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Matching of like rank and the size of the core

in the marriage problem ∗

Ron Holzman† and Dov Samet‡

Abstract

When men and women are objectively ranked in a marriage problem,
say by beauty, then pairing individuals of equal rank is the only stable
matching. We generalize this observation by providing bounds on the size
of the rank gap between mates in a stable matching in terms of the size
of the ranking sets. Using a metric on the set of matchings, we provide
bounds on the diameter of the core—the set of stable matchings—in terms
of the size of the ranking sets and in terms of the size of the rank gap.
We conclude that when the set of rankings is small, so are the core and
the rank gap in stable matchings.

1 Introduction

1.1 Matching of likes

When considering the dazzling world of stardom and glamor we are not at all
surprised to see Angelina Jolie and Brad Pitt as a couple. Both are highly
ranked in this world, and their match seems natural. We would be bewildered,
on the other hand, to see Jolie matched up with another man of this world
whose physical appearance ranks much lower than hers. Such a man, so we
expect, would be naturally matched with a woman ranked like him.

Those who are not familiar with the world of entertainment, may find it
easier to relate to a similar mating of likes in the academic arena. Highly ranked
scholars are affiliated, more often than not, with top-tier universities, while those
who are academically less attractive are affiliated with lesser universities.

1.2 Matching of like trait and of like rank

The phenomenon of matched people being similar in terms of traits like beauty,
intellect, and education is called (positive) assortative matching. The model
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used by Becker (1973) to study the economic theory of marriage gives rise,
under certain conditions, to assortative matching. The main elements in this
model are the quantified traits of individuals and the production function that
associates with the traits of a pair of individuals of different gender the output
produced when they are matched.

Here we examine the phenomenon of matching likes in the elementary mar-
riage problem introduced by Gale and Shapley (1962). Unlike Becker’s model,
in a marriage problem, individuals are not endowed with objective traits, and
their preferences are not expressed in terms of an objective cardinal production
function. Rather, subjective preferences are given by specifying for each indi-
vidual an ordinal ranking of the opposite gender. The solution for a marriage
problem is its core, which consists of the stable matchings. A matching is stable
if there is no pair of individuals of different gender who are not matched to
each other, but prefer to be matched to each other than to their mates. Since
individuals in a marriage problem do not have traits, we cannot describe the
phenomenon of matching of likes as matching of like traits. Instead we describe
it as matching of like rank, which requires some clarification.

1.3 The case of a universal ranking

Although the ranking of individuals in a marriage problem is not necessarily
derived from some objective trait, there is a simple case in which a marriage
problem can be thus interpreted, namely, the case that rankings are universal.
That is, all men rank women in the same way and all women rank men in the
same way. Here we can say that the ranking reflects an objective measuring of
a trait.

The analysis of this case is simple. Matching pairs of equal rank is the only
stable matching for such a problem. Moreover, even if only one side, say the
men, are universally ranked there still exists only one stable matching. In this
case each man is matched to a woman whom he ranks at least as high as his
objective rank.

We can conclude that universal ranking is associated with the smallest pos-
sible core, and the equality of rank of matched individuals.

1.4 Correlated rankings

Obviously, the assumption of a universal ranking is too strong. We can hardly
expect a unanimous, universal ranking in anything that involves human beings.
Our purpose here is to quantify the notion of “matching of like rank” so that
we can say for any marriage problem to what extent individuals are matched
with their likes in stable matchings.

We can expect matching of likes to the extent that we can identify some
objective component in the rankings, that is, if individual rankings are positively
correlated which reflects a partial agreement on some hidden trait. This may
indeed often be the case. Beauty, for example, is indeed in the eyes of the
beholder. Nevertheless, in a given culture there is a great deal of agreement
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in the judgement of beauty, and rankings of beauty are positively correlated.
Similarly, scholars may differ on the ranking of universities, but in all rankings
Harvard is among the top, say, ten universities. Here, we use the bound on
the range of ranks of each individual in a set of rankings as a measure of the
positive correlation of the rankings in this set. The smaller the bound the more
objective are the rankings. Thus, we expect that the smaller this bound, the
greater is the similarity between matched pairs in stable matchings, and the
smaller is the core.

1.5 Like rank and the size of the core

The notion of like rank is obvious in the case of universal ranking on both
genders, because rank in this case is uniquely defined. But when ranking is not
universal there is no objective rank to serve as a basis for comparison. Instead
we adopt a subjective measure of like rank. The alikeness of rank of two matched
individuals is measured by the difference between their ranks according to the
rankings of these two individuals. We call the absolute value of this difference
the rank gap for this pair of individuals.1 To the extent that individual rankings
are close and therefore reflect an objective component, the rank gap serves as
proxy to the comparison of objective ranks.

The size of the core of a marriage problem can be easily measured. From
the point of view of a woman, the core is small if the ranks of the men she is
matched to in the two optimal stable matchings are close. The core is small for
the women if it is small for them on average. A similar measure of the size of
the core can be defined for men.

1.6 The main results

Equipped with precise definitions of the above mentioned measures we give here
bounds on the size of the core and on the rank gap in terms of the size of the
sets of rankings. In particular it follows that when these sets are small, that is,
when rankings are close to being objective, then the set of stable matchings is
small and the rank gap is also small. We show, moreover, that the size of the
core has a bound in terms of the rank gap of the two optimal stable matchings.

1.7 Related work

The empirical relation between positively correlated rankings and the size of
the core in the college admission problem, was observed by Roth and Peranson
(1999):

“One factor that strongly influences the size of the set of stable
matchings (which coincides with the core in this simple model) is the

1If we think of the ranking as ordering the opposite gender according to “love” then the
rank gap of a matched pair measures precisely the term “more” when one of them complains
to the other “I love you more than you love me”.
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correlation of preferences among programs and among applicants.
When preferences are highly correlated (i.e., when similar programs
tend to agree which are the most desirable applicants, and applicants
tend to agree which are the most desirable programs), the set of
stable matchings is small.”

The theoretical result here is one possible formalization of this observation.
Caldarelli and Capocci (2001) and Boudreau and Knoblauch (2010) studied

correlation of rankings via statistical simulation. They introduce an objective
trait of agents measured numerically, and assigning the value of this trait to
individuals by random variables, they generate correlated and intercorrelated
rankings. The simulations are restricted to the optimal matchings obtained by
the deferred acceptance algorithm. Their main interest is in gender satisfaction,
which is the sum of the ranks of the women by their mates in the optimal
matchings.

Eeckhout (2000) and Clark (2006) gave conditions on the preferences that
are sufficient for the uniqueness of stable matchings. However, they did not
investigate conditions under which the set of stable matchings, though not nec-
essarily a singleton, must be small.

2 Preliminaries

A ranking of a nonempty finite set X is a bijection r : X → {1, . . . , |X|}. If
r(x) < r(x′) we say that r ranks x higher than x′.

A marriage market is a tuple (M,W,RM , RW ) where M and W are dis-
joint sets of finite size n > 0 of men and women , called the two sides of
the market, RM = (rm)m∈M is an n-tuple of rankings of W by the men, and
RW = (rw)w∈W is an n-tuple of rankings of M by the women. We refer also
to RM and RW as the sets of rankings in each n-tuple correspondingly. No
confusion will result.

A matching is a set of pairs µ = {(m,w)} which is the graph of a bijection
of M and W . For each man m we denote by µ(m) the unique woman w such
that (m,w) ∈ µ. For each woman w, µ(w) is similarly defined.

A pair (m,w) blocks the matching µ if rm(w) < rm(µ(m)) and rw(m) <
rw(µ(w)). The matching µ is stable if no pair blocks it. The core, C, of the
marriage problem is the set of all its stable matchings. There exists a man-
optimal stable matching, µM , that satisfies for each m and w, rm(µM (m)) =
minµ∈C rm(µ(m)), and rw(µM (w)) = maxµ∈C rw(µ(w)). Similarly, there exists
a woman-optimal stable matching µW with the corresponding properties.

3 From universal ranking to general ranking

We say that one of the sides of a marriage problem is universally ranked if
it is ranked in the same way by all the individuals of the other side. If, say, the
men are universally ranked as m1, . . . ,mn, then it is easy to check that in any
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stable matching m1 must be matched to his top choice, m2 must be matched
to his highest choice among the remaining n− 1 women, and so on. This leads
to the following consequences:

(i) If one of the sides, say M , is universally ranked, then there exists a unique
stable matching.

(ii) In this matching each man ranks his spouse at least as high as she ranks
him.

(iii) Consequently, when both sides are universally ranked, then individuals
who are matched in the unique stable matching, have the same rank.

In this section we generalize these three results by relating each pair in the
following list:

• The size of the sets of rankings;

• the size of the gap between the ranks that spouses rank each other in
stable matchings;

• the size of the core.

In particular, it follows that when rankings are close the set of stable match-
ings is small and the gap between the ranks of the individuals who are matched
in a stable matching is also small.

3.1 The ranking sets and the rank gap

Given a set R of rankings of a set X, the displacement of x ∈ X is δ(x) =
maxr∈R r(x) − minr∈R r(x). We use the maximal displacement, ∆max(R) =
maxx∈X δ(x) and the average displacement, ∆av(R) = (1/n)

∑
x∈X δ(x) as mea-

sures of the size of R.
The rank gap of a pair (m,w) ∈M×W is γ(m,w) = |rm(w)−rw(m)|. The

disparity of the mutual rankings of spouses in a given matching µ is measured
by the maximal rank gap in µ, Γmax(µ) = max(m,w)∈µ γ(m,w) and the average
rank gap in µ, Γav(µ) = (1/n)

∑
(m,w)∈µ γ(m,w).

The next theorem generalizes (ii).

Theorem 1 For each stable matching µ and (m,w) ∈ µ,

(1) rm(w)− rw(m) ≤ 2∆max(RW ).

Proof: Let µ be a stable matching and (m,w) ∈ µ. Man m ranks rm(w) − 1
women higher than w. By the stability of µ each one of these rm(w)− 1 women
is matched to a man she ranks higher than m. We now compute an upper bound
on the number of men that can be ranked higher than m by at least one woman.
Obviously, rm(w)− 1 cannot exceed such an upper bound.
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Let rw0
(m) = maxw′∈W rw′(m). If a man is ranked higher than m by some

woman, then his rank is rw0
(m) − 1 or higher. For each man m′ and woman

w′, |rw′(m′) − rw0
(m′)| ≤ δ(m′). Thus if rw0

(m′) > rw0
(m) − 1 + δ(m′), then

for every woman w′, rw′(m′) > rw0
(m)− 1. Thus, all men ranked by w0 lower

than rw0(m) − 1 + ∆max(RW ) cannot be ranked by any woman rw0(m) − 1 or
higher. Thus, at most rw0(m) − 1 + ∆max(RW ) men can be ranked above m.2

As at least rm(w)− 1 men are ranked above m we conclude

(2) rm(w)− 1 ≤ rw0(m)− 1 + ∆max(RW ).

Also,

(3) rw0
(m)− rw(m) ≤ δ(m).

Adding (2) and (3) we have rm(w)−rw(m) ≤ ∆max(RW )+δ(m) ≤ 2∆max(RW ).

Claim (ii) is a special case of this theorem for ∆max(RW ) = 0. We next
generalize claim (iii).

Corollary 1 For any stable matching µ,

(4) Γmax(µ) ≤ 2 max{∆max(RW ),∆max(RM )}.

Proof: By (1) and the analogous bound rw(m) − rm(w) ≤ 2∆max(RM ) we
conclude that for each stable matching µ and pair (m,w) ∈ µ, |rw(m)−rm(w)| ≤
2 max{∆max(RW ),∆max(RM )}, from which (4) follows.

By this corollary, when ranking is universal on both sides, the rank gap of any
stable matching vanishes, as claimed in (iii). This also implies the uniqueness
of the stable matching, since when rankings are universal there is only one
matching for which the rank gap vanishes.

When the maximal displacement is much larger than the average one, the
upper bound on the maximal rank gap obtained above may not be useful. Hence
we proceed to establish an upper bound in terms of average displacements.

Theorem 2 For every stable matching µ and any subset M0 of M ,

(5)
∑
m∈M0

[rm(µ(m))− rµ(m)(m)] ≤
∑
m∈M0

δ(m) +
∑
m′∈M

δ(m′) ≤ 2n∆av(RW ).

Proof: Let µ be a stable matching and M0 ⊆M . Consider a man m ∈M0. As
in the proof of Theorem 1, by the stability of µ, we can find rm(µ(m))− 1 men
m′, each of them satisfying

(6) rµ(m′)(m
′) < rµ(m′)(m).

2For ∆max(RW ) = k ≥ 1 a tighter bound holds. At most rw0 (m) − 2 + k men can be
ranked above m, because m is among the rw0 (m) − 1 + k men ranked highest by w0. Thus,
for k ≥ 1 the bound of (1) can be improved to 2∆max(RW )− 1. For k = 0, m is not included
among the rw0 (m)− 1 + k highest ranked men.
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Given any fixed woman and any rank i, she can rank at most i−1 of those men
m′ in ranks 1, . . . , i− 1. Taking i = maxw∈W rw(m), we conclude that at least
rm(µ(m))−maxw∈W rw(m) of the men m′ satisfy

(7) max
w∈W

rw(m′) ≥ max
w∈W

rw(m).

Denote by Pm the set of men m′ satisfying (6) and (7). As shown, we have
|Pm| ≥ rm(µ(m))−maxw∈W rw(m). Doing this for each m ∈M0 separately, we
get a system of sets Pm, m ∈M0, with union P = ∪m∈M0Pm. For each m′ ∈ P ,
let Qm′ = {m ∈ M0|m′ ∈ Pm}. Such a man m′ satisfies (6) with respect to
every m ∈ Qm′ , and therefore

(8) rµ(m′)(m
′) ≤ max

m∈Qm′
rµ(m′)(m)− |Qm′ | ≤ max

m∈Qm′
max
w∈W

rw(m)− |Qm′ |.

On the other hand, since m′ satisfies (7) with respect to every m ∈ Qm′ , we get

(9) max
w∈W

rw(m′) ≥ max
m∈Qm′

max
w∈W

rw(m).

Combining (8) and (9), we obtain that δ(m′) ≥ |Qm′ |. This yields∑
m∈M0

[rm(µ(m))− max
w∈W

rw(m)] ≤
∑
m∈M0

|Pm| =
∑
m′∈P

|Qm′ |(10)

≤
∑
m′∈P

δ(m′) ≤
∑
m′∈M

δ(m′).

We also have

(11)
∑
m∈M0

[max
w∈W

rw(m)− rµ(m)(m)] ≤
∑
m∈M0

δ(m),

and upon adding (10) and (11) we get (5).

Corollary 2 For any stable matching µ,

(12) Γav(µ) ≤ 2(∆av(RW ) + ∆av(RM )).

Proof: Given a stable matching µ, let M0 be the set of men m for whom
rm(µ(m)) > rµ(m)(m), and let W0 be the set of women w for whom rw(µ(w)) >
rµ(w)(w). Adding (5) and the analogous bound for the subset W0 of W , and
dividing by n, we obtain (12).

3.2 The size of the core

We now provide bounds on the size of the core in terms of the size of the
ranking sets and the rank gap. For this we define two metrics on matchings.
The woman-metric on matchings, dW , is defined for each pair of matchings
µ1 and µ2 by

dW (µ1, µ2) = (1/n)
∑
w∈W

|rw(µ1(w))− rw(µ2(w))|.
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The man-metric dM is similarly defined. The diameters of the core with re-
spect to the metrics dW and dM are denoted by DW (C) and DM (C) correspond-
ingly. For stable matchings µ1 and µ2, |rw(µ1(w))−rw(µ2(w))| ≤ rw(µM (w))−
rw(µW (w)) for each w. Thus, DW (C) = (1/n)

∑
w∈W [rw(µM (w))−rw(µW (w))],

and a similar expression holds for DM (C).
The following theorem generalizes (i).

Theorem 3
DW (C) ≤ ∆av(RW ).

Proof:

DW (C) = (1/n)
∑
w∈W

[rw(µM (w))− rw(µW (w))]

= (1/n)
∑
m∈M

[rµM (m)(m)− rµW (m)(m)]

≤ (1/n)
∑
m∈M

δ(m)

= ∆av(RW ).

When one side of the market is universally ranked, then by Theorem 3,
DW (C) = 0 or DM (C) = 0, and in either case C is a singleton. Thus, claim (i)
is a special case of the theorem.

In the next theorem, the size of the core is bounded in terms of the average
gap of the woman and man optimal matchings.

Theorem 4
DM (C) +DW (C) ≤ Γav(µM ) + Γav(µW ).

Proof: Define SMM =
∑
m∈M rm(µM (m)) and SMW =

∑
m∈M rm(µW (m)),

and define SWW and SWM similarly. Then DM (C) = (1/n)[SMW − SMM ] and
DW (C) = (1/n)[SWM − SWW ]. Next, observe that

|SWM − SMM | = |
∑
w∈W

rw(µM (w))−
∑
m∈M

rm(µM (m))|

= |
∑
w∈W

rw(µM (w))−
∑
w∈W

rµM (w)(w)|

≤
∑
w∈W

|rw(µM (w))− rµM (w)(w)|

= nΓav(µM ),

and similarly, |SMW − SWW | ≤ nΓav(µW ). Thus,
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DM (C) +DW (C) = (1/n)[SMW − SMM + SWM − SWW ]

≤ (1/n)[|SWM − SMM |+ |SMW − SWW |]
≤ Γav(µM ) + Γav(µW ).

The following is an immediate corollary of this theorem.

Corollary 3 If the rank gaps in the man-optimal and the woman-optimal match-
ings vanish, then there exists a unique stable matching.

3.3 Examples and counterexamples

We present here a few constructions of marriage markets, showing that some of
the bounds proved above are tight, and indicating that certain variants of these
bounds do not hold in general.

Our first example shows that the upper bounds in Theorem 1 and Corollary 1
are tight (in the slightly improved form given in footnote 2).

Example 1 Let k ≥ 1. Consider a market with 2k individuals on each side,
numbered as M = {m1, . . . ,m2k} and W = {w1, . . . , w2k}. Let the women be
universally ranked from top to bottom as w1, . . . , w2k. Let the rankings of the
men by the women be as follows:

wi : m1,m2, . . . ,mk,m2k,mk+1, . . . ,m2k−1 (i = 1, . . . , k)

wj : m1,mk+1, . . . ,m2k−1,m2k,m2, . . . ,mk (j = k + 1, . . . , 2k − 1)

w2k : m2k,m1, . . . ,mk−1,mk,mk+1, . . . ,m2k−1

The unique stable matching is obtained when each of the women w1, . . . , w2k in
turn gets her top choice among the still available men. This yields the match-
ing {(mi, wi)}i=1,...,2k, with rm2k

(w2k) − rw2k
(m2k) = 2k − 1. On the other

hand, it is easy to check that ∆max(RW ) = k. This shows that the upper
bound rm(w) − rw(m) ≤ 2∆max(RW ) − 1 (for ∆max(RW ) ≥ 1) is tight. As
∆max(RM ) = 0, this example also shows that one cannot replace the upper
bound 2 max{∆max(RW ),∆max(RM )} on Γmax(µ) by ∆max(RW ) + ∆max(RM ).

For the bound on the average rank gap in terms of the average displacements,
we do not have a construction meeting the upper bound. In fact, we conjecture
that the factor of 2 in the upper bounds of Theorem 2 and Corollary 2 can be
lowered to 1. The following example shows that it cannot be replaced by any
constant factor smaller than 1.

Example 2 Consider a market withM = {m1, . . . ,mn} andW = {w1, . . . , wn}.
Let the women be universally ranked as w1, . . . , wn. Let the ranking of the
men by woman wi, i = 1, . . . , n, be obtained from the ranking m1, . . . ,mn
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by promoting mi to the top of the list, while leaving the other men in the
same order. The unique stable matching is {(mi, wi)}i=1,...,n. Here the rank
gaps are 0, 1, . . . , n − 1 respectively, while the displacements of the men are
1, 2, . . . , n − 1, n − 1 respectively. Thus Γav(µ) = (n − 1)/2, ∆av(RW ) =
(n + 2)(n − 1)/(2n), and the ratio between them approaches 1 as n goes to
infinity.

According to statement (i) above, if either one of the sides is universally
ranked, then the core is a singleton. Thus, one may expect to be able to assert
that the diameter of the core in the woman-metric, DW (C), is small, not only
when ∆av(RW ) is small (as shown in Theorem 3), but also when ∆av(RM )
is small. The following example refutes this intuition, and illustrates some
additional points that we discuss below.

Example 3 Let k ≥ 2, and let n be a multiple of k, say n = k`. Con-
sider a market where the men are partitioned into ` blocks of size k each:
M i = {mi

1, . . . ,m
i
k}, i = 1, . . . , `. Similarly, the women are partitioned into

W i = {wi1, . . . , wik}, i = 1, . . . , `. Let every man rank the blocks of women as
W 1, . . . ,W `; within the blocks, the women are ranked as wi1, . . . , w

i
k, except

that for each i, the men in M i rank the women in the corresponding block W i

in a cyclic fashion:
mi
j : wij , . . . , w

i
k, w

i
1, . . . , w

i
j−1

(with subscripts taken modulo k). Every woman in W i, i = 1, . . . , `, ranks
∪ip=1M

p above the rest of the men; within this union of blocks, woman wij
ranks mi

j+1 first and mi
j last (that is, in rank ik); besides that, the rankings are

immaterial.
One may check, by induction on i, that in every stable matching the men

in M i are matched to the women in W i, i = 1, . . . , `. Within each pair
of blocks M i,W i, the man-optimal stable matching µM consists of the pairs
{(mi

j , w
i
j)}j=1,...,k, whereas the woman-optimal one µW consists of the pairs

{(mi
j+1, w

i
j)}j=1,...,k. Thus,

DW (C) =
1

k`

∑̀
i=1

k(ik − 1) =
k(`+ 1)

2
− 1.

Note that ∆av(RM ) = ∆max(RM ) = k − 1. By keeping k fixed and letting
` grow, we see that DW (C) cannot be bounded by any function of ∆av(RM )
or even ∆max(RM ). As remarked above, if ∆max(RM ) vanishes then so does
DW (C), but our construction shows that any positive value of ∆max(RM ) is
consistent with arbitrarily large values of DW (C).

We observe also that in our example DM (C) = k − 1, which shows (upon
interchanging the roles of men and women) that Theorem 3 is tight. It may
also be checked that our example gives equality in Theorem 4, thus showing its
tightness, as well.

Example 3 serves to illustrate yet another point. A different way to measure
the size of a set R of rankings of a set X would be to define a metric on R
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by d(r, r′) = (1/n)
∑
x∈X |r(x)− r′(x)|, and consider D(R) = maxr,r′∈R d(r, r′),

the diameter of R under this metric. Note that in general D(R) ≤ ∆av(R). To
calculateD(RM ) in our example, note that ifm ∈M i andm′ ∈M i′ then rm and
rm′ may differ only regarding women in W i ∪W i′ . Within W i one ranking is a
cyclic shift of the other, so in the worst case we have

∑
w∈W i |rm(w)−rm′(w)| =

bk2/2c, and similarly for W i′ . This gives

D(RM ) =
1

k`
· 2bk

2

2
c ≤ k

`
.

By keeping the ratio k/` fixed while both of them grow, we see that D(RM )
can be arbitrarily small while DM (C) is arbitrarily large. We conclude that
this alternative measure of the size of a set of rankings cannot replace ∆av in
providing an upper bound on the size of the core (or, for that matter, on the
average rank gap).

Our final question is whether there exist upper bounds, similar to Theorems 3
and 4, not only on the rank difference between mates in µM and µW for an
average individual, but for every individual. The following example gives a
negative answer.

Example 4 Consider a market withM = {m1, . . . ,mn} andW = {w1, . . . , wn}.
The women are basically ranked as w2, . . . , wn, w1, but man mi, i = 2, . . . , n−1,
swaps wi and wi+1 in his ranking, and the other two men make specific adjust-
ments as indicated:

m1 : w2, w1, w3, . . . , wn

mi : w2, . . . , wi−1, wi+1, wi, wi+2, . . . , wn, w1 (i = 2, . . . , n− 1)

mn : w2, . . . , wn−1, w1, wn

The men are basically ranked as m1, . . . ,mn, but woman wi, i = 2, . . . , n, swaps
mi−1 and mi in her ranking, yielding the rankings:

w1 : m1,m2, . . . ,mn

wi : m1, . . . ,mi−2,mi,mi−1,mi+1, . . . ,mn (i = 2, . . . , n)

We claim that µ = {(mi, wi+1)}i=1,...,n−1 ∪ {(mn, w1)} is the man-optimal
stable matching. To check stability, note that if mi prefers wj to his mate then
2 ≤ j ≤ i − 1, but such a woman wj prefers her mate to mi. To verify that
µ is man-optimal, use the fact that µM must satisfy rw(µM (w)) ≥ rw(µ(w))
for every w ∈ W . Considering in turn the women w1, wn, wn−1, . . ., this forces
µM = µ.

Next, we claim that µ′ = {(mi, wi)}i=1,...,n is the woman-optimal stable
matching. To check stability, note that if wi prefers mj to her mate then
j ≤ i − 2, but such a man mj prefers his mate to wi. To verify that µ′ is
woman-optimal, use the property rw(µW (w)) ≤ rw(µ′(w)) successively for the
women w1, w2, w3, . . ., deducing that µW = µ′.
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Now, woman w1 is matched to her top-ranked man m1 in µW and to her
bottom-ranked man mn in µM . This is in spite of the fact that δ(m) ≤ 2
for every m ∈ M , which shows that the upper bound of Theorem 3 does not
hold when both sides of the inequality are replaced by their max versions. A
similar conclusion applies to the bound of Theorem 4, since Γmax(µM ) = 2 and
Γmax(µW ) = 1.
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