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Abstract 

 Implementing in practice the classical mean-variance theory for portfolio selection often results in 

obtaining portfolios with large short sale positions. Also, recent papers show that, due to estimation 

errors, existing and rather advanced mean-variance theory-based portfolio strategies do not consistently 

outperform the naïve 1/N portfolio that invests equally across N risky assets. In this paper, I introduce a 

portfolio strategy that generates a portfolio, with no short sale positions, that can outperform the 1/N 

portfolio. The strategy is investing in a global minimum variance portfolio (GMVP) that is constructed 

using an easy to calculate block structure for the covariance matrix of asset returns. Using this new block 

structure, the weights of the stocks in the GMVP can be found analytically, and as long as simple and 

directly computable conditions are met, these weights are positive. 
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Portfolio Optimization Using a Block Structure for the Covariance Matrix 

I. Background 

 According to the seminal work of Markowitz (1952, 1959) an investor who cares only about the 

mean and variance of portfolio returns should hold a portfolio on the efficient frontier. Implementing in 

practice the mean-variance theory of Markowitz requires estimating the means and covariances of asset 

returns, and often results in obtaining portfolios with large short sale positions. This is true both when the 

means and covariances are estimated by the traditional sample mean vector and the traditional sample 

covariance matrix respectively, as well as by more advanced estimation techniques.
1
   

 Obtaining portfolios with short sale positions might be considered a drawback, since often short 

selling is restricted by regulators, in many cases investment policies of mutual funds prohibit taking short 

positions, and many individual investors find short selling onerous or impossible.
2
 To the extent that short 

sales are indeed considered an undesirable feature of portfolio optimization, there is some interest in 

finding ways to produce efficient portfolios with long-only positions (henceforth—long-only portfolios). 

 Specifically, there is some interest in obtaining a long-only global minimum variance portfolio 

(henceforth—GMVP), which is, in the mean-variance framework, the portfolio on the efficient frontier 

with the smallest return variance.
3
 The interest in the GMVP stems from the fact that several empirical 

studies show that in practice out-of- sample (ex-post) the GMVP performs at least as well as other frontier 

                                                 

1
 See for example: Ledoit and Wolf (2003), Jagannathan and Ma (2003), DeMiguel et al. (2009), and Disatnik and 

Benninga (2007).    

2
 See for example regulation SHO of the U.S Securities and Exchange Commission (SEC), 

http://www.sec.gov/spotlight/shortsales.htm. Almazan et al. (2004) report that over the 1994-2000 period 69% of 

their sample U.S. domestic equity mutual funds were not allowed to short.   

3
 Note that in practice the GMVP often includes less extreme short sale positions than other efficient portfolios (see 

for example Jagannathan and Ma [2003]). Yet, these short sale positions are still quite significant (see for example 

Disatnik and Benninga [2007]).  
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portfolios, even when the performance is evaluated based on measures related to both the return mean and 

variance (as opposed to the variance alone), such as the ex-post Sharpe ratio.
4
 The common explanation 

for the relatively good ex-post performance of the GMVP is that the derivation of the GMVP requires 

estimating only the covariance matrix of asset returns, whereas for other efficient portfolios we have to 

estimate the means of asset returns as well, and that significantly adds to the estimation error.5    

 One way to obtain a long-only GMVP (as well as other long-only frontier portfolios) is by 

imposing on the optimization problem short sale constraints that prevent the portfolio weights from being 

negative (constrained optimization). Yet, at least from a theoretical point of view, this procedure is 

problematic, as it generates a portfolio whose weights can only be found numerically and not 

analytically.
6
 Another issue with imposing the short sale constraints, as noted by Black and Litterman 

(1992), is that they generate "corner" solutions with zero weights in many assets, implying that the short 

sale constraints actually harm diversification. 

 In this paper, I introduce a new structure for the covariance matrix of asset returns—the block 

structure—which under simple and directly computable conditions generates (in an unconstrained 

optimization) a long-only GMVP whose weights can be found analytically. These conditions can 

maintain diversification, as they do not necessarily impose "corner" solutions with many zero weights.     

 To construct a block covariance matrix, one divides the portfolio's stocks into several groups 

(blocks). Within each block, the covariance between stocks is identical for all pairs of stocks in the block. 

The covariance between stocks from different blocks is also identical for all pairs. Thus, in the block 

structure, the number of covariances associated to each stock is reduced to two; the covariance with the 

                                                 

4
 See for example: Jorion (1985, 1986, 1991), Jagannathan and Ma (2003), and DeMiguel et al. (2009). 

5
 Jagannathan and Ma (2003), for instance, note that "the estimation error in the sample mean is so large that nothing 

much is lost in ignoring the mean altogether when no further information about the population mean is available."    

6
 To obtain a solution for the constrained optimization problem, an iterative procedure, based on the Kuhn-Tucker 

conditions, is commonly used. 
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other stocks in the same block (the within-block covariance) and the covariance with the stocks from the 

other blocks (the between-block covariance).    

 I show that the weights of a GMVP constructed using the block matrix can be written as a 

function of the stock variances and covariances (namely, going further than the general solution for the 

unconstrained problem 
GMVP

= -1 T -1
w Σ 1 1 Σ 1 , where 

-1
Σ denotes the inverse matrix of the covariance 

matrix and 1 [
T1 ] denotes a vector [a transpose vector] of ones). In essence, adding the conditions that: 1. 

the variance of each stock is greater than both its within-block covariance and its between-block 

covariance, and 2. the within-block covariances are not smaller than the between-block covariance is 

sufficient to ensure obtaining a long-only GMVP.    

 I find the block structure appealing from an implemental perspective. It requires the estimation 

only of the variances and a relatively small number of covariances, thus reducing the severe sampling 

error caused by having to estimate the whole covariance matrix. The condition that the variance of each 

stock is greater than its two associated covariances implies that we deal with relatively small covariances.  

Namely, like the shrinkage estimators, advocated by Ledoit and Wolf (2003, 2004), and the portfolios of 

estimators, advocated by Jagannathan and Ma (2000), Bengtsson and Holst (2002), and Disatnik and 

Benninga (2007), the block matrix has the appealing property of off-diagonal elements which are shrunk 

compared to the typically large off-diagonal elements of the traditional sample matrix. In addition, the 

sufficient conditions that ensure obtaining a long-only GMVP allow for nonnegative covariances—a 

robust characteristic of the U.S. stock market.
7
   

 I demonstrate empirically that even a rather simple example of the block matrix that I use for 

constructing the GMVP performs well. In a New York Stock Exchange (NYSE) dataset, the GMVP 

constructed using the block matrix outperforms the 1/N portfolio that invests equally across N risky 

assets, and which was recently highlighted by the comprehensive study of DeMiguel et al. (2009). They 

                                                 

7
 See for example: Chan et al. (1999) and the 2002 yearbook of Ibboston Associates.    



 4

show that, due to estimation errors, existing and rather advanced mean-variance theory-based portfolio 

strategies do not consistently outperform the naïve 1/N portfolio. In addition, Duchin and Levy (2009) 

show that that the 1/N portfolio outperforms relatively small mean-variance theory-based portfolios. My 

finding, on the other hand, may suggest that the mean-variance theory could be useful in practice, and is 

in line with Tu and Zhou (2009) who reach the same conclusion. The GMVP constructed using the block 

matrix also outperforms the value-weighted market portfolio from the CAPM world.     

 This study also continues previous studies that deal with analytical conditions related to long-only 

efficient portfolios. Rudd (1977), which corrects Roll (1977), goes in the opposite direction to mine and 

shows that if the GMVP is long-only and the inverse of the covariance matrix has positive diagonals and 

non-positive off-diagonals, then the variance of every individual stock is larger than each of its associated 

covariances. Roll and Ross (1977) bring a theorem that can be used to obtain conditions on a structure of 

a covariance matrix that generates a long-only GMVP. However, the conditions of this theorem are not 

computed as easily as mine. Kandel (1984) shows that for any set of N-1 assets, an N
th
 asset can be 

analytically constructed such that a long-only efficient portfolio will be obtained; however, as Levy and 

Ritov (2001) show, in large markets this N
th
 asset might be very unrealistic.   

 Green (1986) (which is slightly modified by Nielsen [1987]), by employing duality theory, 

presents necessary and sufficient conditions for efficient portfolios other than the GMVP to be long-only, 

as well as another set of necessary and sufficient conditions for obtaining a long-only GMVP. These 

conditions involve the feasibility of portfolios that have non-negative correlation with all assets and 

positive correlation with at least one. Also Best and Grauer (1992) derive general necessary and sufficient 

conditions for obtaining long-only efficient portfolios. They show that either there is no long-only 

efficient portfolio or there is a single segment of the efficient frontier for which all the portfolios are long-

only. Best and Grauer's (1992) conditions are based on a scalar parameter that can be interpreted as an 

investor's risk tolerance parameter. A typical criticism regarding the conditions of Green (1986) and Best 

and Grauer (1992) might be that they are not always constructive.  
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 The remainder of this paper proceeds as follows: First, I present the block structure. Then, I 

discuss some implemental aspects of the block structure and present the empirical illustration of its 

performance. I conclude the paper with a brief summary. 

 

II. The block structure  

 I start with the special case of a two-block matrix. I assume a universe with n stocks. A 

covariance matrix Σ  is said to be two-block if it has the following form: 

2
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Here j and n-j are the sizes of the two blocks (j and n-j are not necessarily equal), 
2

i
s  are the variances, η1 

and η2 are the within-block covariances, and η is the between-block covariance. 

 Proposition 1 below characterizes sufficient conditions on 1 2,  and η η η  under which the two-

block matrix produces (in an unconstrained optimization) a long-only GMVP. Note that the proposition’s 

conditions guarantee not only obtaining a long-only GMVP but also that the two-block matrix is an 

invertible covariance matrix. Without further restricting 1 2,  and η η η , the conditions derived are a bit 

messy. Yet, restricting 1 2,  and η η η  to be nonnegative generates simple and directly computable 

conditions: 1. the variance of each stock is greater than both its within-block covariance and its between-

block covariance, and 2. the within-block covariances are not smaller than the between-block covariance.  
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 Proposition 1: Suppose that Σ  is a two-block matrix. Then ΣΣΣΣ produces a long-only GMVP if the 

following conditions on 1 2,   and η η η  hold: 
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Proposition 1 is proved in the appendix to the paper. 

 When 1 2,  and η η η  are restricted to be nonnegative, we get the following simple and directly 

computable sufficient conditions for which the GMVP is long-only: 

 Corollary: Suppose that Σ  is a two-block matrix and the covariances 1 2,  and η η η  are 

nonnegative. Then Σ  produces a long-only GMVP if the following conditions on 1 2,  and η η η  hold: 
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 As shown in the proof of Proposition 1, the expressions for the weight in the GMVP of a stock 

from the first and the second block are respectively:  
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 Assuming that the conditions for having a long-only GMVP hold, we can see that in each block 

the weights in the GMVP are biased towards the stocks with the relatively small variances. However, 

overall, the stocks with the smallest variances are not necessarily also those with the largest weights in the 

GMVP. That is because two more effects should be taken into consideration. The first is the differences 

between the stock variances and the within-block covariances. The second is the differences between the 

within-block covariances and the between-block covariance.
8
   

 Two special cases are: When all the covariances equal zero, we get the diagonal covariance 

matrix, for which the GMVP weights are biased towards the stocks with the smaller variances. When all 

the covariances equal a constant other than zero, the differences between the stock variances and the 

constant covariance determine the GMVP weights, implying that overall the GMVP weights are biased 

towards the stocks with the relatively small variances. We can also see that the conditions of Proposition 

1 are flexible enough to generate positive weights without harming diversification.   

  

                                                 

8
 Assume that we have four stocks, two in each block. In the first block, 

2 2

1 2 10.35, 0.37, 0.27s s η= = = ; in the 

second block, 
2

3 0.4, s = 2

4 20.5, 0.01s η= = ; and the third covariance is 0η = . The GMVP weights here are: 

1 20.23, 0.19,w w= =  3 40.32, 0.26w w= = —a larger fraction of the GMVP is invested in the stocks with the 

larger variances.   
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 I now turn to the general block matrix. I assume a universe with n stocks. A covariance matrix Σ  

is said to be a block matrix if it has the following form: 

2

1 1 1

1

1

2

1 1

2

1 2 2

2

2

2

2

2 2

2

2

2

k

k

l

p

r M M

M

t

M

M M n

s

s

s

s

s

s

s

s

η η
η η η

η
η η

η η
η

η η
η

η η

η η
η

η η
η

η η

+

 
 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
  
 

Σ

L

O O M

M O O

L

L

O O M

M O

O

L

O

L

O

M O

O
 

Here we have M blocks of stocks (which are not required to include an equal number of stocks), 
2

js , 

j=1,…,n, are the sample variances, iη , i=1,…,M, are the within-block covariances, and η is the between-

block covariance. 

 Proposition 2 below characterizes sufficient conditions on  and 
i

η η  under which the block 

matrix produces (in an unconstrained optimization) a long-only GMVP. I only present here the simple and 

directly computable conditions that are obtained when all the covariances are restricted to be nonnegative.  

Like in the special case of the two-block matrix, also for the general block matrix the sufficient conditions 

are: 1. the variance of each stock is greater than both its within-block covariance and its between-block 

covariance, and 2. the within-block covariances are not smaller than the between-block covariance. 
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 Proposition 2: Suppose that Σ  is a block matrix and the covariances , 1,...
i

i Mη =  and η are 

nonnegative. Then Σ  produces a long-only GMVP if the following conditions on  and 
i
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denotes the minimal variance in block i. Proposition 2 is proved in the appendix to the 

paper. 

 As shown in the proof of Proposition 2, the expression for the weight in the GMVP of stock j 
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 Like in the special case of the two-block matrix, also here, when the conditions for 

having a long-only GMVP hold, in each block the weights in the GMVP are biased towards the 

stocks with the relatively small variances. As before, also now, overall, the stocks with the 

smallest variances are not necessarily also those with the largest weights in the GMVP, since the 

differences between the stock variances and the within-block covariances, and the differences 

between the within-block covariances and the between-block covariance should also be taken 

                                                 

9
 I show in the appendix to the paper that expression (1) is indeed a specific case, M=2, of the general expression (2). 



 10 

into consideration. Also with the general block matrix, we can have positive weights and maintain 

diversification. 

  

III. Implemental aspects—the block matrix 

 In the previous section, I presented the block matrix. In this section, I explain why I find this 

structure appealing from an implemental perspective, and present an empirical illustration of its 

performance using historical data of NYSE stock returns.   

 First, the block structure requires the estimation only of the variances and a relatively small 

number of covariances, thus reducing the severe sampling error caused by having to estimate the whole 

covariance matrix (like in the traditional sample matrix case). As discussed in Disatnik and Benninga 

(2007), reducing the sampling error usually gives rise to specification error, since it is often done by 

imposing some form of structure on the estimation model that is being used. Therefore, in essence, the 

real goal from an estimation point of view is not just reducing the sampling error, but to find the 

covariance matrix structure that can create the optimal tradeoff between the sampling error and the 

specification error. The block structure might fit for this purpose, since it leaves enough degrees of 

freedom in respect to the number of the blocks used and the number of the stocks included in each block.  

 Second, the sufficient conditions that ensure obtaining a long-only GMVP involve relatively 

small covariances (compared to the variances on the diagonal). Namely, like the shrinkage and the 

portfolios of estimators mentioned before, the block matrix has the appealing property of off-diagonal 

elements which are shrunk compared to the typically large off-diagonal elements of the traditional sample 

matrix. This property is appealing, because the large off-diagonal elements are those responsible for the 

extreme long and short positions that are obtained so often when the mean-variance theory is 

implemented in practice. Michaud (1989) also states that inverting the sample matrix with its large off-

diagonal elements (as required by the mean-variance theory) even amplifies the sampling error.   
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 Third, the sufficient conditions that ensure obtaining a long-only GMVP allow for nonnegative 

covariances, which is appealing since generally, as mentioned before, the covariances between stocks in 

the U.S. stock market are positive.  

 To illustrate, I evaluate empirically the performance of a rather unsophisticated example of the 

block matrix. I divide the stocks into five blocks based on their market capitalization. I use the sample 

variances to estimate the variances on the diagonal, set the within-block covariance in each block equal to 

95 percent of the smallest estimated variance in that block, and set the between-block covariance to zero.  

 I evaluate the performance of the specific five-block matrix by comparing the ex-post Sharpe 

ratio of a GMVP constructed using the specific block matrix, with the ex-post Sharpe ratio of a GMVP 

constructed using the diagonal sample matrix (which can be viewed as another specific block matrix; 

covariances set to zero and sample variances on the diagonal), and with the ex-post Sharpe ratio of the 

"naïve" 1/N portfolio, in which a fraction 1/N of wealth is invested in each of the N stocks available.   

 I use the 1/N portfolio following the recent comprehensive study of DeMiguel et al. (2009), in 

which they evaluate the performance of fourteen models of portfolio selection across seven different 

datasets. Their main finding is that none of the fourteen evaluated models, including rather advanced 

models, generates consistently higher ex-post Sharpe Ratios than the naïve 1/N portfolio.
10

 Duchin and 

Levy (2009) show that that the 1/N portfolio outperforms relatively small mean-variance theory-based 

portfolios. As a result, obtaining in my illustration that the example of the block matrix performs at least 

as well as the 1/N portfolio will enable to conclude that (at least for my NYSE dataset) the block construct 

can perform well. The optimal strategy in a CAPM world is the value-weighted market portfolio. So, in 

the demonstration, I also use a benchmark value-weighted portfolio and report its ex-post Sharpe ratio.  

                                                 

10
 The advanced techniques evaluated in DeMiguel et al. (2009) include Bayesian models for estimation, the 

MacKinlay and Pastor's (2000) missing factor model, the Kan and Zhou's (2007) three-fund model, and the multi-

prior model of Garlappi et al. (2006). 
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 The block matrix is being used to construct a GMVP. Therefore, I also evaluate its performance 

using a comparison of the ex-post standard deviation of the GMVP with the ex-post standard deviations 

of the other three portfolios in the demonstration. 

 Following Chan et al. (1999), Bengtsson and Holst (2002), Jagannathan and Ma (2003), Ledoit 

and Wolf (2003), and DeMiguel et al. (2009), I use the "rolling-sample" approach for calculating the ex-

post Sharpe ratios and standard deviations in the demonstration.   

 In a nutshell, to implement the "rolling-sample" approach, given a T-month long dataset of 

monthly stock returns, I choose an estimation window (in-sample period) of length L months. In month 

t=L+1, I use the returns in the previous L months to estimate the parameters needed to each of my two 

covariance matrix estimators. Each of the covariance matrix estimators are then used to determine the 

weights in the two corresponding GMVP.  These weights are then used to compute the monthly returns 

on each of the two GMVP in the out-of-sample period from t=L+1 till t=L+k. In month t=L+k+1, I start 

the whole process all over again; namely, using the returns in the previous L months to estimate the two 

covariance matrix estimators, determining the weights in the two corresponding GMVP, and computing 

the monthly returns on the two GMVP in the out-of-sample period of k months. The process is continued 

by adding the returns of the next k months in the dataset and dropping the earliest k returns, until the end 

of the dataset is reached. The outcome of this approach is a series of T-L monthly out-of-sample (ex-post) 

returns generated by each of the two covariance matrix estimators.
 11

   

 In the same manner, but of course without a need to estimate the covariance matrix, I derive the 

series of the ex-post returns on the 1/N portfolio and the value-weighted portfolio. For the value-weighted 

portfolio, in each rebalancing point, I calculate its weights based on the market capitalization of the stocks 

included in the dataset.   

                                                 

11
 The description of the "rolling-sample" approach relies on DeMiguel et al. (2009).  
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 I subtract from each of the four ex-post return series the corresponding T-L one-month T-bill 

returns, which are extracted from Ken French's website.
12

 By that I obtain four series of ex-post excess 

returns, which enable to compute the corresponding ex-post standard deviations and Sharpe ratios. For 

series i, the ex-post Sharpe ratio,
i

SR , is defined as 
i i i

SR σ= Ζ , where 
i

Ζ  and 
i

σ  denote respectively 

the ex-post expected excess return and the ex-post standard deviation of series i. 

 I conduct the empirical evaluation six times, each time changing the length of the in-sample 

period or the length of the out-of-sample period. I use in-sample periods of 120 months (also used in 

Ledoit and Wolf [2003]) and 60 months (also used in Chan et al. [1999] and Jagannathan and Ma 

[2003]).
13

  I use out-of-sample periods of 12 months (also used in Chan et al. [1999], Jagannathan and Ma 

[2003], and Ledoit and Wolf [2003]), 24 months, and 36 months. I chose these three out-of-sample 

periods, since I believe they correspond to realistic investment horizons (see also Chan et al. [1999]). I 

use monthly returns on stocks traded on the NYSE. The stock returns are extracted from the Center for 

Research in Security Prices (CRSP) database.  The period of the study (T ) is from 1/1964 to 12/2003. 

 As an aside, each time I construct the portfolios, I do it only out of NYSE stocks whose returns 

cover the entire in-sample and out-of-sample periods used. For example, in the case of in-sample period 

of 120 months and out-of sample period of 12 months, for constructing the GMVP of 1/74, I only use 

NYSE stocks with monthly return data for all the 132 months from 1/64 till 12/74. For constructing the 

GMVP of 1/75, I only use NYSE stocks with monthly return data for all the 132 months from 1/65 till 

12/75 and so on (see also Bengtsson and Holst [2002]).
14

 

                                                 

12
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

13
 Jobson and Korkie (1981) mention rules of thumb regarding the length of the in-sample period of 4 to 7 years and 

8 to 10 years. 

14
 I am aware of the fact that this widely-followed procedure introduces survivorship bias into the estimation 

procedure. However, since the survivorship bias is common to all the compared estimators, I do not consider this a 

significant problem. 
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 The table below presents the ex-post Sharpe ratios and standard deviations obtained in the 

demonstration. The Sharpe ratios and the standard deviations are annualized through multiplication 

by 12 .  

 

12 months 24 months 36 months 12 months 24 months 36 months

My specific five-block matrix 0.67 0.66 0.65 0.68 0.65 0.63

Diagonal sample matrix 0.65 0.65 0.64 0.64 0.64 0.63

1/N portfolio 0.60 0.60 0.60 0.59 0.57 0.60

Value-weighted portfolio 0.44 0.45 0.46 0.43 0.44 0.45

12 months 24 months 36 months 12 months 24 months 36 months

My specific five-block matrix 11.49% 11.51% 11.38% 11.36% 11.40% 11.26%

Diagonal sample matrix 13.17% 13.17% 13.21% 12.95% 12.97% 12.88%

1/N portfolio 16.24% 16.18% 16.11% 16.62% 16.38% 16.31%

Value-weighted portfolio 15.21% 15.32% 15.35% 15.38% 15.49% 15.53%

Ex-Post Standard Deviations
In sample 120 months In sample 60 months

Out of sample period

Ex-Post Sharpe Ratios
In sample 120 months In sample 60 months

Out of sample period

 

This table reports the annualized ex-post Sharpe ratios and standard deviations generated by the two 

tested covariance matrix estimators, the 1/N portfolio, and the value-weighted portfolio in the six runs of 

the demonstration. 

  

 In the six runs conducted, the GMVP constructed using the five-block matrix generates the 

highest ex-post Sharpe ratios and the lowest ex-post standard deviations.
15

 Together with the findings of 

DeMiguel et al. (2009) and Duchin and Levy (2009) that rather advanced portfolio selection models do 

not perform consistently better than the 1/N portfolio, my demonstration may suggest that the block 

method could have an impact on practical portfolio choice. Future research should address the practical 

implementation of the block construct more extensively. Specifically, the following issues should be 

examined: Which criteria to use for dividing the stocks into the blocks; how many blocks to use; how to 

estimate the within-block covariances; and how to estimate the between-block covariance. 

                                                 

15
 Note that also the GMVP constructed using the diagonal sample matrix always generates higher ex-post Sharpe 

ratios and lower standard deviations than the 1/N portfolio and the benchmark value-weighted portfolio.  
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IV. Summary 

 To the extent that short sales are considered an undesirable feature of portfolio optimization, there 

is some interest in discussing long-only efficient portfolios. Specifically, there is some interest in finding 

estimators of the covariance matrix that generate a long-only GMVP, as several empirical studies show 

that ex-post the GMVP performs at least as well as other frontier portfolios. Imposing short sale 

constraints on the optimization problem, no matter which covariance matrix estimator is used, enables to 

obtain a long-only GMVP. Yet, at least from a theoretical point of view, this way is problematic, as it 

produces a GMVP whose weights can only be found numerically and not analytically. Imposing the short 

sale constraints also generates "corner" solutions with zero weights in many assets, implying that the short 

sale constraints actually harm diversification.  

 In this paper, I introduce a new structure for the covariance matrix—the block structure—which 

under simple and directly computable conditions generates (in an unconstrained optimization) a long-only 

GMVP whose weights can be found analytically. With these conditions, having positive weights can 

come not at the expense of diversification. 

 To construct a block covariance matrix, one divides the portfolio's stocks into several groups 

(blocks). Within each block, the covariance between stocks is identical for all pairs of stocks in the block.  

The covariance between stocks from different blocks is also identical for all pairs. I show that the weights 

of a GMVP constructed using the block matrix can be found analytically. These weights are positive as 

long as the variance of each stock is greater than both its within-block covariance and its between-block 

covariance, and as long as the within-block covariances are not smaller than the between-block 

covariance. 

 I find the block structure appealing from an implemental perspective, as it consists of a relatively 

small number of relatively small covariances, which can be nonnegative. I show empirically that a rather 

simple example of the block matrix that I use for constructing a GMVP performs well. The GMVP 

outperforms the 1/N portfolio which was highlighted by recent papers that find that existing and rather 

advanced mean-variance theory-based portfolio strategies do not consistently outperform the 1/N 
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portfolio. Thus, my finding may suggest that the block structure for the covariance matrix of asset returns 

could have an impact on practical portfolio choice. Future research should address more extensively the 

usage of the block matrix in practice. 
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Appendix: Proofs  

The proof of Proposition 1 

The proof consists of two phases: 

1. Finding sufficient conditions on 1 2,   and η η η  for which a long-only GMVP is obtained. 

2. Modifying the conditions to guarantee that the two-block matrix is an invertible covariance 

matrix. Namely, showing that the eigenvalues of the matrix are strictly positive, since every 

positive definite symmetric matrix is an invertible covariance matrix. 

 

Phase 1—long-only GMVP 

 Denote the first column of 
-1
Σ by:   

1

1

j

j

n

x

x

x

x

+

 
 
 
 
 
 
 
 
 
 
 
 
  
 

M

M

 

where 
-1
Σ denotes the inverse matrix of Σ . 

Then, since 
-1

ΣΣ = I : 

1

1

1

0

0

j

j

n

x

x

x

x

+

   
   
   
   
   
   
   ⋅ =
   
   
   
   
   
     

  

Σ

M

M

M
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Given the structure of Σ , writing this explicitly yields: 

(A1) 

2

1 1 1 2 1 1 2

2

1 1 2 2 1 1 2

2

1 1 1 2 1 2

2

1 2 1 1 2 2 2

2

1 2 2 1 2 2 2

1 2

1

0

0

0

0

j j j n

j j j n

j j j j n

j j j j n

j j j j n

s x x x x x x

x s x x x x x

x x s x x x x

x x x s x x x

x x x x s x x

x x

η η η η η

η η η η η

η η η η η

η η η η η

η η η η η

η η

+ +

+ +

+ +

+ + +

+ + +

+ + + + + + + =

+ + + + + + + =

+ + + + + + + =

+ + + + + + + =

+ + + + + + + =

+ +

K K

K K

M

K K

K K

K K

M

K
2

2 1 2 2 0
j j j n n

x x x s xη η η+ ++ + + + + =K

 

And therefore: 

( )

( )

( )

( )

( )

( )

2

1 1 1 1

1 1

2

2 1 2 1

1 1

2

1 1

1 1

2

1 2 1 2

1 1

2

2 2 2 2

1 1

2

2 2

1 1

1

0

0

0

0

0

j n

i i

i i j

j n

i i

i i j

j n

j j i i

i i j

j n

i j j i

i i j

j n

i j j i

i i j

j n

i n n i

i i j

s x x x

s x x x

s x x x

x s x x

x s x x

x s x x

η η η

η η η

η η η

η η η

η η η

η η η

= = +

= = +

= = +

+ +
= = +

+ +
= = +

= = +

− + + =

− + + =

− + + =

+ − + =

+ − + =

+ − + =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

M

M

 

Dividing the first j equations by 
2 2

1 1 (assuming   ,  1,..., )
i i

s s i jη η− ≠ = and dividing the last n-j 

equations by 
2 2

2 2 (assuming   ,  1,..., )
i i

s s i j nη η− ≠ = + give: 
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(A2) 

1
1 2 2 2

1 11 1 1 1 1 1

1

2 2
1 11 1

2
1 2 2

1 11 2 1 2

2

2 2
1 12 2

1

0

0

0

j n

i i

i i j

j n

j i i

i i jj j

j n

j i i

i i jj j

j n

n i i

i i jn n

x x x
s s s

x x x
s s

x x x
s s

x x x
s s

η η
η η η

η η
η η

ηη
η η

ηη
η η

= = +

= = +

+
= = ++ +

= = +

+ + =
− − −

+ + =
− −

+ + =
− −

+ + =
− −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

M

M

 

Summing the first j equations in (A2) and rearranging terms give: 

(A3) 1 2 2 2
1 1 1 11 1 1 1

1 1 1
1

j j j n

i i

i i i i ji i

x x
s s s

η η
η η η= = = = +

 
+ + = − − − 

∑ ∑ ∑ ∑  

 

Summing the last n-j equations in (A2) and rearranging terms give: 

(A4) 

2
1 2

1 1
2 2

1 2

1

1
1

n

jn
i j i

i in
i j i

i j i

s
x x

s

η
η

η
η

= +

= + =

= +

−
= −

+
−

∑
∑ ∑

∑
 

And now substituting (A4) into (A3) and rearranging terms give: 

2 2
1 2

2
1 1 1 2

1 22 2 2 2
1 1 1 11 2 1 2

1
1

1

1 1 1 1
1 1

n

j
i j i

i j jn n
i

i i j i i ji i i i

s
x

s

s s s s

η
η

η
η η η

η η η η

= +

=

= = + = = +

+
−

= ⋅
−   

+ + −  − − − −  

∑
∑

∑ ∑ ∑ ∑
 

Denote: 

2

1 22 2 2 2
1 1 1 11 2 1 2

1 1 1 1
1 1

j jn n

i i j i i ji i i i
s s s s

η η η
η η η η= = + = = +

  
∆ = + + −  − − − −  

∑ ∑ ∑ ∑  
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And therefore: 

(A5) 

2 2
1 2

2
1 1 1

1
1

1

n

j
i j i

i

i

s
x

s

η
η

η
= +

=

+
−

= ⋅
− ∆

∑
∑  

Substituting (A5) into (A4) gives: 

(A6) 

2
1 2

2
1 1 1

1

1

n

n
i j i

i

i j

s
x

s

η
η

η
= +

= +

−
−

= ⋅
− ∆

∑
∑  

 Adding equations (A5) and (A6) gives the sum of (the elements in) the first column of 
-1
Σ . Since 

-1
Σ is symmetric (because Σ is symmetric) this is also the sum of (the elements in) the first row of 

-1
Σ : 

(A7) 

( )1 2 2
1 2

2
1 1 11

1
1

1

n

n
i j i

j j

s

s

η η
η

η

−
= +

=

+ −
−

= ⋅
− ∆

∑
∑Σ  

 Generalizing the last result and finding the sum of each one of the rows of 
-1
Σ is done as follows: 

I start with the first j rows of 
-1
Σ . I repeat the above procedure [i.e., deriving equations (A1)-(A7)] j 

times. Each time the only difference is that the only row in (A1) that equals 1 moves one place ahead. For 

example, for the sum of the second row of 
-1
Σ , the second row in (A1), and not the first row, equals 1. 

Thus, the general expression for the sum of one of the first j rows of 
-1
Σ  is: 

(A8) 

( )1 2 2
1 2

2
1 1

1
1

1

n

n
i j i

j iij

s

s

η η
η

η

−
= +

=

+ −
−

= ⋅
− ∆

∑
∑Σ  

 Repeating a similar procedure n-j times and applying "symmetric considerations" enable to find 

the general expression for the sum of one of the last n-j rows of 
-1
Σ :  

(A9) 

( )1 1 2
1 1

2
1 2

1
1

1

j

n
i i

j iij

s

s

η η
η

η

−
=

=

+ −
−

= ⋅
− ∆

∑
∑Σ  
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 The vector of the GMVP weights is 

-1

T -1

Σ 1
w =

1 Σ 1
. For the weight of stock i, in the numerator we 

have the sum of row i in 
-1
Σ  and in the denominator we have the sum of (all the elements in) 

-1
Σ .  

Hence, in order to obtain the denominator, I use (A8) and (A9):  

( ) ( )2 12 2
1 12 1

2 2
1 11 2

1 1
1 1

1 1

jn

j n
i j ii i

i i ji i

s s

s s

η η η η
η η

η η
= + =

= = +

  
+ − + −  − −  = ⋅ + ⋅

  − ∆ − ∆
  

   

∑ ∑
∑ ∑T -1

1 Σ 1  

And after rearranging a bit more we get: 

(A10) 

( )1 22 2 2 2
1 1 1 11 2 1 2

1 1 1 1
2

j jn n

i i j i i ji i i i
s s s s

η η η
η η η η= = + = = +

+ + + −
− − − −

=
∆
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T -1

1 Σ 1  

 Substituting (A8), (A9) and (A10) into

-1

T -1

Σ 1
w =

1 Σ 1
gives the expressions for the weight in the 

GMVP of a stock from the first and the second block respectively:   

(A11)  

( )

( )

2 2

2

1 1 2 1 2 1 2

1 1

2

2 1 2 1 2 1 2

11
   ,   1,...,

( 2 )

11
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( 2 )

i

i

i
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A
w i j

s A A A A

A
w i j n

s A A A A

η η
η η η η

η η

η η η η
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where:  1 22 2
1 11 2

1 1
   ,    

j n

i i ji i

A A
s sη η= = +

= =
− −∑ ∑  

And now we can easily see that the vector w is strictly positive if the following set of conditions holds: 

(A12) 

( )
( )
( )

2

1

2

2

1 2

min  ,  1,...,

min  ,  1,...,

min ,

i

i

s i j

s i j n

η

η

η η η
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Phase 2—strictly positive eigenvalues 

 Σ  is a symmetric real matrix. Therefore, it has real eigenvalues and it can be diagonalized:  

1

2 0

0

n

λ

λ

λ

 
 
 = =
 
  
 

-1
R ΣR Λ

O
  

where R denotes the diagonalizing matrix, 
-1R  denotes the inverse matrix of R , andΛ denotes the 

diagonal matrix, whose diagonal elements 1,..., n
λ λ are the eigenvalues of Σ . 

Hence, ΣR = RΛ and the element ij ofΣR is given by:  

( )
1

n

ik kj j ijij
k

λ
=

= =∑ΣR Σ R R  

 This is a set of equations that determines the elements of column j in R. This set fits any column 

in R, and for the sake of convenience I omit the index j from the last expression, so we have: 

1

n

ik k i

k

λ
=

=∑Σ R R  

Now, substituting the elements of Σ  into the last expression gives: 

2

1

1, 1

2

2

1 1,

  ,  1,...,

  ,  1,...,

j n

i i k k i

k k i k j

j n

i i k k i

k k j k i

s i j

s i j n

η η λ

η η λ

= ≠ = +

= = + ≠

+ + = =

+ + = = +

∑ ∑

∑ ∑

R R R R

R R R R

 

Because 
i

R  exists i∀ , we can divide the two expressions by 
2

1

1

( )
i

sλ η− −
 and 

2

2

1

( )
i

sλ η− −
 

respectively. Therefore, after rearranging we obtain:  

1

2 2
1 11 1

2

2 2
1 12 2

0  ,  1,...,
( ) ( )

0  ,  1,...,
( ) ( )

j n

i k k

k k ji i

j n

i k k

k k ji i

i j
s s

i j n
s s

η η
λ η λ η

ηη
λ η λ η

= = +

= = +

= + = =
− − − −

= + = = +
− − − −

∑ ∑

∑ ∑

R R R

R R R
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Summing the two expressions over all the possible values of i (and replacing the index i with k) gives: 

1 2 2
1 1 1 1 11 1

22 2
1 1 1 1 12 2

1 1
 

( ) ( )

1 1

( ) ( )

j j j j n

k k k

k k k k k jk k

jn n n n

k k k

k j k j k k j k jk k

s s
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η η
λ η λ η

η η
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And after rearranging we get: 

1 2 2
1 1 1 11 1

22 2
1 1 1 12 2

1 1
1 0 
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1 1
1 0
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j j j n

k k

k k k k jk k

jn n n
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s s
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η η
λ η λ η

η η
λ η λ η
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

R R

R R

 

 These are two homogenous linear equations in two unknowns, 
1 1

 and 
j n

k k

k k j= = +
∑ ∑R R . It can be 

shown that 
1 1

 and 
j n

k k

k k j= = +
∑ ∑R R cannot both equal zero. A set of homogenous linear equations has a 

solution other than the zero solution, if and only if its determinant equals 0. Therefore, and since 

1 1

 and 
j n

k k

k k j= = +
∑ ∑R R exist, we get:

16 
 

2

1 22 2 2 2
1 1 1 11 2 1 2

1 1 1 1
1 1

( ) ( ) ( ) ( )

j jn n

k k j k k jk k k k
s s s s

η η η
λ η λ η λ η λ η= = + = = +

  
− − =  − − − − − − − −   

∑ ∑ ∑ ∑  

Denote: 

( ) ( )1 22 2
1 11 2

1 1
F    and   F

( ) ( )

j n

k k jk k
s s

λ λ
λ η λ η= = +

= =
− − − −∑ ∑  

Therefore, the last equation becomes: 

( ) ( ) ( ) ( )2

1 1 2 2 1 2F 1 F 1 F Fη λ η λ η λ λ− − =        

                                                 

16
 

1 1

 and 
j n

k k

k k j= = +
∑ ∑R R exist because the diagonalizing procedure is well defined here. 
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Σ is finite. Thus, 
2

1 2,   ,   and 
k

s kλ η η∀  are finite, and therefore ( )F 0 ,  1,2i iλ ≠ = . Hence, we can 

divide the last expression by ( ) ( )1 2F Fλ λ and obtain: 

(A13) 
( ) ( )

2

1 2

1 2

1 1
   

F F
η η η

λ λ

   
− − =   

   
 

It can be shown that for 0λ ≤ : 
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1F

  ,  1

       where 

  ,  2
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j

k

i n

k j

i

s

i

i

λ
η

=

= +

−∞ < ≤ − =

−
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∑

∑
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And therefore: 

(A14) 
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1 1
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1F
i i

i
i

k i

i

s

η η λ
λ

η

∞ > − ≥ + = ≤
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Now, I assume that: 

(A15) 1 2

22
11 21

1 1
    ,    

11j n

k jk kk
ss

η η

ηη = +=

> − > −

−−
∑∑

 

Thus, from (A14) and (A15) we obtain that: 

( ) ( )1 2 1 2

1 2
22

11 21

1 1 1 1
   ,  0

11F F
j n

k jk kk
ss

η η η η λ
λ λ

ηη = +=

  
     
  − − ≥ + + ≤   
     
  −−   

∑∑
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And if we also assume: 

(A16) 
2

1 2

22
11 21

1 1

11j n

k jk kk
ss

η η η

ηη = +=

  
  
  + + >
  
  −−   

∑∑
 

Then: 

( ) ( )
2

1 2

1 2

1 1
   ,   0

F F
η η η λ

λ λ

   
− − > ≤   

   
 

which means that under the conditions in (A15) and (A16) there are no nonpositive eigenvalues for which 

equation (A13) holds. Now, since equation (A13) holds under the conditions in (A15) and (A16), it means 

that under the conditions in (A15) and (A16) equation (A13) holds only for strictly positive eigenvalues. 

In other words, the conditions in (A15) and (A16) are sufficient to ensure thatΣ is positive definite.
17

  

 Because of (A15), I can denote: 

12 1 2

22
11 21

1 1

11j n

k jk kk
ss

η η η

ηη

∗

= +=

  
  
  = + + +
  
  −−   

∑∑
  

And to write again the set of the sufficient conditions from (A15) and (A16) as follows:  

 1 2 12 12

22
11 21

1 1
    ,       ,   -

11j n

k jk kk
ss

η η η η η

ηη

∗ ∗

= +=

> − > − < <

−−
∑∑

 

 

 

 

                                                 

17
 It can be shown that these sufficient conditions are also necessary. However, I do not show it here, as my goal is 

to find a set of sufficient conditions on 1 2,   and η η η . 
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It can be shown that: 

( )

( )

2

1 1 1

2
1 1

2

2 2 2

2
1 2

1
        - < min    ,   1,...,    

1

1
      - < min    ,   1,...,  

1

kj

k k

kn

k j k

iff s k j

s

iff s k j n

s

η η η

η

η η η

η

∗

=

∗

= +

> − ≤ =

−

> − ≤ = +

−

∑

∑

 

where 1η
∗

and 2η
∗

 are respectively the unique solutions of the following equations: 

1 22 2
1 11 2

1 1
1     and    1

j n

k k jk ks s
η η

η η
∗ ∗

∗ ∗
= = +

= =
+ +

∑ ∑  

To sum up,Σ is positive definite if the following set of conditions holds (note that I replace the index k 

with i): 

(A17) 

( )
( )

2

1 1

2

2 2

12 12

- < min    ,   1,...,    

- < min    ,   1,...,

-

i

i

s i j

s i j n

η η

η η

η η η

∗

∗

∗ ∗

≤ =

≤ = +

< <

 

 Now, combining the sets of conditions from (A12) and (A17) gives the sufficient conditions of 

Proposition 1.              

Q.E.D. 

 

The proof of Proposition 2  

 The first stage of the proof is to derive the weights of the GMVP by directly finding the sums of 

the rows in the inverted covariance matrix (i.e., without first finding the individual elements of the 

inverted matrix). For the special case of the two-block matrix, I enclosed a detailed proof for this stage 

(see phase 1 in the proof of Proposition 1). The same procedure is applied when there are more than two 

blocks, but due to technical difficulties, it becomes more and more tedious as the number of blocks 

increases.  
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 Here, with the help of the Mathematica software, I present the general expression for the weight 

of stock j from block i (i=1,…,M ; j=1,..., 
i

Z , where 
i

Z  denotes the number of stocks in block i): 

... ... ; , , ..., ...,1; , 1; ; , , , 1; ; , ,

2

1

1 ... ... ...
1

M M M

k k l k l r k l r t M
k l r t M k l r t M ik k i k l k l k l i k l r k l r k l r i

j M

j i
i i

i

B B B B B B B B B B B

w
s

AC
η

< < < < ≠= ≠ = < ≠ = < < ≠

=

+ + + + +
= ⋅

−

∑ ∑ ∑

∑
 

where: ( )
2

1

1
     ,      ,   1,...,

iZ

i i i i

j j i

A B A i M
s

η η
η=

= = − =
−∑  

and   
... ... ; , , ..., ...,1; , 1; ; , , , 1; ; , ,

1 ... ... ...
M M M

i k k l k l r k l r t M
k l r t M k l r t M ik k i k l k l k l i k l r k l r k l r i

C B B B B B B B B B B B
< < < < ≠= ≠ = < ≠ = < < ≠

= + + + + +∑ ∑ ∑  

For example, in a two-block matrix, the weight of stock j from block 1 is: 

( )2 22
12 2

1 1 2 2 1 1 1 2 1 2 1 2

11 1 1
  ,   1,...,

(1 ) (1 ) ( 2 )
j

j j

AB
w j Z

s A B A B s A A A A

η η
η η η η η

+ −+
= ⋅ = ⋅ =

− + + + − + + + −
 , as we 

had in Proposition 1. In a four-block matrix, for instance, the weight of stock j from block 3 is:  

1 2 4 1 2 1 4 2 4 1 2 4
342

3

1

1 1
 ,   1,...,

j

j
i i

i

B B B B B B B B B B B B
w j Z

s
AC

η
=

+ + + + + + +
= ⋅ =

− ∑
. 

 If 0 minvar  
i i

iη≤ < ∀ , where minvar
i
 denotes the minimal variance in block i, then 

2

1
 ,  0  and  , 1,...,

i

j i

A i j j n
s η

> ∀ ∀ =
−

. If also ( )0 min iη η≤ ≤ , then 0 ,  0 
i i

B C i≥ > ∀ . Thus, 

together these two conditions are sufficient to ensure obtaining a long-only GMVP that is constructed 

using the general block matrix. 

Q.E.D. 

 


