
 
 
 
 
 
 
 
 
 

HOMOGENEOUS OF DEGREE ONE GAMES ARE 
BALANCED WITH APPLICATIONS TO SERVICE 

SYSTEMS 

 
 

by 
 

S. Anily 
M. Haviv 

 

 

 Working Paper No 11/2011 July 2011  
 
 
 
 
 

Research No.  01210100 
 
 
 
 
 
 
 
 
 
This paper was partially financed by the Henry Crown Institute of Business Research 
in Israel. 
 
The Institute’s working papers are intended for preliminary circulation of tentative 
research results. Comments are welcome and should be addressed directly to the 
authors. 
 
The opinions and conclusions of the authors of this study do not necessarily state or 
reflect those of The Faculty of Management, Tel Aviv University, or the Henry 
Crown Institute of Business Research in Israel. 



Homogeneous of degree one games are balanced

with applications to service systems

Shoshana Anily∗and Moshe Haviv†

May 18, 2011

Abstract

A cooperative game with transferable utility is said to be homo-
geneous of degree one if for any integer m, the value of cloning m
times all players at any given coalition, leads to m times the value
of the original coalition. We show that this property coupled with
sub-additivity, guarantee the non-emptyness of the core. A few exam-
ples for such games, which naturally emerge when servers in queueing
systems cooperate, are presented.

1 Introduction

Service providers may benefit from cooperation among themselves, as, for
example, in contact centers or airlines code sharing. The benefits are usually
measured in the reduction of waiting time or in the reduction of the total
service capacity needed in order to achieve the same performance measures.
Towards the formation of this cooperation, service providers need to bar-
gain, or even pay each other, in order to agree on how the reduced cost, or
equivalently the gains due to cooperation, should be shared among them-
selves. Towards that end, the model of cooperative games with transferable
utility is useful. In this model, each set of service providers is associated
with a value, which is the cost induced when service providers of this set,
and only this set, cooperate. Then, solution concepts, such as the Shap-
ley value, may determine which share of the total cost resulting under full
cooperation should be assigned to each service provider.
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Our main concern, in this paper, is whether the core of some games
emerging from natural cooperation among service providers are non-empty.
Note that a core allocation is a split of the total cost such that no subset of
service providers can object on the ground that the total cost assigned to
them is larger than the cost which they would have paid, if they broke away
and cooperated only among themselves. Below we define a set of games,
which are common when one looks into cooperation among service providers,
and state what we prove to be a sufficient condition for the non-emptyness
of the core. Thus, our paper deals first with games at large and only later
exemplifies its usefulness when a couple of cooperation mechanisms among
service providers are modeled.

A general cooperative game is defined by a set N = {1, 2, . . . , n} of
n players. Any subset S of N , ∅ ⊆ S ⊆ N , is called a coalition. For
any coalition S a real value denoted by V (S) is associated. This value
represents the total cost inflicted on the members of coalition S when they
cooperate. It is assumed that V (∅) = 0. The function V : <2n−1 → <
is called a characteristic function. The pair of N and V is denoted by
G = (N,V ) and it is called a cooperative game with transferable utility.
The game is called sub-additive if for any two disjoint coalitions S and T ,
V (S ∪ T ) ≤ V (S) + V (T ). It is clear that for such games, the socially best
partition of the players of N to disjoint coalitions is when all players join
the single large coalition, N itself, called the grand coalition, as the sum of
the costs over the coalitions in any partition of N is minimized when the
grand coalition is formed. In other words, sub-additive games call for the
formation of the grand coalition, and therefore, the social cost inflicted is
V (N). Sub-additive games bear the concept of economies of scope: When
each player, or set of players, contribute their own skills and resources, the
total cost is less than the sum of the costs of the individual parts.

In order to guarantee the stability of the grand coalition, players need
to agree on the split of the cost V (N) among themselves. Here is where the
details of the characteristic function play an important role. A cost alloca-
tion (x1, x2, . . . , xn) ∈ <n is called a core allocation if Σn

i=1xi = V (N) and if
for any ∅ ⊂ S ⊂ N , Σi∈Sxi ≤ V (S). Thus, the core is formulated as a linear
programming formulation with n decision variables and 2n − 1 constraints.
So searching the core by trial and error is practically almost impossible,
except for specific problems having a special structure. This issue coupled
with the possibility that the core is empty, makes the problem of finding a
core allocation a real challenge as searching for a core cost allocation repeat-
edly by using a computerized procedure may be futilely. Thus, answering
a-priori and affirmatively the question of the non-emptiness of the core, is a
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prominent first practical step in the process of the investigation of the core
of a game.

In the sequel we focus on gamesG = (N,V ) whose characteristic function
is sub-additive. There exist examples that show that sub-additivity by itself
does not guarantee the non-emptiness of the core. In Section 2 we suggest
what is, to the best of our knowledge, a novel condition on the characteristic
function, which if met together with sub-additivity, guarantees the non-
emptyness of the core. But before doing so, we review two known ways to
establish the non-emptyness of the core. In Section 4 we present examples
where these two ways are not helpful in determining whether the respective
cores are non-empty, where the new proposed condition successfully unveils
the vagueness upon this question.

• Condition 1. A game G = (N,V ) is said to be a concave game if its
characteristic function is concave, meaning that for any two coalitions
S, T ⊆ N , V (S ∪ T ) + V (S ∩ T ) ≤ V (S) + V (T ). Clearly, concave
games are sub-additive but not the other way around. It was shown
in [15] that concave games have a non-empty core.

• Condition 2. The second way to establish the non-emptyness of the
core is via showing that the game under consideration is a market
game, see e.g., Chapter 13 in [13]. Market games refer to the special
case where there are ` inputs and each of the n players possesses a
commitment vector (endowments) wi ∈ <`+, 1 ≤ i ≤ n, which states a
nonnegative value for each input. An input vector is a vector in <`+.
Moreover, each player is associated with a continuous and convex cost
function fi : <`+ → <+, 1 ≤ i ≤ n. A profile (zi)i∈N of input vectors
for which

∑
i∈N zi =

∑
i∈N wi is an allocation. The game is such

that a coalition S of players looks for an optimal way to redistribute
its members’ endowmets among its members in order to get a profile
(zi)i∈S of input vectors so as the sum of the costs across the members
in S is minimized. Formally, for any ∅ ⊆ S ⊆ N ,

V (S) = min {
∑
i∈S

fi(zi) : zi ∈ <`+, i ∈ S and
∑
i∈S

zi =
∑
i∈S

wi} (1)

Market games are well-known to possess a non-empty core. Moreover,
in [13], p. 267 a core allocation based on competitive equilibrium prices,
is stated. Although highly related, our examples do not belong to this
class of games.
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Remark 1. In [13] it is assumed that the functions fi(zi), 1 ≤ i ≤ n,
are non-increasing but as noted in [7] page 163 footnote 2, this in fact
is not required.

In Section 2 we present a new property called homogeneity of degree one,
and the key theorem of this paper, which states a sufficient condition for
the non-emptiness of the core. In Section 3, the proof of the theorem is
presented. We conclude with some examples in Section 4.

2 Homogeneity of degree one

Suppose we are given an infinite sequence of symmetric functions V0, V1, V2, . . .
where the input to the function Vm, m ≥ 1, is m real vectors of size
κ, for some given integer κ ≥ 1, and the output is a real number. Let
V0 ≡ 0. Thus, for m ≥ 1, Vm : (<κ)m → <. Let yi ∈ <κ for i = 1, . . . ,m
be an input to function Vm. Let φ(y1, . . . , ym) be any permutation of
(y1, . . . , ym). The symmetric property of the function Vm implies that
Vm(y1, . . . , ym) = Vm(φ(y1, . . . , ym)), meaning that the value returned by
the function Vm is independent of the input order of the m vectors in <κ
into Vm.

In the context of games, we assume that any potential player of the game
is associated with a vector of properties in <κ. In the market game presented
at the end of Section 1, the vector of properties can be the commitment
vector of a player. We assume that if m players form a coalition, then the
cost of the coalition depends only on the size of the coalition, namely m, and
the m vectors of properties associated with the members of the coalition.
Note that this presentation refers to games where the set of potential players
can be infinitely large (not necessarily countable). Using the conventional
notation, for any given finite set of players N = {1, . . . , n}, where each player
i ∈ N is associated with a vector of properties yi ∈ <κ, we associate the
game G = (N,V ), which is defined by N and the characteristic function V ,
such that for any subset ∅ ⊆ S ⊆ N , V (S) = V|S|((y

i)i∈S). Therefore, given
the sequence of functions {Vm : m ≥ 0}, one can define for any subset of
players of N and their vectors of properties the associated game G = (N,V ).
We call a game G = (N,V ) of the above described structure, a regular game.

Next we present a few examples of regular games, and one of a game
which is not regular:

• Example 1. In the airport problem, N represents a set of airlines, and
any coalition of airlines S, S ⊆ N , may share an airstrip. Each airline
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i ∈ N is associated with ci, which is the cost of the airstrip that the
airline needs. Serving airline i implies serving any airline with a cost
parameter that is at most as large as ci. Accordingly, a cooperative
game (N,V ) is defined such that for any S ⊆ N , V (S) = maxi∈S ci, see
[5]. In this game, each airline is associated with a vector of properties
of size 1, namely, yi = ci, and Vm : <m → <, where for a set S of m
vectors of properties, Vm((ci)i∈S) = maxi∈S ci.

• Example 2. The second example is the cooperation in the queueing
game considered in [3]. There, a set N = {1, . . . , n} of n M/M/1
queueing systems, cooperate in order to minimize the steady-state
congestion in the combined system. Queueing system i is associated
with its own exponential service rate µi and its own Poisson arrival
rate of customers λi, λi < µi, i ∈ N . Cooperation of a set S ⊆ N
in this model results in a single M/M/1 queue whose capacity is the
sum of the capacities of the individual servers in S, and whose arrival
rate is the sum of the individual arrival rates in S. For any coalition
S ⊆ N the congestion of S is thus given by

V (S) =
λ(S)

µ(S)− λ(S)
, (2)

where µ(S) =
∑
i∈S µi and where λ(S) =

∑
i∈S λi. Therefore, in this

case, each queueing system is associated with a vector of properties of
size 2, namely yi = (λi, µi) for i ∈ N , and V` : (<2)` → <, where for a
set S of ` vectors of properties,

V`((λi, µi)i∈S) =

∑
i∈S λi∑

i∈S(µi − λi)
. (3)

This game was shown in [3] to have a non-empty core, although it is
neither monotone nor concave.

• Example 3. The third example is the cost allocation problem for the
first order interaction joint replenishment model, see [2]. In this model
a set of retailers N = {1, . . . , n} orders stock from a single warehouse.
Each retailer i ∈ N faces a constant demand rate di, and it pays a
linear inventory holding cost hi per unit of stock per unit of time. The
setup cost structure consists of minor setup costs, so that retailer i ∈ N
pays a minor setup cost Ki each time she places an order. In addition,
there exists a major setup cost K0, that is paid each time that at least
one retailer places an order, so that if a group of retailers S ⊆ N order
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simultaneously, the setup cost incurred at that time is K0 +
∑
i∈SKi.

The optimal replenishment policy that minimizes the long-run average
cost is unknown, yet [10] and [14] show that an optimal policy among
the power of two policies comes within 2% of optimality. They also
show how to calculate its corresponding cost. In this example, each
retailer i ∈ N is associated with a vector of properties that is a triplet
yi = (Ki, hi, di) ∈ <3. The function V` : (<3)` → <, is defined so that
it returns the optimal cost of a power of two policy for any given `
vectors of properties for any ` ≥ 1. The characteristic function of the
corresponding game (N,V ) returns the optimal cost of a power of two
policy for any subset of retailers S ⊆ N. This game was shown in [2]
to have a non-empty core, in spite of the fact that it is not concave.

• Example 4. We conclude this list by an example, which is similar to
the third one, where the joint setup cost structure for a group of re-
tailers S ⊆ N is given by a general submodular function K(S), instead
of the cost structure K0 +

∑
i∈SKi considered in [2]. [16] considered

the cost allocation problem of the joint replenishment model with sub-
modular joint setup costs. In this model, each retailer is associated
with a vector of properties of size 2, namely yi = (hi, di), but the
replenishment cost of a group S ⊆ N of retailers does not necessarily
have a closed-form expression as a function of |S| and the |S| vectors
of properties of S, but it is some abstract function of S. The cost of a
subset may depend, for example, also on the identity of its members.
Therefore, this last game is not a regular game, as one cannot extend
the definition of V beyond all subsets of N .

The above set of examples is by no means complete. Two more examples
for regular games are stated in Section 4 below. See [11] for an additional
example. Next, we broaden the definition of sub-additivity of a characteristic
function in order that it will fit regular games G = (N,V ) :

Definition 1 The characteristic function of a regular game G = (N,V ),
where each player i ∈ N is associated with a vector of properties in <κ, is
said to be sub-additive if the corresponding sequence of symmetric functions
V0, V1, V2, . . ., where V` : (<κ)` → <, ` ≥ 1, and V0 ≡ 0, satisfies the follow-
ing property: given two finite (not necessarily disjoint) sequences of vectors
of properties in <κ, (yiA)|i∈A and (yiB)|i∈B, then V(|A|+|B|)((y

i
A)|i∈A, (yiB)|i∈B) ≤

V|A|((y
i
A)|i∈A) + V|B|((y

i
B)|i∈B).

In order to present the sufficient condition for the non-emptiness of the
core of a regular game G = (N,V ), we need to apply functions V`n on `
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copies (duplicates) of each vector of properties yi, i ∈ N , where ` = 1, 2, . . . .
For this sake, for any integer j ≥ 1, let the set N j = {(1, j), (2, j), . . . , (n, j)}
consists of the j − th copy of the set of players N , where player (i, j) ∈ N j

is associated with the vector of properties yij = yi ∈ <κ, i ∈ N . Let N (m) =

∪mj=1N
j . Thus, N (m) contains nm elements, and the infinite sequence of sets

N (1), N (2), . . . , is nested. We define, similarly, Sm and S(m) for any coalition
S ⊂ N . We also let Gm = (N (m), V ), where G1 = G, be a sequence of games,
so that the definition of V in game Gm is the extension of the definition of V
for game G1 to any coalition T , T ⊆ N (m). This extension is straightforward
as G = (N,V ) is a regular game.

We next define the new proposed property of regular games, i.e., homo-
geneity of degree one, and then we state the main theorem of this paper.

Definition 2 The characteristic function V of a regular game G = (N,V ),
is homogeneous of degree one if the corresponding sequence of symmetric
functions V1, V2, . . . satisfies that for any integer m ≥ 1 and any subset S ⊆
N , V|S|m((yij)(i,j)∈S(m)) = mV (S), or equivalently, game Gm = (N (m), V ),

satisfies V (S(m)) = mV (S(1)).

Remark 2. Homogeneity of degree one means that when two (or more)
identical sets of players cooperate, they cannot do better than they did
when acting individually. At the same time, they do not interfere each
other. What they produce is just the total of what they would have done
separately. This in fact means lack of economies of scale. Note that sub-
additivity means that gains due to cooperation are possible. This coupled
with homogeneity of degree one mean that in order to get strict improvement
due to cooperation, the cooperating sets should be different, i.e., at least one
of the cooperating subsets should contain types of players that do not appear
in the other set.

Next we state the main result of this paper.

Theorem 1 If the characteristic function V of a regular game G = (N,V )
is sub-additive and homogeneous of degree one, then the core of the game is
non-empty.

Example 5. Suppose each player i ∈ N is associated with a positive number
ai. Define the game G = (N,V ) by V (S) = |S|mini∈S ai. It is easy to see
that this game is regular, sub-additive and homogeneous of degree one (but
not concave). Hence, by Theorem 1, it possesses a non-empty core. A core
allocation is xi = minj∈N aj for all i ∈ N . The core contains infinitely many
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allocations, unless ai = a, i ∈ N , for some constant a. In the latter case the
core is a singleton: xi = a, 1 ≤ i ≤ n.

We like to note that a related result for non-atomic games, appears
in [4], p. 167.1 There it says that for a sub-class of these games (denoted
there by pNA), sub-additivity and homogeneity of degree one (defined in
a way suitable for non-atomic games) guarantee the non-emptiness of the
core. Indeed, they proved that the core is a singleton that coincides with
the Aumann-Shapley prices.

In Section 3 we prove Theorem 1. To indicate the usefulness of the
theorem, we present in Section 4 two examples of regular games whose char-
acteristic function is sub-additive and homogeneous of degree one. These
two examples do not belong to any of the two abovementioned types of
games (concave games or market games) that guarantee the non-emptiness
of the core. The two examples are based on queueing models in which the
cost of a coalition is a function of the steady-state congestion, and cooper-
ation among servers lead to reduction in this cost. In particular, there is a
need to share the gains due to cooperation between the contributing servers.

3 Proof of Theorem 1

We start by reviewing a well known necessary and sufficient condition for
the non-emptiness of the core of a cooperative game, see, e.g., [13], Chapter
13. This condition is equivalent to the duality condition of a feasible linear
programming formulation. Specifically, let C be the set of all 2n coalitions of
N . For any coalition S denote by <S , the |S|-dimensional Euclidean space
in which the dimensions are indexed by the members of S, and denote by
1S ∈ Rn the characteristic vector of S given by

(1S)i =

{
1 if i ∈ S
0 otherwise

Definition 3 A collection (αS)S∈C of numbers in [0, 1] is said to be a bal-
anced collection of weights if for every player i ∈ S the sum of αS over all
coalitions that contain i equals 1, namely ΣS3iαS = 1 for all i ∈ N . A coali-
tional game G = (N,V ) is said to be balanced if

∑
S∈C αSV (S) ≥ V (N), for

every balanced collection of weights (αS)S∈C .

The following proposition is referred to as the Bondareva-Shapley The-
orem, see, e.g., Proposition 262.1 in [13]:

1Non-atomic games are games in which each individual player contributes infinitesi-
mally to the value of a coalition he joins.

8



Proposition 1 A coalitional game with transferrable utility has a nonempty
core if and only if it is balanced.

We are now ready to prove Theorem 1.
Proof: We prove the theorem by using Proposition 1 in two steps. We
first prove that for any vector of balanced rational weights (αS)S∈C , the
inequality

∑
S∈C αSV (S) ≥ V (N), holds. Then we prove that the same is

the case for any balanced collection of real weights.
Consider any balanced collection of rational weights (αS)S∈C . Let M(α)

be a positive integer such that τS(α) = M(α)αS is an integer for all coalitions
S ∈ C. As the game G = (N,V ) is regular, there exists an integer κ ≥ 0, such
that each member i ∈ N is associated with a vector of properties yi ∈ <κ. Let
yij = yi for any integer j ≥ 1. Regularity of the game implies that V (S) =

V|S|((y
i)|i∈S).As V is homogenous of degree one, VτS(α)|S|((y

i
j)(i,j)∈S(τS(α))) =

τS(α)V (S). Note that∑
S∈C

τS(α)V (S) =
∑
S∈C

VτS(α)|S|((y
i
j)(i,j)∈S(τS(α))) ≥ VM(α)n((yij)(i,j)∈N(M(α))) = M(α)V (N),

where the above inequality follows by the sub-additivity of V in the regular
game G = (N,V ), and specifically, sub-additivity of V over N (M(α)) that
contains M(α) repetitions of each player of N . Consider now the l.h.s. of
the inequality, i.e.,

∑
S∈C VτS(α)|S|((y

i
j)(i,j)∈S(τS(α))) : for any i ∈ N, we have

also here
∑
S∈C: i∈S τS(α) = M(α)

∑
S∈C: i∈S αS = M(α) copies of each

vector of properties yi, as (αS)S∈C is a balanced collection of weights. The
last equation follows from the fact that in the regular game G = (N,V ),
the characteristic function V is homogenous of degree one. To conclude,∑
S∈C τS(α)V (S) ≥M(α)V (N). Recall that τS(α) = M(α)αS , thus dividing

the last inequality by M(α) gives the desired result for any rational balanced
collection of weights (αS)S∈C .

In order to complete the proof, we need to show that the above prop-
erty holds also for any vector of balanced real weights. Let (̃αS)S∈C , be a
balanced collection of real weights. Consider the simplex induced by the
constraints that define the set of balanced weights, i.e., (αS)S∈C ≥ 0, and∑
S∈C, i∈S αS = 1 for all i ∈ N . The extreme points of this simplex are

rational, as the righthand side of the constraints as well as the coefficients
of the variables are 0 or 1. Let K be the number of extreme points of
this simplex, and let αj for j = 1, . . . ,K, be the respective extreme points,
where each αj is a vector of size |C|. Thus, (̃αS)S∈C , can be represented
as a convex combination of the extreme points: Let (γ1, . . . , γK) be the re-
spective weights, so that 0 ≤ γi ≤ 1 for i = 1, . . . ,K,

∑K
j=1 γj = 1, and
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(̃αS)S∈C =
∑K
j=1 γj(α

j
S)S∈C . As each of the extreme points of the simplex is

rational and is a vector of balanced weights, we have
∑
S∈C α

j
SV (S) ≥ V (N)

for all 1 ≤ j ≤ K. Therefore,
∑
S∈C (̃αS)V (S) =

∑
S∈C

∑K
j=1 γjα

j
SV (S) =∑K

j=1 γj
∑
S∈C α

j
SV (S) ≥

∑K
j=1 γjV (N) = V (N).

4 Examples - Cooperation in Queueing Systems

In [3] we dealt with what seems to be the simplest (but most revealing)
possible model of cooperation in service systems. This model was described
as Example 2 in Section 2 and is based on the assumption that when a set of
servers cooperate, they work as a single server whose service rate is the sum
of the individual service rates. Moreover, this combined server serves their
joint stream of arrivals. In [3] it was shown that this game, in spite of not
being concave, has a non-empty core. As mentioned in Section 2, this game
is regular. However, it is easy to check that its characteristic function (3)
is not homogenous of degree one. Indeed, under this cooperation there is
both economies of scope as well as economies of scale.2 See [17] for a related
result. Note that there is also a vast literature on competition among servers,
leading to non-cooperative game modeling. See for example [8] or [1].

In the following two subsections we present two examples for different
(and more involved) cooperation among servers, for which Theorem 1 is
useful in showing that the cores of the corresponding games are not empty.

4.1 Optimal Unobservable Routing for a Given Set of Servers

In this section we consider a cooperative queueing game defined by a set N =
{1, 2, . . . , n} of servers, where µ1 ≥ µ2 ≥ . . . ≥ µn, are the given exponential
capacities of the servers, and the servers who form a coalition have yet to
work individually. Each of the servers in N is also associated with a Poisson
arrival stream of customers, so that server i ∈ N is associated with an arrival
rate of λi, λi < µi. We assume that all servers provide the same type of
service, and that all customers require this type of service. When forming
a coalition S ⊆ N of servers, the central planner of the coalition can decide
how to re-route the customers, namely which portion of them to assign to
each of the servers. We also assume that the central planner has the option
to outsource some (or all) of the customers to an external service provider at
a fix cost per unit rate outsourced. The objective of the coalition’s central
planner is to find the optimal routing of the Poisson arrival rate λ(S) =

2Here when two identical coalitions cooperate the total costs is reduced by half.
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∑
i∈S λi among the servers of S and the external service provider, so as that

the total cost of the steady-state congestion at the servers of S plus the
outsourcing cost, is minimized. The congestion is measured by the total of
the mean steady-state number of customers in the system under the optimal
split of the stream of arrivals to the servers. For simplicity, we assume that
the cost per unit of congestion is one, and accordingly we normalize the
fix cost per unit rate outsourced to b. For simplicity, we consider below the
grand coalition, but the same considerations apply verbatim to any coalition
S ⊂ N .

Given the grand coalition N , let Λ, 0 ≤ Λ ≤ λ(N), be the arrival rate of
customers that is served internally, i.e., by the servers of N . For any given
Λ ≤ λ(N), let the function C(N,Λ) be the optimal steady-state congestion
cost associated with N , given a Poisson arrival rate of Λ that is served
by the servers of N under the optimal routing. For an insourced arrival
rate of Λ ≤ λ(N), let λIN,i(Λ) denote the optimal insourced arrival rate to
server i ∈ N according to the cost function C(N,Λ). Thus, for any i ∈ N ,
λIN,i(Λ) < µi and

∑
i∈N λ

I
N,i(Λ) = Λ. We consider the cooperative game

G = (N,V b) where the characteristic function V b(N) (and similarly V b(S)
for any ∅ ⊆ S ⊆ N) is defined as

V b(N) = min{C(N,Λ) + b(λ(N)− Λ) : 0 ≤ Λ ≤ λ(N)} (4)

The characteristic function V b clearly satisfies V b(∅) = 0 and it is sub-
additive, as combining two disjoint sub-coalitions of N into one may only
reduce the total cost of the steady-state congestion and outsourcing as more
options for the optimal cooperation exist.

We start by analyzing C(S,Λ). The optimal routing of the arrival rate
Λ that achieves the minimum steady-state congestion may result in shutting
off some of the slow servers. According to [6], C(S,Λ) can be formulated as
follows:

C(S,Λ) = min{
∑
j∈S

λIS,j(Λ)

µj − λIS,j(Λ)
:
∑
j∈S

λIS,j(Λ) = Λ and 0 ≤ λIS,j(Λ) < µj for j ∈ S}

(5)
In [6] it is shown that in an optimal solution to (5), only servers with

a sufficiently high capacity are utilized. More precisely, for Λ < µ(S), we
let WRK(S,Λ) = {j ∈ S : j ≤ i∗(S,Λ)} be the set of open servers in
S that serve an arrival rate of Λ. The other servers, i.e., the servers in
{j ∈ S : j > i∗(S,Λ)} are closed. Note that WRK(S,Λ) is never empty,
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where its complement set in S, may be empty if all servers are open. We
define for convenience server n + 1, with λn+1 = µn+1 = 0. Let i+(S,Λ)
be the server following i∗(S,Λ) in S. If i∗(S,Λ) is the last server in S, then
i+(S,Λ) is defined as n+ 1. In general we use i+ to be the server following
i in the set under consideration. As was proved in [6]

i∗(S,Λ) = min

{
i ∈ S : µi+ ≤

(
∑
j∈S,j≤i µj − Λ)2

(
∑
j∈S,j≤i

√
µj)2

}
. (6)

From [6], we can deduce that

C(S,Λ) =
(
∑
i∈S, i≤i∗(S,Λ)

√
µi)

2∑
i∈S, i≤i∗(S,Λ) µi − Λ

− |WRK(S,Λ)| . (7)

According to [6] the optimal rate of arrival to open server k ∈ S, k ≤ i∗(S,Λ),
given a total insourced rate Λ, is

λIS,k(Λ) = µk − (
∑

i∈S; i≤i∗(S,Λ)

µi − Λ)

√
µk∑

i∈S i≤i∗(S,Λ)
√
µi
. (8)

Further details on this model can be found in [6], [8], p.64 or [9].
Back to the game G = (N,V b), where outsourcing at a cost b per unit

rate outsourced is possible. If b is large enough then no service is outsourced,
and the game G = (N,V b) coincides with the game (N,C), where for any
coalition S ⊆ N , V b(S) = C(S, λ(S)). At the other extreme, if the out-
sourcing cost is sufficiently small, all service is outsourced. More precisely,
if b ≤ µ−1

1 , then V b(S) = bλ(S) for any S ⊆ N , and the game boils down to
the trivial cooperative game where the characteristic function V b is linear
in the total stream of arrivals, namely V b(S) = bλ(S), resulting in a single
core cost allocation xi = bλi for i = 1, . . . , n.

For i ∈ N , let fi(zi) be the congestion cost at server i due to an arrival
stream whose rate is zi and let f0(z0) be the outsourcing cost for a rate z0

of customers outsourced. I.e.,

fi(zi) =
zi

µi − zi
, 1 ≤ i ≤ n (9)

and
f0(z0) = bz0. (10)

Thus,

V b(N) = min{
n∑
i=0

fi(zi) : s.t.
n∑
i=0

zi = λ(N)}. (11)

12



Let λN,i denote the optimal insourced arrival rate allocated to server i,
for i ∈ N . Also, let λN,0 be the optimal arrival rate outsourced. Clearly,∑n
i=0 λN,i = λ(N). Thus, V b(N) = C(N,

∑n
i=1 λN,i) + bλN,0 = C(N,λ(N)−

λN,0) + bλN,0. Also, for i ∈ N , λN,i = λIN,i(λ(N)− λN,0).
Next we present a general optimization result that will be useful in solv-

ing V b(N) and giving it an explicit presentation. The first item of the next
lemma was proved in [18]. The second item is a slight generalization of the
first, which fits the structure of problem (11).

Lemma 1 Consider problem (P):

min{
m∑
k=1

gk(yk) :
m∑
k=1

yk = Θ, yk ≥ 0, 1 ≤ k ≤ m} (12)

where Θ > 0 and gk : < → <, for 1 ≤ k ≤ m, are strictly convex and
continuously differentiable. Suppose also that the functions are ranked in
a non-decreasing order of their partial derivatives at 0, i.e., the sequence
{dgk(y)

dy |y=0+}mk=1 is non-decreasing in k. Let q(Θ) be the optimal value of
(P) as a function of Θ.

• Then, there exists a unique optimal solution y∗ ∈ <m to (P), an integer
K ≤ m, and a unique real number ν, such that for k ≤ K, y∗k > 0 and

{dgk(y)
dy |y=y∗

k
} = ν, and for K < k ≤ m, y∗k = 0 and {dgk(y)

dy |y=0+} ≥ ν.
Moreover, q(Θ) is strictly covex and continuously differentiable with
dq
dθ |θ=Θ = ν.

• Consider now a problem that is identical to problem (P) except for the
fact that one of the gk(·) functions is linear in yk as opposed to being
strictly convex. Then, the structure of the optimal solution described
in the first item still holds, except that q(Θ) is now convex (as opposed
to being strictly convex) and continuously differentiable. More specif-
ically, there exists a constant θ̄ ≥ 0 such that q(Θ) is strictly convex
on (0, θ̄) and linear for Θ ≥ θ̄. In the later range, the slope coincides
with that of the gk which is linear.

Proof:
See [18] for the proof of the first item. It is straightforward to generalize

the proof to the case that one of the m functions is linear, where the others
are strictly convex. The uniqueness of the optimal vector y∗ follows from
the strict convexity of the m− 1 functions. If the linear function is g1 then
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q(Θ) = g1(Θ). Otherwise, there exists θ̄ > 0, so that q(Θ) is strictly convex
on (0, θ̄), and thereafter q(Θ) is linear in Θ.

We are now ready to investigate the structure of the solution of V b(N).
In order to show the dependence of V b(N) on the total arrival rate, let
V b(N,Υ) denote the optimal congestion plus outsourcing cost of a Poisson
arrival stream rate of Υ. Thus, V b(N,λ(N)) = V b(N). For simplicity, let
i∗(N) = i∗(N,λ(N)). Let also

p(b) = max{k : k ≥ 0, µ−1
k < b} (13)

α(N) =
(
∑i∗(N)
k=1

√
µk)

2

(
∑i∗(N)
k=1 µk − λ(N))2

(14)

Lemma 2 • Let q(Υ) = V b(N,Υ). The function q(Υ) is convex and
continuously differentiable in Υ > 0. Moreover, for any given value of
Υ, the solution to the optimization function V b(N,Υ) is unique.

• If p(b) = 0, (or equivalently, b ≤ µ−1
1 ), then V b(N) = bλ(N), and the

core of the cooperative game (N,V b) is a singleton of the form xi = bλi
for i = 1, . . . , n.

• If b ≥ α(N), then λN,0 = 0, and V b(N) = C(N,λ(N)), implying that
λN,i = λIN,i(λ(N)), (see (8)), for i ∈ N. Moreover, for 1 ≤ i ≤ i∗(N),
dfi
dλ |λ=λN,i = µi

(µi−λN,i)2 = α(N), and for i∗(N) < i ≤ n, dfi
dλ |λ=0+ =

1
µi
≥ α(N).

• If µ−1
1 < b < α(N), then the set of open servers is {1, . . . , p(b)}

(see (13)). Moreover, for 1 ≤ i ≤ p(b)

λN,i = µi −
√
µi√
b
, (15)

and dfi
dλ |λ=λN,i = b. For p(b) < i ≤ n, λN,i = 0, and dfi

dλ |λ=0+ = 1
µi
≥ b.

Also, λN,0 = λ(N)−
∑p(b)
i=1 λN,i. Finally,

V b(N) = 2
√
b

p(b)∑
i=1

√
µi + b(λ(N)−

p(b)∑
i=1

µi)− p(b). (16)

Proof:

• The proof follows from the second item of Lemma 1.
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• Note that dfi(λ)
dλ |λ=0+ = µ−1

i for i ∈ N . The sequence {µ−1
i }i∈N is non-

decreasing in i, and under the assumption in this item, it is bounded
from below by b. The only possible structure of a feasible solution that
satisfies the structure of the optimal solution, as detailed in Lemma 1
item 2, is λN,i = 0 for i ∈ N , and λN,0 = λ(N). That means, that in
this case, all customers are outsourced and V b(N) = bλ(N). Moreover,
V b(S) = bλ(S). The rest of the claim follows immediately.

• The proof of this item follows from [6] and also from the proof of the
second item in Lemma 1, as the proposed solution is the only solution
that satisfies the properties of the optimal solution.

• Follows from the second item of Lemma 1.

Lemma 2 implies that for a total arrival rate of λ(N), there exist two
positive constants b1 < b2, (b1 = µ−1

1 , and b2 = α(N)), such that, if the
outsourcing cost b ∈ [0, b1] then all service is outsourced, if b ≥ b2 then all
service is insourced and provided by servers {1, . . . , i∗(N)}, and otherwise
some customers are insourced and served by servers {1, . . . , p(b)}, p(b) ≤
i∗(N), and the rest is outsourced.

Having described the solution to V b(N), defined via (4), we pose the
question of how to allocate the cost V b(N) among the servers of N in the
cooperative game G = (N,V b). As stated in Section 1, we focus here on core
allocations. We will show first that the two existing criteria described in the
introduction (that may help in determining whether the core is non-empty)
are not helpful when considering this game. The next example shows that
the characteristic function V b(N) is not concave.
Example 6. Consider N = {1, 2, 3}, with µ1 = µ2 = 100, λ1 = λ2 = 1,
µ3 = 1 and λ3 = 0.99. Assume that b is very large, i.e. b ≥ α(N), so
outsourcing is not profitable. Let S = {1, 3} and T = {2, 3}. We have here
V b({1}) = V b({2}) = 1/(100−1) = 0.01, V b({3}) = 0.99/(1−0.99) = 99. In
coalition S only server 1 is open and likewise server 2 in coalition T . Thus,
V b(S) = V b(T ) = (1 + 0.99)/(100 − 1 − 0.99) = 0.02. In coalition S ∪ T
only servers 1 and 2 are open, each getting half of the total traffic. Hence,
V b(S ∪T ) = 2( 1+0.495

100−1−0.495). It is easy to see that the cost of the intersection

V b(S ∩ T ) = V b({3}) = 0.99
1−0.99 = 99. Hence, V b(S ∪ T ) + V b(S ∩ T ) >

V b(S) + V b(T ), proving that the set function V b(·) is not concave.
Remark 3. Note that similarly to the characteristic function dealt with in
[3], V b(·) is not monotone: for S ⊂ T , V b(S) can be equal, strictly smaller
or strictly larger than V b(T ).
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Next we verify whether the game G = (N,V b(N)) satisfies the second
criteria, i.e., whether it is a market game. Indeed, the structure of the game
resembles a market game, but as we are going to see, it is a market game
only in the case where b ≥ α(N), namely when the outsourcing option is
not exercised. In such a case the input of each server i ∈ N is λi and
fi(zi) = zi

µi−zi which is continuous in zi < µi, non-decreasing and convex.
Therefore, in the case of a game with no outsourcing, it is a market game
and its core is non-empty. Otherwise, if b < α(N), then not all the total
input of λ(N) is distributed among the servers in N , and therefore it is not
a market game. Note that we cannot consider the outsourcing option as an
additional player of the game. Doing so would have made it a market game
with n + 1 players, but in this problem the total cost should be allocated
only among the n servers of N.

We next resort to the new proposed criterion presented in Section 2.
First, we note that the game G = (N,V b) is regular as each server i ∈ N
is associated with a vector of input properties of size 2, namely (λi, µi),
where λi < µi, and the cost V b(N) (and similarly, V b(S) for any S ⊆ N)
defined through (9)-(11), depends only on these input vectors. Thus, we
can define an infinite sequence of symmetric functions V0, V1, V2 . . ., where
V0 ≡ 0, so that the input to Vm is m non-negative vectors of size 2 whose first
component is smaller than the second one, and where Vm maps (<2

+)m → <.
The sub-additivity of the characteristic function V b(S), ∅ ⊆ S ⊆ N follows
directly as the optimal cost of the union of two disjoint sets of players can
not increase above the sum of the original costs. In order to conclude the
proof of the non-emptiness of the core, it only remains to show that the
characteristic function V b is homogenuous of degree 1.

Lemma 3 The characteristic functions V b(·) for any b ≥ 0 defined in (11)
is homogenous of degree 1.

Proof: In N (m) each of the m copies of server i ∈ N , namely servers
(i, 1), . . . , (i,m), is associated with capacity µi, rate of arrival λi, and the
function fi given in (9), which represents the congestion cost at server (i, j),
1 ≤ j ≤ m. Index the nm servers in N (m) is a non-increasing order of their
capacities. Finally, let f0 be defined as in (10). We can write V b(N (m)) as
follows:

V b(N (m)) = min{
∑

k∈{0}∪N(m)

fk(λk) : s.t.
∑

k∈{0}∪N(m)

λk = mλ(N)}.

As the functions fk(·) for k = 1, . . . , nm, are strictly convex, and f0(·)
is linear, the structure of the solution for V b(N (m)) follows from item 2 of
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Lemma 1, and Lemma 2. It is easy to see, that the optimal allocation of the
customers to the servers in N (m), is an-m fold of the optimal allocation to
V b(N). Also, the amount which is outsourced in V b(N (m)) is m times larger
than the respective amount in problem V b(N). Thus, V b(N (m)) = mV b(N),
implying that V b is homogenuous of degree one.

Theorem 2 For any b ≥ 0, the cooperative game (N,V b) is balanced.

Proof: The proof follows directly from the sub-additivity and the homo-
geneity of degree 1 of the regular game G = (N,V b) (see Lemma 3) and
Theorem 1.

Though by Theorem 2 we know that the core of the game is non-empty,
we find it a challenging task to identify a core cost allocation. In the next
two examples we let (x1, . . . , xn) represent the decision variable vector of a
core cost allocation. The next example shows that it is possible that all core
allocations contain negative entries. This is in contrast with our former pa-
per [3], where we showed that under the type of cooperation defined there,
core allocations with all its entries being non-negative always exist. Note
that a negative entry means that a server, on top of his own customers being
served by the grand coalition or being outsourced, is in fact being paid in
order to join this coalition.
Example 7. Suppose that b = 0, and n = 4: µ1 = 2000, λ1 = 1000,
µ2 = 1000, λ2 = 900, µ3 = 800, λ3 = 600, µ4 = 100, and λ4 = 99. Calcula-
tion shows that V b(N) = 6.11 and the servers {1, 2, 3} are open. Moreover,
V b(N\{1}) = 13.24, which implies that x1 ≥ −7.12. V b(N\{2}) = 2.84,
which implies that x2 ≥ 3.27. V b(N\{3}) = 3.82, which implies that x3 ≥
2.29. V b(N\{4}) = 5.42, which implies that x4 ≥ 0.69. The three last in-
equalities imply that x2 + x3 + x4 ≥ 6.26. As V b(N) is smaller than the
lower bound on x2 +x3 +x4 we get that x1 ≤ −0.15. An example for a core
allocation is (x1, x2, x3, x4) = (−0.15, 3.27, 2.29, 0.69).

The next example shows a case where at least two servers must be paid
by the others, and hence no core allocation, which is either non-negative, or
consisting of a single negative entry, exists. Again, this is in contrast with
the results about the model considered in our former paper [3] where we
showed that if there exist core allocations with negative entries, then there
exist core allocation with a single negative entry.
Example 8. Let b = 0, n = 10, (µ1, . . . , µ10) = (100, 78, 70, 65, 50, 45, 30, 20, 10, 5)
and (λ1, λ2, . . . , λ10) = (80, 60, 45, 20, 10, 20, 8, 12, 1, 4). V b(N) = 9.57, which
is attained when the first 8 servers are open. By similar calculations as in
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the previous example we get that x4 ≥ −0.37 and x5 ≥ −0.48. The lower
bounds on all other 8 servers are positive, and when we sum them up we
get that x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 ≥ 9.90. This means that
x4 +x5 ≤ −0.32. Moreover, the lower bound on x1 is x1 ≥ 3.09. Considering
the two coalitions {1, 4} and {1, 5} we get that x1 +x4 ≤ 3.02 implying that
x4 ≤ −0.07 and x1 +x5 ≤ 2.86 implying that x5 ≤ −0.23. In particular, any
core allocation comes with both servers 4 and 5 being paid by the others.
Remark 4. A somewhat related decision problem to the one considered
here is that of equilibrium routing. Specifically, consider the above routing
model, with a high outsourcing cost, so that no customer is outsourced, and
the central planner of the system wants to minimize the overall mean waiting
costs. In the equilibrium routing model, on the other hand, the customers
act selfishly by deciding which queue to join in a way that minimizes their
own waiting time. It is clear that customers are engaged in a non-cooperative
game. This problem was dealt with in [6] who found the Nash equilibrium
routing strategy. In general, it is not the same strategy as the socially
optimal one defined above, yet, it shares some of its properties. For example,
also in the equilibrium routing model only a subset of servers is utilized,
a subset which is contained in the one utilized under the socially optimal
routing. In [6] the equilibrium arrival rates are stated and it is now simple to
find the coalitional costs under the equilibrium routing. We do not give any
further details but claim that the resulting game is regular and homogeneous
of degree one. Yet, it is not necessarily sub-additive so there is no guarantee
for having a non-empty core. In fact, is it not hard to construct examples
for such games which have an empty core.

4.2 Split of a total service capacity

Consider the same model as described in subsection 4.1, but with one key
distinction: Now servers who cooperate share among themselves the total
joint capacity while each server maintains her original arrival rate that she
needs to serve. That means that the servers continue to work individually.
Consider, for example, a communication network with n routers (servers)
that route incoming calls (customers) to n different intermediate sites. Each
incoming call is identified by the site it needs to reach. Each router routes
calls to a single site. In such a communication network it is impossible to
re-direct calls to other routers except the one that serves the required site.
On the other hand, it is possible to re-allocate the routers capacities, as
long as each router serves its own customers. Thus, in this second model of
cooperation in queuing systems that we present here, customers of different
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lines require different service types, implying that customers of a certain line
cannot switch to another line. The servers, on the other hand, are capable
to perform all service tasks at their given capacity, so that each server can
allocate its capacity among all lines. The servers of any coalition have also
the option to rent some of their capacity.

To present our model formally, similarly to the one presented in sub-
section 4.1, we use the same notation: each server i ∈ N = {1, 2, . . . , n} is
associated with its Poisson arrival rate λi and its exponential capacity µi,
and µ(S) = Σi∈Sµi is the total service capacity rate of coalition S ⊆ N . The
central controller of this system has to decide how much capacity to assign
to each of the servers and how much capacity to rent in order to minimize
the net cost which consists of the total steady-state congestion cost minus
the revenue obtained by the capacity rental. As in subsection 4.1, we nor-
malize the congestion cost to be one per unit, and the resulting normalized
unit rate capacity rental price is b. We note that in this problem, except
for the case where a server has no customers, i.e., its arrival rate is 0, all
servers must be open. We let W b(S) denote the optimal net cost associated
with coalition S ⊆ N . Next we provide an expression for the net cost of
the grand coalition. A similar expression can be written for any coalition
S ⊆ N .

Let Γ ≤ µ(N) be the capacity that is used internally. Feasibility requires
that Γ > λ(N). Let Ω(N,Γ) be the optimal steady-state congestion cost for
serving the customer arrival rates λ1, . . . , λn, by a total capacity of Γ. Let
µIN,i(Γ) > λi be the optimal capacity allocation to server i ∈ N according to

the cost function Ω(N,Γ). That means that
∑
i∈N µ

I
N,i(Γ) = Γ. We consider

the cooperative game G = (N,W b), where the characteristic function for the
grand coalition (and similarly to any other coalition) is given by

W b(N) = min{Ω(N,Γ)− b(µ(N)− Γ) : λ(N) < Γ ≤ µ(N)}. (17)

Similarly to V b(N) in subsection 4.1, also W b(∅) = 0, and the set function
W b(·) is sub-additive, implying that any bargaining process will probably
end up by forming the grand coalition. Problem Ω(N,Γ), for Γ > λ(N), is
formulated as follows:

Ω(N,Γ) = min
n∑
i=1

λi
µIN,i(Γ)− λi

s.t.
n∑
i=1

µIN,i(Γ) = Γ
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µIN,i(Γ) > λi, 1 ≤ i ≤ n

It is well known, (see, e.g., [12], p. 331) that

µIN,i(Γ) = λi +
√
λi (

Γ−
∑
j∈N λj∑

j∈N
√
λj

), i ∈ N (18)

and hence

Ω(N,Γ) =
(
∑
i∈N
√
λi)

2

Γ−
∑
i∈N λj

. (19)

Finally, the derivative of Ω(N,Γ) with respect to Γ equals

dΩ(N,Γ)

dΓ
= −(

∑n
i=1

√
λi)

2

(Γ− λ(N))2
. (20)

Observe also that the game where the option of renting capacity is ex-
cluded, namely the game (N,Ω) where each coalition S ⊆ N is associated
with capacity µ(S), is a market game and therefore its core is non-empty. In
particular, this game coincides with the game G = (N,W b) for b sufficiently
small, i.e., when it is not desirable to rent any capacity, see Lemma 4.

For a general rental price b let µN,i be the optimal capacity allocated
to server i for 1 ≤ i ≤ n, and µN,0 the optimal capacity rented according
to W b(N). We also let fi(zi) = λi

zi−λi represent the steady-state congestion
cost at server i, 1 ≤ i ≤ n, as a function of the capacity zi > λi allocated to
her, and f0(z0) = −bz0 be the cost of renting z0 units of capacity. Problem
W b(N) can be written as follows:

W b(N) = min{
n∑
i=0

fi(zi)}

s.t.
n∑
i=0

zi = µ(N)

zi > λi, 1 ≤ i ≤ n

We next give an explicit expression for W b(N) defined in (17). For
that sake, we write W b(N,Θ) to show the dependence of W b(N) on the
total capacity Θ. That means that W b(N) = W b(N,µ(N)). Similarly to
Lemma 2, we have here

Lemma 4 • The function W b(N,Θ) as a function of Θ > λ(N) is con-
vex and continuously differentiable. Moreover, for any given value of
Θ > λ(N) the solution of W b(N,Θ) is unique.
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• If b is too small, specifically if

b ≤ (
∑n
i=1

√
λi)

2

(µ(N)− λ(N))2
,

no capacity is rented. In this range of b, W b(N) = Ω(N,µ(N)), and
hence W b(N) is given by (19), where Γ is replaced by µ(N). Similarly,
µN,i are given in (18), for 1 ≤ i ≤ n, replacing again Γ by µ(N), and

µ0,N = 0. Moreover, for any i ∈ N , dW b(N,Θ)
dΘ |Θ=µ(N) = dfi

dzi
|zi=µN,i =

− (
∑n

i=1

√
λi)

2

(µ(N)−λ(N))2
≤ −b.

• Otherwise, namely, if b >
(
∑n

i=1

√
λi)

2

(µ(N)−λ(N))2
,

µN,i = λi +

√
λi√
b
, 1 ≤ i ≤ n, (21)

µN,0 = (µ(N)− λ(N))−
∑n
i=1

√
λi/
√
b, and

W b(N) = 2
√
b

n∑
i=1

√
λi − b(µ(N)− λ(N)). (22)

Finally, for any i ∈ N ∪ {0}, dW b(N,Θ)
dΘ |Θ=µ(N) = dfi

dzi
|zi=µN,i = −b.

Remark 5. It is interesting to compare (15) with (21) and (16) with (22).
As discussed in subsection 4.1, the game G = (N,W b) is not a market

game. Example 6 with b = 0 can be used to show that the game G =
(N,W b) is not concave. By arguments similar to those used in the previous
subsection, we conclude that

Theorem 3 For any value for b, the game G = (N,W b) is regular, sub-
additive and homogeneous of degree one. In particular, by Theorem 1, it is
a balanced game.

As for the game (N,V b), also for the game (N,W b), it is a challenging task
to identify a core cost allocation.
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