The expected bond return is the solution of the following relation:

23) o(T)= E[CF] [1_ (1-m,) J+1,(1_ED)T

EBR+7, | (L+EBR)' | (1+EBR)

14 Upon default the recovery "is paid” instead of the coupon, thus the difference (§-c) is a "net" payoff upon
default.



where E[CF]=c- (1— 7Z'D) +0 -7, is the expected cashflow at the end of period 1

e The expected bond return of a par-bond is given by:

(24) EBR, .. = (1—7,)c— 7, (1-6)

e The credit risk premium of a par-bond is given by:
(25) CRP, .. =75 (1+c—5)

@ par

Proof: Similar to equation (20) we write the price equation of a finite maturity bond:

(1-7) +6-7,-(1-7,)" 1-(1-x,)
P)= Z (1+EBR) +(1+EBR)T

(26)

where:

p(T) is the price of a T period coupon bond (to differentiate it from p used for the consol bond
above). The proof of (23) is based on equation (20) to (21).

1-(1-m, )T is the face value expected payoffs at the end of period T paid if the bond had not

defaulted. This characterizes a finite-maturity straight-bond,** the other parameters are the
same as defined above for the consol bond case. For completion we repeat the known price-
ytm relation which is actually a simple case of the above, when np = 0, EBR = ytm:

c 1 1
(@7) P(T)= ytm [1_(1+ ytm)Tj+(1+ ytm)'

These expressions however, require numerical treatment and do not seem to lead to simple
intuitive results as we have derived for the consol bond case, except for a few limiting scenarios
discussed below, of a par-bond or 7p = 0.

The first limiting scenario is the special case of par-bonds. These are traded at price = 1 in our

setting, such price in (27) implies the known results of ¢ = ytm. Similarly, in (23) it implies:
E[CF]

EBR, ... +7,

@ par

par relations the proof of (24) and (25) is straightforward. m

=1 which is identical to the price of a console bond (see (21)). Using the above

Equations (24) and (25) support the following conclusions:

i)  The term structures of EBR and CRP are flat for par priced bonds (which holds true for
ytm of course).

i) At par EBR has an economic interpretation of expected payoff at the end of the first
period. It equals the coupon times the probability of no default (1- np) plus the expected
payoff upon default times the probability o where the recovery (3) is paid and the par
value of the bond (1) is lost.

15 The recovery on face, "paid" upon default at a probability np at maturity T and the coupon ¢ paid when default
doesn't occur are included under the sigma expression of periods 1-T.

10



Implied recovery of finite maturity straight bond

According to equation (23) p(EBR; T, c, o, np) is a well-behaved monotonically downward
sloping function of EBR (when all else is fixed p(EBR) resembles the familiar shape of p(ytm))
and it is linear upward sloping in 8. When all parameters are fixed by market observables, data,
and the assumed model, we can analyze the relations of EBR and 6:%¢

(28) st (—pm‘h ~(EBR+7ZD)—(1—7ZD)CJ
7o\ 1-h ’
where: h= —(1_ 7o) =
(1+EBR)

h has an interesting economic meaning. Its nominator is the expected payment of face value.
In our case the recovery contribution upon default at time T is included in the sum expression
of (26), h adds the expected contribution of the face payment at maturity, discounted
appropriately by EBR. EBR is the risk adjusted discount rate which prices correctly expected
payments (by definition of EBR). Therefore h is the present value of expected face payments
at maturity, PV[E(facer)]. Since mp > 0, and normally EBR > 0 (otherwise the pricing or the
data are incorrect and are distorted economically), 0 < h <1. h =0 only in the trivial case of
7o = 1.

When we assume an EBR for the bond, e.g. EBR” (where the superscript A stands for assumed
EBR), equation (28) expresses the recovery rate as a function of the market observables, data,
the presumed model and the assumed EBR. It defines an implied recovery rate, similar to the

>0

idea of implied volatility in options models. It can be easily verified that (28) implies azgR

, thus, ceteris paribus, the recovery rate is a monotonic increasing function of EBR (and vice
versa, depending on our point of view).” This makes sense economically. Furthermore, such
one-to-one relation forms the mathematical basis for the economic idea of implied recovery.
The study of implied recovery is beyond the scope of this paper.

3. Empirical results

In this section we estimate, present, and discuss empirical results of Section 2 model and
relations, using FISD bond data.

3.1  Practical Implementation

We discuss below the following practical implementation matters: estimating the “real”
probability of default term structure, extracting the zero-coupon term structure of interest rates

16 p(T) is a market observable, T and c are data, np is a model assumed parameter (which may practically be
derived from past years default history, which can be considered a market observable since it is made available to
all market participants by the rating agencies).

7 The derivation of this result is not difficult, yet it requires some mathematical elaboration and thus omitted from
this paper.

11



(TSIR), the assignment of recovery rate to individual firms, and selecting a proxy for the risk
free rate.

Term structure of “real” default probability

We use the commonly accepted (de facto) “standard” of rating transition matrices, published
by the rating agencies, to estimate the physical default probability. Our proposed estimation
procedure is based on the bond rating as its risk state variable and the rating transition matrix
to estimate the evolution of this state variable into “the future.” We adopt this approach for its
wide acceptance and usability by researchers and practitioners, yet we are aware of its
limitations.

Bond ratings are under significant scrutiny by practitioners and academics. Their accuracy,
consistency, and timely update are controversial and doubtful, even long before the recent
market crisis.** Although we use the S&P ratings in this paper, our model could work with
other ratings transition matrices. The literature supports the contention that there are only
modest differences between the various rating systems, see for example, Schuermann and Jafry
(2003).

Rating transition matrices (TM) are a key ingredient in many credit risk related models and
thus are widely discussed in the literature. \We mention here only a handful of sources that we
find useful in our work. Schuermann (2007) provides an excellent introduction to major
matters and a survey of key papers. Lando and Skedeberg (2002) emphasize the importance
of continuous time estimation compared to the cohort method. Jafry and Schuermann (2004)
introduce a new measure for TM comparison. Israel, Rosenthal, and Wei (2001) research the
finding of generators for Markov chains via empirical TM's. The estimation accuracy of the
TM has challenged researchers and practitioners, recent examples are research of confidence
interval for default rates by Hanson, and Schuermann (2006), and Cantor, Hamilton, and
Tennat (2007).

The model of this paper assumes a homogeneous Markov model for a bond rating and its
default probability. We take the transition matrices for the Markov chain as an exogenous
input from the rating agencies (S&P website for this paper). The time homogeneity is also
assumed by Jarrow, Lando, and Turnbull (JLT) (1997). JLT propose a procedure to convert
the physical transition probabilities to risk-neutral probabilities and use these for the valuation
of risky assets. We, on the other hand, use the historical probability transition matrix to
calculate the physical measure of default to estimate the yield components. When we need the
risk-neutral probabilities, we estimate these from the market price of bonds without using the
transition matrix. Similar to JLT, we assume that the credit migration Markov model is
independent of the spot rate of interest rates.

Our assumption of Markov stationarity of the transition matrix, despite its wide popularity, is
not an exact representation of the actual process. Parnes (2005) surveys the Markov rating
transition literature and compares the homogeneous Markov model to several non-
homogeneous alternative models. Especially intriguing are findings such as of Nickell,
Perraudin and Varotto (2000) concluding: “Business cycle effects make an important
difference especially for lowly graded issuers. Default probabilities in particular depend
strongly on the stage of the business cycle.” The “momentum effect” in bond rating transitions
would challenge the assumption that transitions are Markovian (see for example Bahar and
Nagpal 2001).

18 Examples of bond-rating scepticism are John, Ravid, and Reisel (2005) and Loffler (2004, 2005).
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The proposed implementation method
To implement our model, we generate a series of the time t state vectors s:

(29) s =5 IT

where the i component of st is the probability that the bond is in state (rating), i = /,...N,
and where s’ is the transpose of vector s. The i j element of the transition matrix IT is the
probability that a bond which has a rating i at the beginning of the period t would have the
rating j at its end. Hence:

ss=s,-I1 vt=1.T

assuming a time invariant I1, where T is the maturity of the bond. Since st is a vector of
probabilities assigned to exclusive states (ratings) at time t, ¢- st= 1, where 1 is the vector of
ones. We define the states 1,.., N-2 to be the solvent ratings (AAA.,..., C for the case of S&P
ratings), the N-1 state is a default state (for a default event at time 7 = t) and the N state is a
post default state (where default occurred in the past, at time z < t).

The above definitions and process lead to a simple calculation of the “real” probability of
default (np) at the end of any time period t:

(30) ot = Stna TSN

where N-1 and N subscripts denote the last two elements of the state vector .

The matrices published by the rating agencies are for a transition period of one year. However,
we need transition matrices for six month period and even shorter when the first coupon
payment is not whole. There are a few procedures to calculate a transition matrix for any period
length. We follow Hull (2012), calculating the eigenvectors vi, vz, ..., va and the corresponding
eigenvalues A1, A2, ..., An OF the one-year transition matrix. We then use equation (31) to
calculate the n'" root of the one-year transition matrix.

(31) " =vA'v™
where V and A are the matrices of the eigenvectors and eigenvalues respectively.

Zero coupon term structure of interest rate estimation

Fitting a “best” term structure to the noisy numerical data of interest rate has been discussed
by many researchers and practitioners, see Subramanian (2001) and Hagan and West (2006)
for example. We use Nelson and Siegel (NS) (1987) model for the representation and
interpolation of our results. This method is often the procedure of choice by practitioners rating
agencies and was found superior to alternative methods by Subramanian (2001) and others.
NS parameters can be linked to common factors affecting bond returns, namely level,
steepness, and curvature of Litterman and Scheinkman (1991). They found that these three
factors explain on average more than 98% of the variations in bond returns. The percentages
change with bond maturity and on average - level, steepness, and curvature account for 89.5%,
8.5%, and 2% of the variations respectively. Similar results are confirmed for later periods,
Ramaswamy (2004) for example, shows similar results by principal components analysis on
1999-2002 data set (pp. 58-59).

13



NS 1987 was also scrutinized for allowing arbitrage, e.g. Bjork and Christensen (1999).
Coroneo et al (2008) investigated this matter statistically and concluded that the Nelson and
Siegel yield curve model is compatible with arbitrage-freeness.

For the

(32)

Where:

sake of completeness we repeat NS model below:
l-exp(-m/zt
r(m) =45, +(B,+5,): m(/f ), -exp(-mi7)

m is the time variable

Bo and (Bo+p1) are the long-term and short-term rates respectively

T IS a parameter that specifies the position of the hump

B2 is the medium term component which determines the magnitude and the direction (up or
down) of the hump or trough in the yield curve.

We need to estimate a term structure of interest rate (TSIR) for each rating category. This
poses two issues:

a)

b)

For the

An unconstrained NS curve fit often results in TSIR curve crossing, i.e. a higher rating
might have a higher return than a lower rating at certain maturity ranges. This obviously
has no reasonable economic support and is regarded as an undesirable artifact of the
NS curve fit and data noise. A practical remedy to this issue is to use a constrained NS
curve fit as follows:

e Allow only monotonic non-decreasing term structure (monotonicity).

e At any maturity the lower rating TSIR should be no lower than the next higher
rating TSIR (no-crossing).

e Start the curve fit with the highest rating (AAA in our case) adhering to the
monotonicity requirement only. Then, one at a time, move to the nearest lower
rating requiring both monotonicity and no-crossing.

Preferably, the curve fit is a daily one, based on a single day rich transaction data, for
each day of our sample. Our data however is scattered over a period of four months.
We have thus chosen to use a TSIR representative of the four month period, a single
curve for each rating category. All curves are referenced to the same day. We are not
aware of others that have adopted the same mechanism, yet under the assumptions of
time invariant TSIR for the data period of four months we believe our methodology is
theoretically sound.

curve fit we use the constrained non-linear optimization function of MatLab (fmincon),

minimizing the pricing errors of all the transaction quotes of the specific rating during the data

period.

For consistency the market and calculated prices are discounted to the reference date

of the NS curve (i.e. 1 Sep. 2004 and 2011 in our samples).

Assumed recovery rate

Upon default, our model assumes a final payment to the bond holder in the amount of a
recovery-rate times the bond face value. We use this term to express the value of the bond at

default.

This definition is consistent with the study of Altman and Kishore (1996) and Moody's

14



publications that use market value of defaulted bonds. However, recoveries may relate to the
value of the bond at the end of the distressed-reorganization period (see Altman and Eberhart
1994).* We ignore the effect of value changes after default on a bond yield.

Our main reference for recoveries on defaulted bonds is the research of Altman and Kishore
(AK, 1996) that tabulates average rates by SIC sectors. We compared AK recoveries with
more recent Moody's data, the recovery rates are not identical, yet not significantly different
from that of AK. We prefer AK data since it links SIC codes of industry sectors with the
recovery rates, whereas other publications are less specific, utilizing only short descriptive
names to identify the respective industry.

AK find no relation between the recovery rate and the original rating of a bond issue, once
seniority is accounted for. In addition, they conclude that neither the size of the issue nor the
time to default from its original date of issuance has any association with the recovery rate.
The validity of these findings to specific market conditions remains an open issue.

Within each SIC code group, AK find quite dispersed data, with standard deviation that are
mostly in the 20-28% range.? We attribute the industry segment median recovery rate to each
bond according to Table 3 of AK. We are aware of the fact that this is not an accurate match
of recovery to individual firms and bonds, yet this seems the best practical choice among the
applicable alternatives.

Risk free rate

The US government bond TSIR is often used as a benchmark risk free rate. This is also our
choice for the calculation of the bond-spreads. However, when we need to control for the
effects of liquidity premium and taxes to improve our estimates of the risk-neutral default
probability term structure we need an alternative to the treasury TSIR. It is well known, and
supported by the data of this work, that the credit premium and real default probabilities are
almost negligible for AAA rated bonds, yet they command a significant “other” premia above
the treasury TSIR. Thus, we adopt the AAA TSIR as our risk-free benchmark, assuming it nets
out (at least partially) the liquidity and tax effects of the other ratings.

We acknowledge that there are liquidity differences among the various ratings and that taxes
may affect differently speculative bonds and investment grade ones, yet we ignore these
secondary effects in our current research.

3.2 Sample results and discussion

The following describes and discusses our results of estimating the above yields, premia, and
default probability measures aggregate term structures of zero coupon bonds and EBR and CRP
of individual coupon bonds using two samples of US corporate bonds.

3.2.1 Thedata

A complete and reliable corporate bond data remains one of the challenges in our research. For
the current research we use The Fixed Income Securities Database (FISD). It covers over

19 Uhrig-Homburg (2002) and Bakshi , Madan, and Zhang (2004) describe common definitions of the recovery
rate.

20 In Moody's publications, for example, we did not find recovery rate dispersion within industry sectors.
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100,000 corporate, U.S. Agency, U.S. Treasury and supranational debt securities and includes
more than 400 fields or data items. FISD might be biased to bond portfolio activity of insurance
companies including infrequent trading, biased to initial offer, large volumes, long-term
holding periods, and other specific sample and price biases. We processed and analyzed the
transactions of two periods, each four months long, spanning September to December of 2004
and 2011. We believe these two periods are far enough apart, one well before the 2007-8
meltdown and the other very recent, demonstrating the nature of the model in “normal” market
state. The analysis of the model during the turbulent period of 2007-2009 is beyond the scope
of this work and planned for a subsequent paper.

We used only corporate bonds, rated by S&P, that pay fixed coupons semiannually. All other
were excluded from our data set. We also excluded other data including:

e Non-straight bonds such as callable, putable, and convertible issues.
e Bonds with less than 3 coupons remaining.
e Transaction data without a price quotation (or non positive price)

e Bonds for which we failed matching a complete set of inputs required for our
calculations.

Our initial raw data includes 116,899 and 88,074 transaction lines for the 2004 and 2011 four
months periods respectively. After filtering and fusion of data from other tables we have
12,936 and 6,066 transaction lines with complete data sets for our analysis (for 2004 and 2011
periods respectively). The statistics of the net final set are presented in Appendix B. It is
interesting to note that most of the data in our samples is of senior (unsecured) bonds, other
seniority types are of negligible amount.

For the US treasury TSIR we used daily historical interest rates (published on Yahoo Finance)
matching the corporate bond sample periods for constant maturities of 0.25, 5, 10, and 30 years.
We interpolated this data for intermediate maturities.

The transition matrices that we use are taken from S&P publications: Global Average One-
Year Transition Rates, 1981 to 2003 and 1981 to 2010 for the 2004 and 2011 sample periods
respectively.

3.2.2 Results examples and discussion

Zero-coupon bond term structure of returns

First we estimate the TSIR of the S&P rating categories for our data set. As explained above,
for each rating we estimate the four NS parameters defining the rating TSIR. To avoid
undesirable crossing of fitted curves we impose certain constrains in our estimation process as
explained above. Others, such as Diebold and Li (2006) have chosen to estimate a linear model
of NS fo,f1,f2 parameters and imposed a constraint on the fourth (non-linear) parameter t =
1.3684. This value is not remote from our results, yet we do not see a reason to impose this
constraint in our case.

Figures 3a and 3b show the TSIR of our NS fit for zero coupon bonds extracted from our data
for investment and speculative grade respectively. Figure 3b shows that the C-CCC graded
bonds actually form a separate class in our data set. These figures show that in our dataset
there is a distinct clustering of the TSIR’s to the three major rating categories A, B, and C, with
pronounced spreads between them compared to the intra-group spreads.

[INSERT FIGURE 3a,b]
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Default probabilities term structure

We compute np “real” probabilities as explained in section 3.1 above using S&P transition
matrices. For the calculations of risk-neutral (RN) default probabilities np* we use
equation (16). It expresses the relation among the transaction price p, observed in the market,
the risk free rate Rt, which we assume is proxied by the AAA TSIR, the recovery rate ¢, which
we assume equals 40% for all ratings (just for the aggregate term structure here), and the
estimated mp*. %

Figures 4a,b show a sample of “real” and RN default probabilities of AA and BBB bonds for
the 2004 sample. The results for other bond ratings are similar and monotone.?

[INSERT FIGURE 4a,b]

These results are in agreement with results obtained by Delianedis and Geseke (2003) who
compute risk-neutral default probabilities using the option-pricing based models of Merton
(1974) and Geske (1977). They show, not surprisingly, that their estimates for the risk-neutral
default probabilities from both models exceed rating-migrations based physical default
probabilities.

Bond yield decomposition

Using the above estimated zero-coupon returns and default probability term structures of each
of the rating categories, we estimate the expected bond returns (EBR), the credit risk premium
(CRP) and the certainty equivalence premium (CEP) term structures using equations (12), (13),
and (14) respectively. Figure 5a,b shows the term-structures of EBR, CEP, and CRP of zero
coupon bonds rated AA and BB respectively. Other rating group results are omitted for
brevity.?

[INSERT FIGURE 5a,b]

It is worthwhile recalling that (1+EBR)' = (1 — E[loss])/p = (1+ytm)" - E[loss]/p where the
expectations are under the “real” probability measure (See Proposition 2). CRP is the difference
between ytm and EBR and thus expresses a per-period related expected loss rate (of the
promised gross yield 1+ytm).2* The CEP in a frictionless world is the difference between EBR
and the risk-free rate. In our estimation we assume that the market friction premia (mainly
liquidity, transaction cost, bid-ask, and tax effects) are embodied in AAA rated zero coupon
bond returns. Thus we estimate CEP of rating j bonds by:

CEPj(T) = EBRj(T) — ytmaaa(T) for each maturity T.

2L As a more robust alternative, which does not require an assumed recovery rate, one may estimate the risk-
neutral expected loss: E*[loss] = np*-(1- 9).

22 Not included in this paper due to space limitation; available from the authors.

23 We have also similar results for the period September-December 2011. These are not included in this paper due
to space limitation, yet are available from Zvika Afik by request.

24 Using an approximation based on the general Binomial Theorem, the 1/T power expressions of the multi-period
zero coupon expressions of Proposition 2 can be simplified (practically a good approximation for the values
encountered in real market data). This results in expressions of per-period loss such as:

[1-75(1-6)] zl—%izD (1-5)
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EBR increases monotonically with declining bond rating, and usually with maturity. CRP
monotonically increases with maturities and decreasing bond rating. CEP term structure
exhibits a humped shape, reaching a maximum at maturities of 10-15 years and then moderately
decreases. This however might be a result of the assumed flat term structure of recovery rate.
Dwyer and Korablev (2009) present a model for the estimation of such term structures based
on a Markov transition process of recovery states. As a result, one may expect a decreasing
(increasing) term structure of recovery rate for an investment (speculative) grade bond. Even
under our simple assumption, of a flat historical average recovery rate, CEP generally increases
with decreasing rating. This is expected, as the CEP expresses the risk aversion to the lottery,
the additional discount investors demand of EBR above the risk-free rate.?

Coupon bonds EBR term structure

Figures 6a and 6b present examples of coupon bonds EBR term structure for BBB and AAA
bonds respectively for the period September-December 2011. We represent the time by bond
duration and not by bond maturity as the duration captures the coupon effect and thus represents
the payoff center of gravity (better than the maturity). Figures 7a and 7b are similar, include
the results of September-December 2004 sample for comparison.?® As is typical of the
corporate bond market ytm observations are quite scattered. EBR observations a similarly
scattered, yet mostly they appear to be located at a characteristic distance below their respective
ytm observations (a distance we define as the CRP). This distance generally grows for lower
credit rating and longer durations as expected. In the next section we demonstrate that the CRP
term structure is typical for each credit rating.

[INSERT FIGURES 6-7]

Comparing coupon bonds’ CRP to bond-spreads

To compare CRP term structure to that of bond-spreads we plotted these variables versus
duration, by rating groups, see Figures 8-10 for CRP and bond spreads of AAA/AA/A,
BBB/BB/B and AA/A/BBB ratings respectively for our 2011 sample and Figure 11 for the
2004 sample. These figures demonstrate clearly that bond spread is a very noisy measure of
credit risk. The bond-spreads term structures of adjacent rating classes are highly mixed,
showing poor monotonicity and relation with credit rating, raising doubts on the informational
value of this measure (or alternatively of the ratings or both). The CRP results, on the other
hand, cluster around clear term structures characteristic to each credit rating group, showing
clear separation between rating classes.

[INSERT FIGURES 8-11]

To explain the relation and significant difference between bond spreads and CRP we
decompose the risky bond promised returns ytm® as follows:

(33) ytm° = CRP + EBR =CRP + ytm" + CEP + LP +TS + OP

% 1t is worth recalling that CEP is analogous to the CAPM “systematic risk”. This relation is presented in
Appendix C and equation (43).

2 The figure captions state the number of observations included in each chart and its respective Nelson-Siegel
curve fit. These numbers reflect the deletion of a few extreme and erroneous observations to avoid curve-fit
distortion and user-unfriendly chart scale.
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where:

ytm'™is the yield to maturity of an equivalent ideal, riskless bond, with the same coupon
rate, terms, and time to maturity (it is the r’ equivalent for a coupon bond).

LP is the Liquidity Premium, which is zero for a bond that can be purchased and sold
at any time and at any quantity at its fair value.

TS is the Transaction Spread (e.g. practically half the bid-ask and other fees).
OP includes all Other Premia (such as tax effects).?

From equation (33) it is obvious that the bond spread, includes all the premia on the right-hand-
side excluding the risk-free rate whereas CRP is based on the difference between the promised
and the expected yields, both include CEP, LP, TS, OP and the risk-free return. In practical
applications the bond spread is often calculated using zero coupon treasury rate, which adds
“noise” related to the coupon effect. This can be partially neutralized using duration for the
time variable as we did in this section.

4. Conclusions

This paper presents a simple and practical model of market data implied expected bond returns,
based on expected bond cash-flows. By nature this model calculates ex-ante expected returns
of defaultable bonds and thus helps addressing the need for forward looking expected returns
which are otherwise often estimated using realized ex-post historical returns.

Our model does not attempt to forecast returns. We present a model of implied expected returns
which are defined as the IRR of the bond expected cashflows. Hence our model is as good as
our estimation of these expected cashflows.

We start with an idealized approach in which we have a complete set of forward looking default
probability term structure and a matching set of recovery rate term structure (Figure 1). Ina
perfect forward information situation, these term structures would change over time,
embodying the information of the whole market, the specific issuer and the specific bond.
Having such perfect forward looking information set is obviously impractical and thus we
present implementable approximations which rely on fixed transition matrices and assumed
recovery rates.

We develop a simple, intuitive, and practical framework for modeling and estimating the term
structure of zero-coupon expected bond returns and the decomposition of bond yields.

We estimate these yields and premia using US corporate straight-coupon-bond market data of
the period September-December 2004 and a parallel period in 2011. As a by-product of this
process we also estimated a term structure of default probabilities for each bond rating under
the risk neutral and the “physical” measures.

Since we estimate the expected bond returns (EBR), the credit risk premium (CRP), and the
certainty equivalence premium (CEP) from market prices and the information set available to
the investor, EBR, CRP, and CEP are implied by the market information and may change as a
result of market prices for example. We do not regard such dependence on prices as a
weakness. On the contrary, assuming market prices embody the collective expectations of

27 Other Premium compensates for other variables and unknowns (added for the completeness of the model and
can be regarded as the error term / innovation in an estimation model).
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future payoffs, our model “calibrates” the ex-ante term structures of EBR, CRP, CEP, and risk-
neutral default probabilities to these timely expectations.

After estimating these term structures, aggregating market data for each rating group in a zero
coupon modeling we demonstrate the usability of the model for individual coupon bonds. Not
surprisingly (see equation (33) and its discussion), the CRP generates term structures with clear
delineation between rating groups, unlike the commonly used bond spreads. This characteristic
can be used for models of market implied rating and market implied recovery rates which are
beyond the scope of this work and are the topics of forthcoming research.

We focus this work on developing the model and the empirical estimation process. Therefore
our empirical results are limited to two four-month periods in 2004 and 2011. The results are
encouraging as they are consistent despite the fact that these periods are far apart
chronologically and economically (given the crisis that started in mid-2007). We plan on
expanding our data set and explore the model results on additional periods.

We demonstrate the estimation using unconditional rating transition matrices. A similar
estimation seems feasible using conditional default probabilities that could be estimated using
hazard models. We believe that these open new opportunities for researchers and practitioners.
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Figure 1: Bond credit state evolution. A solvent bond continues on the horizontal path from t=0 to t=T, whereas
a defaulting bond drops down to a default state at t e{1,..T}. As time progresses from t to t+1 the
solvent bond may default at a probability zn(t, t+1) or remain solvent at a probability 1- n(t, t+1).
Hence, at any time t, the probability of default is np,t and the probability of the solvent state is ms,t.
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Figure 2a: Arisk free bond Figure 2b: A risky bond

R is the risk free rate, p is the bond price, & the recovery rate,
and & the default probability (physical measure)
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The term structure of interest rates for zero coupons by rating groups (Sep-Dec 2004)
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Figure. 4b: BBB rated bonds

Term structure of physical and risk-neutral probabilities of default (Sep-Dec 2004 sample)
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Figure 5b: BB rated bonds

Zero coupon bonds term structure of expected bond returns (EBR), certainty equivalence premium (CEP), and
credit risk premium (CRP), assuming 40% recovery rate, Sep-Dec 2004 sample.
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Figure 6a: AAA rated bonds (164 obs.) Figure 6b: BBB rated bonds (891 obs.)

Coupon bonds EBR and ytm versus duration (returns are in %, duration in years). For each reported transaction
in the filtered sample we calculated its EBR (red x) and ytm (blue dot). The Nelson-Siegel curve fits are the
heavy red and fine blue lines, for EBR and ytm term structure respectively, Sep-Dec 2011 sample.
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Figure 7a: AAA rated bonds (937 obs.) Figure 7b: BBB rated bonds (2,758 obs.)

Coupon bonds EBR and ytm versus duration (returns are in %, duration in years). For each reported transaction
in the filtered sample we calculated its EBR (red x) and ytm (blue dot). The Nelson-Siegel curve fits are the
heavy red and fine blue lines, for EBR and ytm term structure respectively, Sep-Dec 2004 sample.
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Figure 8b: “A” bond CRP versus duration

Comparing the term structure of bond spread to that of CRP, for the period September-December 2011, of
straight corporate bonds S&P rated AAA (blue), AA (red), A (black). Where + denotes “+” rating, o denotes
“pure” rating, and V denotes “-” rating, including 164, 1,607, and 3,107 observations respectively. CRP
calculations use S&P transition matrix (global data 1981-2010).
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Figure 9a: “B” bond spread versus duration Figure 9b: “B” bond CRP versus duration

Comparing the term structure of bond spread to that of CRP, for the period September-December 2011, of
straight corporate bonds S&P rated BBB (blue), BB (red), B (black). Where + denotes “+” rating, o denotes
“pure” rating, and V denotes “-” rating, including 901, 239, and 53 observations respectively. CRP
calculations use S&P transition matrix (global data 1981-2010).
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Figure 10a: “A,B” bond spread versus duration Figure 10b: “A,B” bond CRP versus duration

Comparing the term structure of bond spread to that of CRP, for the period September-December 2011, of
straight corporate bonds S&P rated AA (blue), A (red), BBB (black). Where + denotes “+” rating, o denotes
“pure” rating, and V denotes “-” rating, including 1,607, 3,107, and 901 observations respectively. CRP
calculations use S&P transition matrix (global data 1981-2010). This figure is complementary to Figures
8 and 9, demonstrating the monotone increase of CRP between A rated and B rated bonds, delineating rating
groups, whereas there bond spread are clearly mixed.
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Figure 11a: “A,B” bond spread versus duration Figure 11b: “A,B” bond CRP versus duration

Comparing the term structure of bond spread to that of CRP, for the period September-December 2004, of
straight corporate bonds S&P rated AA (blue), A (red), BBB (black). Where + denotes “+” rating, o
denotes “pure” rating, and V denotes “-” rating, including 1,244, 6,025, and 2,769 observations
respectively. CRP calculations use S&P transition matrix (global data 1981-2003). This figure
demonstrates a similar behavior of observed bond spreads and CRP in 2004 compared to those of 2011
though both the spreads and CRP values are larger in 2011.
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Figure 12a: security paying $1 at “up” state Figure 12b: security paying $1 at “down” state

qu and ggq are the state prices of up (no default) and down (default) state respectively
n* is the risk-neutral default probability
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Appendix A: : List of Abbreviations

BS
CDS
CEP
CRP
CUSIP
EBR
FISD
ISIN
JLT
NASD
NR

NS

RN
S&P
SIC
™
TRACE
TS
TSIR
ytm

bond spread

credit default swap

certainty equivalence premium

credit risk premium

Committee on Uniform Securities Identification Procedures
expected bond return

Fixed Income Securities Database
International Securities Identification Number
Jarrow, Lando, and Turnbull

The National Association of Securities Dealers
not rated

Nelson-Siegel

risk-neutral

Standard and Poor's

Standard Industrial Classification

transition matrix

Trade Reporting and Compliance Engine

term structure

term structure of interest rates

yield to maturity
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Appendix B: Input Data Characteristics

Table B.1: sample size and ‘SELL’ type proportion by rating group

Sample size counts the number of observations in each rating group. Relative size is the
proportion (in %) of observations in that group to the entire sample. Sell [%] is the proportion
(in %) of sell observations in each rating group.

a. September-December 2004

Rating group Sample size | Relative size Sell [9%0]®
AAA 938 7.3 51.4
AA 1,244 9.6 47.8
A 6,025 46.6 48.0
BBB 2,769 214 52.4
BB 1,378 10.7 55.3
B 484 3.7 33.3
CCcC/ccC/C 96 0.74 54.2
D 2 0.02 100.0
All 12,936 100 49.4
b. September-December 2011
Rating group Sample size | Relative size Sell [%0]©
AAA 164 2.7 50.6
AA 1,607 26.5 36.5
A 3,102 511 394
BBB 901 14.9 34.7
BB 239 3.9 26.8
B 53 2.7 56.6
All 6,066 100% 37.9

(1) Calculating sell percentage of transaction amount: s/n = (1 — d/n)/2 where s = sell amount,
n = total amount (in the specific sample), and d is the difference of buy — sell transaction lines in the
sample
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Table b.2: Time to Maturity [years] Descriptive Statistics

a. September-December 2004

Rating group | Observations | Mean Std-dev | Median Min Max
AAA 938 5.81 4.38 4.80 1.00 28.70
AA 1,244 4.86 4.14 412 1.02 29.12
A 6,025 6.69 4.90 5.45 1.00 29.99
BBB 2,769 8.32 7.66 5.23 1.01 30.00
BB 1,378 11.13 7.03 9.32 1.23 29.45
B 484 9.32 5.39 10.00 2.34 29.30
CCCICC/C 96 6.79 6.98 4.73 1.02 25.26
D 2 13.26 15.88 13.26 2.04 24.49
All 12,936 7.37 6.03 5.52 1.00 30.00

a. September-December 2011
Rating group | Observations | Mean Std-dev | Median Min Max
AAA 164 7.45 8.36 3.96 1.01 29.66
AA 1,607 6.44 5.95 4.83 1.00 29.99
A 3,102 5.58 3.93 4.77 1.01 29.82
BBB 901 6.51 4.97 5.01 1.01 29.52
BB 239 7.63 5.13 6.45 1.46 28.58
B 53 5.68 2.50 6.14 1.46 12.21
All 6,066 6.08 4.92 4.84 1.00 29.99
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Table b.3: bond annual coupon rate [%] data summary by rating group

a. September-December 2004

Rating group | Observations | Mean Std-dev | Median Min Max
AAA 938 4,76 1.17 4,95 2.00 8.31
AA 1,244 4.86 1.39 4.75 1.00 7.95
A 6,025 5.42 1.31 5.25 0.25 9.13
BBB 2,769 6.30 1.48 6.40 2.50 10.38
BB 1,378 8.59 1.56 8.25 4,75 14.50
B 484 7.17 2.11 6.88 5.00 13.63
CCcC/ccC/C 96 8.50 1.35 7.75 6.38 11.00
D 2 8.85 1.98 8.85 7.45 10.25
All 12,936 5.93 1.80 5.75 0.25 14.50

a. September-December 2011
Rating group | Observations | Mean Std-dev | Median Min Max
AAA 164 3.07 1.32 2.95 0.50 6.00
AA 1,607 4.07 1.40 4.38 0.75 8.88
A 3,102 4.43 1.49 4.50 1.13 9.13
BBB 901 5.66 1.73 5.75 1.88 9.75
BB 239 6.84 1.47 6.38 3.88 12.00
B 53 6.94 1.21 6.90 5.40 10.75
All 6,066 4.59 1.68 4.75 0.50 12.00
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Table b.4: Yield to Maturity [%] Descriptive Statistics
a. September-December 2004

Rating group | Observations | Mean Std-dev | Median Min Max
AAA 938 3.96 0.81 3.97 2.24 7.85
AA 1,244 4.30 7.74 3.77 -15.87 NA*
A 6,025 454 451 4.29 -0.52 NA*
BBB 2,769 5.36 7.32 4.83 1.02 NA*
BB 1,378 7.67 1.80 7.48 3.04 23.77
B 484 7.65 2.59 6.89 4.12 17.31
CCcC/ccC/C 96 17.43 9.65 16.08 5.67 59.35
D 2 15.88 6.22 15.88 11.49 20.28
All 12,936 5.20 5.52 4.59 -15.87 NA*

a. September-December 2011
Rating group | Observations | Mean Std-dev | Median Min Max
AAA 164 1.89 1.25 1.52 0.09 5.43
AA 1,607 2.97 1.45 2.80 -0.01 7.28
A 3,102 3.73 1.78 3.73 -1.45 13.78
BBB 901 4.87 4.71 4.31 -0.34 NA*
BB 239 6.05 1.53 5.70 3.49 11.56
B 53 11.87 3.47 12.01 5.92 17.82
All 6,066 3.81 2.63 3.60 -1.45 NA*

* erroneous data, excluded from the analysis (included here for completeness)
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Appendix C: Discussion following Proposition 1

This appendix extends the discussion that follows Proposition 1.

Bond spread, risk-neutrality, and state prices

Fixed income literature and practitioners often use the term bond spread (BS) for the difference
between a risky bond yield and the risk free rate: BS = ytm —r .2 Since CEP and EBR are
new terms, we discuss here their relation to the bond spread. For completeness we also develop
the state prices of the default and non-default states.

Assume the prices of state contingent claims (Arrow-Debreu securities) are defined by Figures
12a and b:

[INSERT FIGURE 12a,b]
The law of one price requires:

1
(34) E:qu-i_qd and p:qu+5°qd'
From the prices of these two traded securities we can easily calculate the state prices:
p—&/R 1 1/R-p
35 =, =——q, = :
(35) Oy -5 Uy R Oy -5

The state prices are positive and well defined when 1/p >R >3/p and & < 1. The risk neutral
probability of a “down” state is given by:
~1-p-R_1/p-R u—R

1-6 1/p-8lp u-d°

7*=q,-R

where: u = 1/p and d = &/p are the “up” and “down” gross returns of the risky bond.?
Rearranging the above and using the definitions of BS and yield reduction:

N 1+ ytm)-R BS

(36) g 1-5
p

= , hence BS = E’[ yield reduction]
yield reduction

where E” denotes expectations under the risk-neutral measure. Comparing BS with CRP, we
see that both are expected values of the yield reduction, under the risk-neutral and physical
probabilities respectively:

28 This definition of BS requires a refinement when the term structure of the risk free rate is not flat, yet for our
purpose in this section the simple definition suffices.

2 These results and definitions are identical to those of binomial trees used in option pricing where d <R <u,
otherwise admitting arbitrage opportunities. Thus n* and 1- n* are non-negative and smaller than 1, forming the
RN probability set which is defined uniquely by the market price of the risky zero-coupon bond, its recovery rate
and the market risk-free rate for the period.
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(37) BS —CRP = E [ yield reduction] - E yield reduction] = (72'* —72')(1—5)/ p

Rearranging (35) and using our definition of expected yield reduction:

1 1-6 1 : .
CEP =—-R-7z-——=——R—E[yield reduction]

P P p

1/p — R is the bond spread (by definition) and equals the risk-neutral expected yield reduction
by (36). Therefore:

(38) CEP = E'[yield reduction] — E[yield reduction] = BS —CRP .

It is also easy to show that:

CEP :i—ﬂ'.ﬂ_R =R (72-* _72-)(1_5)
9 p p 1-77(1-9)

This result shows clearly that CEP which embodies the risk aversion premium is monotonically
increasing with the difference between the risk neutral and the physical probabilities of default.
It is also directly (though not linearly) related to the relative loss given default (1-8) on the
bond.

CEP and systematic risk premium

The introduction mentions two approaches to expected return modeling and analysis, the risk
approach and the cash-flow approach. The EBR in this paper can be classified to the latter. The
CAPM is a cornerstone of the risk approach. We are not aware of an expected return risk model
that includes promised payoffs and hence we believe there is no published analog to CRP in
the risk approach literature. We focus our attention here on the CEP.

The time t value of an asset paying a cash-flow of CF(t+1) the next period is:

(40) BS —CRP = E"[ yield reduction] - E [ yield reduction] = (7" -z )(1-5)/ p

where E; is the expectation conditional on the information available at time t, r is the risk free
rate, and y is the risk premium demanded for bearing the risk of the cash-flow at time t+1. We
further assume that CF(t+1) represents the entire value of the asset (including dividends, sales
proceeds, etc.). All rates are on a per-period basis. Under the CAPM assumptions, the risk
premium is:

(41) y=p-(Elr,t+D]-r),

where we apply the usual notation of £ and the return on the market portfolio m.
For a single period bond we use the following relations (by definition):
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_ promised[CF(t +1)] _ E[CF(t+1)]
1+y 1+EBR

(42) p(t)

We explain above that in a frictionless world EBR differs from the risk-free rate by the certainty
equivalence premium (CEP): EBR =r + CEP see equation (7).

CEP is required by investors for accepting the risky lottery whose uncertain payoff CF(t+1) are
not guaranteed at the expected level of E[CF(t+1)], they might be higher or lower. In a risk-
neutral world CEP = 0 whereas for risk averse investors CEP > 0.

Comparing the general case CAPM valuation of equations (40) and (41) with the specific
definitions for a single period bond of equations (42) and (7) it is obvious that the risk premium
required under CAPM is y = CEP. Hence for a single period bond (zero coupon), under a
frictionless market and the CAPM assumptions equation (43) holds:

(43) CEP=4-(E[r,]-T1).

Outstanding CRP observations

In this paper we discuss the practical application of the model and present empirical results.
Most of the CRP values follow a “well behaved” pattern and cluster along a term structure
according to their credit ratings. Some observations however exhibit either a high or low CRP
relative to their rating group. Here we look at potential explanations for such deviant
observations.

This is not a regular sensitivity analysis. We assume here that there are two sets of similar, yet
not identical data — one used by the modeler for the calculation, denoted by C (“calculation”
values) and the other used collectively by the market, implicitly or explicitly, denoted by M.
By construction, the price is identical in both sets, it is the market price. However, the values
of recovery rates and of the default probabilities may defer.

When the two information sets are identical, except for the probability of default, following
equation (9) the ACRP™, difference between CRP(nc) and CRP(nm) (of the modeler and the
market respectively) is expressed by equation (44) and the relative difference by
equation (45).%

(44) ACRP™ = CRP (7, )~CRP(,, ) = (7. - 7y )[%j
ACRP*™ 7.
(“5’ )

Similarly, when the two information sets are identical, except for the recovery rate, the ACRP?
difference is expressed by equation (46) and the relative difference by equation (47).

(46) ACRP’® = CRP (5, )-CRP(5,,) = —%(d: ~5y)

30 Although the price p depends on the risk neutral probability of default ( p = [1— ﬂ; (1— 6)]/R ), and the risk-

neutral the physical measures are dependent, the modeller uses the market price and thus equations (44) and (45)
hold.
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ACRP?
CRP(5y)

oz

(47) 5

1

—_— 1_
1—

Hence, the modeler may calculate CRP values where these two effects are in the same direction,
increasing or decreasing the calculated CRP, or where ACRP™ and ACRP? have opposite signs.
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