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Abstract

We consider a pricing and replenishment model in which the retailer
advertises the selling periods of the product at the beginning of the
time horizon. The customers differ in their reservation price and the
time they most need the product. The customers are assumed to be
discretionary, meaning that if at their most desired time the product
is out of stock then they may decide to buy it earlier or later than
that time, paying a holding or shortage cost, respectively, or they may
decide to quit. Such a modeling of the customers’ behavior induces
a partial backlogging system in which the retailer is exempted from
the burden of having to estimate his/her backlogging or lost-sales cost
parameters. We investigate the retailer’s optimal policy for two types
of customers, each associated with its own arrival rate and reservation
price.

Keywords: Inventory/production: pricing, review, deterministic.

1 Introduction

Inventory models customarily assume that clients who do not find the prod-
uct on the shelf upon their arrival, either quit (lost sales) or wait for the
next reorder time (backlogging). In this paper we follow Glazer and Has-
sin (1986,1990) and consider a variation of the classical models, in which a
customer can also buy the product earlier than the time she most desires
it. Such a model is possible when the retailer advertises beforehand the ex-
act selling periods. A customer who buys earlier than needed is subject to
inventory holding costs; a customer who buys later than needed is subject
to shortage costs. A customer’s decision of whether and when to buy the
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product is solely based on the criterion of maximizing her net gain. The
retailer, who knows the utility function of the customers, may avoid selling
the product in certain periods if this raises his net average profit. By doing
so, the retailer manipulates some of the customers to advance or postpone
their purchase.

As an example for such a model, consider a car dealer who sells a certain
exclusive model non-continuously. Customers who know that the product
will not be available at the time they most desire it, may decide to buy it
earlier than needed (incurring financial charges), or alternatively they may
decide to wait and buy the car as soon as it is back in stock, paying the
rental cost of an equivalent car.

Glazer and Hassin (1986) solved this model assuming that customers
are identical in all but the time they need the good. Their main qualitative
finding is that the solution may be of one of three types: Continuous sales
throughout the cycle, sales only at the time of inventory replenishment, or
continuous sales through an interval followed by a no-stock interval, i.e. an
interval in which the firm does not hold stock, that ends with the next
replenishment. This finding adds to classic models by explaining real cases
in which sellers do not hold inventory at all.

The assumption of identical customers greatly limits the applicability of
the above mentioned results. In this paper we extend the model and identify
the optimal integrated pricing, replenishment, and selling schedule policy for
two types of customers, each associated with its own constant arrival rate
and reservation price. More specifically, we consider an infinite-horizon,
continuous-time, deterministic, and stationary pricing and inventory model
of a single-type product sold by a monopolist retailer who advertises at the
beginning of the horizon its fixed price and the sales-intervals during which it
is sold. The retailer faces a setup cost per order and a linear inventory hold-
ing cost. Each customer is characterized by a reservation price and the time
she most needs the product. A customer’s net gain from buying the good is
the difference between her reservation price and her expenses due to the cost
of the product and her holding/shortage costs if she buys it at a time which
is not her most desired time. Thus, only customers whose net gain is non-
negative buy the product. Assuming, in addition, a price-sensitive demand,
the retailer is faced by a backlogging/shortage mechanism, in which in a
no-sale interval, i.e., an interval in which the firm does not sell the product,
some of the customers whose reservation price is higher than the product’s
price are lost, some backlog, and the others buy early. The partition among
these three groups in each no-sale interval depends on the good’s price, the
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demand distribution, the customer’s reservation price, holding and shortage
cost parameters and the length of the no-sale interval. We further assume
a complete-knowledge model in which the retailer knows the holding and
shortage cost rates of customers, and the potential customers know its price
and when the product is available for sale. We consider here two customer
types each characterized by (1) its reservation price; and (2) its constant de-
mand rate if the product were available continuously at a price lower than
its reservation price. If the price is higher than the reservation price of this
type of customers, then the respective demand rate drops to zero. Thus, in
general, the demand rate declines with the product’s price. If the product
is not sold continuously, as permitted by our model, then customers whose
reservation price is higher than the price of the product, and the time they
most desire it falls within an interval in which it is not sold, may decide
to buy it earlier, later or quit without buying it. In general, the demand
increases as the time the product is available on the shelf increases. Under
this general setting, our ultimate goal is to identify an optimal pricing and
inventory replenishment policy that maximizes the profit rate of the retailer.

The literature commonly considers either pure backlogging or pure lost
sales in no-sale intervals; see for example Section 3.3 in Zipkin (2000). Under
backlogging, which holds especially for monopolists, customers that arrive
in no-sale intervals wait for the next reordering time. The retailer is then
penalized by a shortage cost consisting of the administrative work involved
in handling the shortage and the loss of good will. The shortage cost is
usually assumed to be proportional to the amount backlogged and to the
backlogging duration; see Veinott (1966). Rosling (2002) considers two non-
linear backorder costs; a fixed cost per unit (independent of the backorder
duration) (see also Hadley and Whitin (1963) and Chen and Zheng (1993)),
and a cost proportional to the time backlogs stay on the book, regardless
of the quantity backlogged (see also Silver and Peterson (1979)). In the
lost sales case, demands that occur when no inventory is available are lost
forever. The unit penalty cost in this case includes also the opportunity cost.
The backlogging/lost sales cost should represent all negative consequences
of the shortage. However, it is well known that it is extremely difficult for
managers to assess these costs, and modelers thus resort both in practice
and in theory to an alternative approach in which a service level constraint
is imposed either on the fill rate or on the stockout frequency, see Zipkin
(2000).

Pricing models assume in general that a customer buys the product if its
reservation price is at least as high as its cost. Most of the existing pricing
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models that allow backlogging assume that customers whose reservation
price is at least as large as the unit price wait patiently to the next reorder
time. Partial backlogging is often assumed in the literature on perishable
items (see for example, Abad (1996)), as then the customer may have an
incentive to wait for a new replenishment to get a fresh product. We consider
here a product whose quality does not deteriorate over time. A delay in the
supply may thus cause in practice a monetary damage to the customer,
and consequently the product may become less attractive for her and she
may decide to drop out. Bucovetsky (1983) and Sobel (1984) do consider
the shortage cost that customers pay in case of backlogging. Eppen and
Libermann (1984) allow for customers to hold inventory. We follow Glazer
and Hassin (1986,1990) in allowing customers to pay for either backlogging
or for holding inventory. The assumption that customers are charged for
shortages and for holding inventory induces a shortage cost for the retailer
which does not necessitate the assessment of unit shortage/backlogging costs
by the manager: the no-sale intervals shrink the market for the product. The
higher are the holding/shortage costs faced by the customers, the higher is
the shortage penalty cost faced by the retailer, due to loss of customers.
Moreover, since the price of the product is also a decision variable in our
model, the indirect shortage costs that the retailer faces are price-dependent.
The assessment of the customer’s inventory holding cost and her shortage
cost is simpler than the assessment of the backlogging/lost sales cost of the
firm as it does not involve the loss of good will cost. (Consider the example
of the car vendor presented above.)

We review models that are closely related to ours. For an extensive
review on coordinated pricing and production/procurement decisions, see
Yano and Gilbert (2003). We start with the seminal paper by Whitin (1955)
who considered the economic order quantity with pricing when the product
must be sold continuously. In that paper the author assumed that the
demand rate is a decreasing linear function of the price. The objective
function in his model is the maximization of the profit rate, which is the
product of the price by the respective demand rate minus the average-time
cost which is calculated as in the EOQ formula. Our model builds directly on
Glazer and Hassin (1986,1990). These two last papers assume as in Whitin
(1955), a pricing and replenishment model with the following generaliza-
tions/modifications: (i) the retailer is now free to decide when to sell the
product; (ii) customers are allowed, if they like, to buy the product earlier
or later than the time they most need it paying either inventory holding
or shortage cost; (iii) the reservation price of all customers is identical, so
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customers differ only in the time they most desire the product. Glazer and
Hassin (1990) consider the same model as in Glazer and Hassin (1986) but
the objective function is the maximization of the aggregate welfare of seller
and customers. The authors show that the optimal policy is of one of the
three types of policies as described in Glazer and Hassin (1986) and provide
conditions and specifications under which each type is optimal.

Finally, we mention the extensive literature on inventory models with
variable capacity, for example, Parlar and Berkin (1991), Wang and Ger-
chak (1996), Güllü (1998), and Güllü, Önol and Erkip (1999). In these
models there are periods when supply is not available or is partially avail-
able. Customers are usually uninformed about when these “dry periods”
start and end. Closest to our model is the model of Atasoy, Güllü and Tan
(2010) that considers a discrete time three-level supply chain where a man-
ufacturer orders supply from an external supplier that may stop selling in
certain periods. However, in order to help the manufacturer, the supplier
provides him an accurate information about the availability of the supply in
the next given number of periods. The manufacturer is facing determinis-
tic periodic demands of customers. The paper considers the manufacturer’s
problem who needs to plan its own order quantities from the supplier in order
to minimize his total expected costs that consist of his ordering costs, plus
holding and backorder costs, given the available limited information about
the dry periods. In this model, and in ours, the supply is not available at
all times, and the manufacturer (in their model) or the customers (in ours)
need to decide when and if to buy in order to minimize their costs. Though,
there are several differences between this model and ours, and the most cru-
cial one is that in their model the timing and length of supply availability
is not strategically planned but result from external random forces,

Let wi be the reservation cost of customers of type i, i = 1, 2, which
are also called i-customers, where w1 > w2. We identify nine possibilities
for an optimal solution. Three possibilities consist of sales at replenishment
instants only to all 1-customers, and to a proportion x of 2-customers, where
x = 0, x = 1 or 0 < x < 1. Two possibilities of continuous sales to either only
1-customers, or to all customers. We call such policies that consist of sales at
replenishment instances or continuous sales policies - simple policies. Three
more possibilities consist of a continuous sales interval followed by a no-sale
interval. We call such policies semi-continuous policies. In the three possible
optimal semi-continuous policies, sales are made to all 1-customers, and, in
addition, to a proportion x of 2-customers appearing in the continuous sales
interval, and to a proportion y of the 2-customers appearing in the no-sale

5



interval, where x = y = 0, or x = 1 with y = 0 or 0 < y < 1. Finally,
we identify another possible optimal policy that consists of a continuous
sales interval followed by at least two no-sales intervals. The sales at the
continuous sales interval are to all customers, and at the no-sales intervals
to 1-customers only. We derive the expected rate of profits in each case so
that for any set of parameters the optimal solution is easily computed. We
also give conditions that distinguish among possible optimal strategies. We
expect that the insight gained by the analysis of this restricted case will help
to shed light on the optimal pricing and replenishment policy for a general
customers’ distribution.

The paper is organized as follows: In Section 2 we describe the model
and present notation with preliminary results. In Section 3 we consider sim-
ple policies of selling either only at replenishment instants or continuously
through the cycle. In Section 4 we consider semi-continuous policies, where
sales are made continuously through the first part of the cycle, followed by
a no-stock interval. In Sections 5-8 we characterize the possible solutions
which are neither simple nor semi-continuous depending on whether the cus-
tomers’ holding cost is greater or smaller than their shortage cost. For each
policy type we compute the average rate of profit, V , of the policy of this
type which can be a candidate for being optimal if certain conditions on the
input parameters are satisfied. Altogether we identify nine types of policies.
We number their solution values as V (1), . . . , V (9). The optimal solution for
a given set of input parameters is then the policy with highest value among
those whose necessary conditions are satisfied, provided that this value is
positive. The results are summarized in the concluding section.

2 The model and preliminaries

We consider a deterministic model with a monopolistic firm that sells a
single type of a product at a constant price to two types of customers, i.e.,
no price discrimination is allowed. The firm incurs a fixed replenishment
cost of size A, and a variable cost c. It also pays a linear holding cost
of hf per unit of the product per unit of time. Customers differ by two
parameters, the time when they most need the product, which we call their
demand time, and their reservation price, which is their valuation of the
product at that point of time. If the product were free and it were available
on the shelf continuously then the arrival rate of customers would have been
constant with parameter λ. We assume that the first type of customers
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is characterized by a reservation price w1, and by an arrival rate λ1. The
second type of customers is characterized by a reservation price w2, and by
an arrival rate λ2, where w1 > w2 and λ = λ1 + λ2. We assume that each
customer needs a single unit of the product. The following terminology
is used: customers that demand the product at t are called t-customers
and customers whose reservation price is wi are called i-customers. The
t-customers that are also i-customers are called (t, wi)-customers. I.e., any
(t, wi)-customer demands the product at t and her reservation price is wi.

Customers are assumed to be ready to buy the product earlier or later
than her demand time. Such a deviation comes at a cost. Specifically, a
(t, w)-customer is ready to pay for it at most w−hcτ at time t−τ and at most
w−sτ at time t+τ for any τ > 0. This behavior can be interpreted as follows:
By obtaining the product before t, the customer incurs an “inventory holding
cost” of hc per unit of time; by obtaining the product after t, the customer
incurs “shortage cost” of s per unit of time. Clearly, a customer whose
reservation price of the product upon her demand-time is less than the price
of the product, will never buy the product. Thus, if the product were on
the shelf continuously, the arrival rate of customers that are willing to pay
at least p upon their demand-time would be λ if p ≤ w2, and would be λ1

if w2 < p ≤ w1. If p > w1 there will be no market for the product. Clearly,
an optimal price p should satisfy p > c, and as we deal here with two types
of customers we assume that c < w2.

Remark 1 If any of hf , hc, s is equal to 0 then the problem is trivial. There-
fore, we assume that these parameters have strictly positive values.

The firm wants to maximize its average rate of profits by choosing a price
p and a replenishment policy. Like in the EOQ model, there exists an optimal
cyclic stationary policy, and without loss of generality we focus on the first
cycle [0, T ]. The ZIO (Zero-Inventory-Ordering) property holds here and
therefore a new order is placed after the stock is depleted. However, unlike
in the EOQ model, the firm is allowed not to sell the product continuously
during the cycle if this increases its average rate of profit. We assume that
the policy of the firm, namely the price and sale epochs, is known to the
customers and therefore, a customer whose demand-time is at a no-sale
point may decide to buy the product earlier or later when it is sold, or
alternatively, to quit and not buy it at all. As a result, the optimal policy
structure may be such that the stock depletes earlier than at T .

In this paper we fully characterize an optimal cyclic solution of our model
for two types of customers. We show that there exists an optimal solution
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where for some TI ∈ [0, T ], the firm sells continuously up to TI . If the stock
is depleted at TI , then the interval (TI , T ) is a no-stock interval, i.e. an
interval in which the firm does not hold any stock. In such a case, TI = 0
means that the firm never holds stock and it sells only at replenishment
epochs, and TI = T means that the firm sells continuously through the
cycle . We call these two types of extreme policies simple policies:

Definition 2 A policy is simple if the sales are continuous or only at re-
plenishment instants.

A semi-continuous policy is obtained if 0 < TI < T and the stock is
depleted at TI , meaning that (TI , T ) is a no-stock interval:

Definition 3 A policy is semi-continuous-sales, or for short semi-continuous,
if sales are continuous until the stock is depleted.

The interval (a, a + ∆) is said to be a no-sale interval if the firm sells
the product only at points a and a + ∆, and nowhere else in the interval.
In particular, the no-stock interval (TI , T ) in simple and semi-continuous
policies is a no-sale interval. Except of simple and semi-continuous policies
defined above, other possible candidates for optimal cyclic policies exist.
Such policies consist of an interval [0, TI ] of continuous sales, 0 ≤ TI < T ,
and thereafter the stock at TI is sold at a number of discrete points before T .
In other words, such a policy consists of a (possibly empty) interval [0, TI ] of
continuous sales, followed by at least two no-sales intervals, where the last
one that ends at T is also a no-stock interval.

We distinguish several cases and solve each case separately. The optimal
policy is obtained by solving all cases and picking up the best one. We use
the following notation:
σ = hcs

hc+s

β = s
hc+s

,
Hf = hfA,
σA = σA,

and we denote the average cost per unit of time of a given policy by V . A
policy is profitable if its average rate of profit is positive. If no profitable
policy exists, it is optimal for the firm to do nothing. In such a case the
optimal average profit is 0. As mentioned in the introduction, we compute
nine candidate policies and mark their values as V (1), . . . , V (9). These values
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depend on the two input parameters σA and Hf , rather than on σ, hf , and
A. It turns out that β plays a central role in the analysis. If sales are given
at the ends of an interval but not within it, β is the fraction of the customers
arriving during the interval and buying the product, who prefer advancing
their purchase to its beginning, while the other fraction of 1 − β defer their
purchase to the end of the interval. Note that some of the customers arriving
during such an interval may quit without buying the product, however, as
we prove, it is never optimal for a profitable policy to contain a sub-interval
such that all customers born in it are lost.

Lemma 4 A profitable optimal policy does not contain a time interval such
that all customers born in it are lost.

Proof: Suppose that the there exists an optimal cyclic profitable policy
Π, with price p and cycle [0, T ) that contains sub-intervals of total length
0 < τ < T in which all customers are lost. Let V (Π) > 0 denote the average
profit of Π. Consider an alternative policy Π′, with a cycle length of T − τ ,
that is exactly as Π except that all intervals in which all customers are lost
are removed from the cycle. The number of customers in a cycle that buy
the product in Π and Π′ is exactly the same, and thus the revenue per cycle
and the fixed cost per cycle are not affected by this change. Moreover, the
holding cost per cycle of Π′ is bounded from above by the holding cost per
cycle of Π. Thus, the total profit in a cycle in Π′ is at least as large as that
of Π, and as the cycle length of Π′ is smaller than that of Π, Π′ is a strictly
better policy, contradicting the optimality of Π.

As we show, it is most common that the optimal policy is either simple
or semi-continuous, i.e., it is sub-optimal to insert no-sale intervals between
TI and the no-stock interval. However, for particular sets of input data this
is possible.

We first analyze the behavior of customers who are arriving at a no-sale
interval (a, a + ∆). For a fixed price p, define

w(p,∆) = p + σ∆, (1)

and
θa,∆ = a + β∆.

Figure 1 illustrates θa,∆ and w(p,∆), and a fixed value of w such that
p < w < w(p,∆). The indifference curve of a (t, w)-customer describes how
much such a customer is willing to pay for the product at every instance τ . It
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raises with slope σ
β

for τ < t and decreases with slope σ
(1−β) for τ > t. Given

a no-sale interval (a, a + ∆), sales to (t, w)-customers with a+ β(w−p)
σ

< t <

a + ∆ − (1−β)(w−p)
σ

are lost, (t, w)-customers with a ≤ t ≤ min{a + β(w−p)
σ

,θa,∆} buy at a, and those with max{a + ∆− (1−β)(w−p)
σ

, θa,∆} ≤ t ≤ a + ∆
buy at a + ∆. Observe that for a reservation price w = w(p,∆), there is no
loss of w(p,∆)-customers in a no-sale interval (a, a + ∆). Moreover, since
w(p,∆) − σ

β
β∆ = w(p,∆) − σ

(1−β) (1 − β)∆ = p, a (θa,∆, w(p,∆))-customer
is indifferent among buying at a, buying at a + ∆, and not buying at all. If
β > 0.5 then the sales at a are higher than at a + ∆, and when β ≤ 0.5, the
sales at a + ∆ are higher than at a.

t

p p

w w

a +
w−p

σ
β a + ∆ −

w−p
σ

(1 − β)θa,∆

w(p,∆) w(p,∆)

a a + ∆

Figure 1: Indifference curves of a (θa,∆, w)-customer and a (θa,∆, w(p,∆))-
customer

From now on we focus on 2 customer types. Let ∆i = wi−p
σ

denote the
maximum length of a no-sale interval without loss of any i− customers. In
the following we compute the sales volume at the two extreme points of a
no-sale interval (τ0, τ0 + x) from those customers arriving in the interval.
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The sales volume at τ0 from those customers is

λ1β min(x,∆1) + λ2β min(x,∆2),

The sales volume at τ0 + x from those customers is

λ1(1 − β)min(x,∆1) + λ2(1 − β)min(x,∆2).

3 Simple solutions

Each of the two kinds of simple policies is considered separately.

3.1 Sales at replenishment instants

There are four cases with sales made only at replenishment instants that
need to be considered. Observe that in this case T ∈ [∆2,∆1], because if
T > ∆1 there are lost 1-customers which is impossible by Lemma 4. and if
T < ∆2 then p can be increased without loosing sales.

• Sales only to 1-customers

This may happen if the seller chooses p ≥ w2. In this case, T = ∆1 =
w1−p

σ
, or p = w1 − σT . Thus, V (T ) = λ1[(w1 − c) − σT ] − A

T
. It is

optimized at T =
√

A
λ1σ

. If
√

σA

λ1
> w1−w2, then p < w2, implying that

this solution can be ignored as selling to the two types of customers
at the replenishment epochs gives a better solution. The resulting
solution is given in Figure 2.

Let p = w1 −
√

σA

λ1
;

If p ≥ w2 then

T =
√

A
λ1σ

;

V (1) = λ1(w1 − c) − 2
√

λ1σA.

Figure 2: Sales to 1-customers at replenishment instants

We next proceed to the cases of sales to both types of customers, i.e.
p < w2.
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• No loss of customers

There is no loss of customers if p < w2 and T ≤ ∆2, but clearly
T < ∆2 is suboptimal since in this case p can be increased without
loosing sales. Hence, T = ∆2, and V (T ) = λ[(w2 − c) − σT ] − A

T
is

optimized at the solution given in Figure 3.

p = w2 −
√

σA

λ
;

If p > c then

T = 1
σ

√

σA

λ
;

V (2) = λ(w2 − c) − 2
√

λσA.

Figure 3: Sales to all customers at replenishment instants

• Sales to all 1-customers and some 2-customers with T = ∆1

Here T = ∆1 = w1−p
σ

or p = w1 −σT , giving ∆2 = w2−p
σ

= T − w1−w2
σ

.
Hence,

V (T ) =
1

T
{[λ1T + λ2∆2][(w1 − c) − σT ] − A}

= −λσT + [λ(w1 − c) + λ2(w1 − w2)] −
1

T

(

λ2(w1 − c)
w1 − w2

σ
+ A

)

= α1T + α0 +
α

−1

T
,

where α
−1 = −

(

λ2(w1 − c)w1−w2
σ

+ A
)

, α0 = λ(w1− c)+λ2(w1−w2),

and α1 = −λσ. The optimal solution has T =
√

α
−1

α1
and the profit

rate is α0 − 2
√

α
−1α1 , as both α

−1 and α1 are negative. This solution
is feasible if p < w2, or equivalently λ(w1 − w2)

2 < λ2(w1 − c)(w1 −
w2) + σA. The solution is given in Figure 4.

• ∆2 < T < ∆1

The analysis is as in the previous case but here we also need to compute
the optimal p:

V (T, p) =
1

T
{(λ1T + λ2∆2)(p − c) − A} =

1

T

{(

λ1T + λ2

w2 − p

σ

)

(p − c) − A

}

.
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p = w1 −
√

λ2(w1−c)(w1−w2)+σA

λ
;

If c < p < w2 then

T = w1−p
σ

;

V (3) = λ(w1 − c) + λ2(w1 − w2) − 2
√

λ[σA + λ2(w1 − c)(w1 − w2)].

Figure 4: Sales to all 1-customers and some 2-customers at replenishment
instants

Equating to 0 the partial derivative with respect to p gives the optimal

value p = 1
2

(

λ1
λ2

σT + w2 + c
)

and ∆2 = 1
2

(

w2−c
σ

− λ1
λ2

T
)

. Recall that

in this case p < w2, which is equivalent to T < λ2
λ1

w2−c
σ

. In this range

V (T ) = α1T + α0 + α
−1

T
, where α1 =

λ2
1σ

4λ2
, α0 = 0.5λ1(w2 − c), and

α−1 = λ2(w2−c)2

4σ
− A.

Let γ = λ2
λ1

w2−c
σ

. T = γ means that p = w2 with sales only at replen-
ishment points, i.e., selling to 1-customers only, which we have already
considered. Thus, assume T < γ. If α−1 ≤ 0 then V ′(T ) > 0 and thus
T = min{∆1, γ}. If α−1 > 0 then the function V (T ) is convex and
the maximum is obtained at an extreme point T ∈ {∆2,min{∆1, γ}}.
I.e., in both cases there is no internal maximum of V (T ), so that V (T )
is maximized at a boundary point whose cost is derived in one of the
other cases.

3.2 Continuous sales

We observe that continuous sales with price w2 < p < w1 is never optimal
because 2-customers don’t buy and an increase in p doesn’t cause loss of
1-customers.

• p = w1: This is the maximum value that the price can assume. An
optimal policy with p = w1 must be a continuous-sales policy. In such
a case only 1-customers buy and V (T ) = λ1(w1 − c) − 0.5hfλ1T − A

T

is optimized at

T =

√

2A

λ1hf

,
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giving the solution described in Figure 5.

p = w1;

T =
√

2A
λ1hf

;

V (4) = λ1(w1 − c) −√2λ1Hf .

Figure 5: Continuous sales to 1-customers

• p = w2: Here both customer types buy the product and V (T ) =

λ(w2 − c) − 0.5hfλT − A
T

implying that T =
√

2A
λhf

. The solution is

given in Figure 6.

p = w2;

T =
√

2A
λhf

;

V (5) = λ(w2 − c) −√2λHf .

Figure 6: Continuous sales to all customers

4 Semi-continuous solutions

In this section we characterize cases in which the optimal solution is semi-
continuous. We deal separately with three cases according to the position
of p relative to the interval [w2, w1). We note that p = w1 implies the
continuous sales policy to 1-customers, as in Figure (5), and if p > w1 no
customers buy the product. Thus it is sufficient to consider p < w1.

4.1 p < w2

Note that in an optimal solution T − TI ∈ [∆2,∆1], since a longer no-stock
interval causes loss of 1-customers and a shorter one means that it is possible
to raise p without affecting the sales pattern. The rate of profit is

14



V (T, TI , p) =
1

T

{

(p − c)[λ1T + λ2(TI + ∆2)] − hf

[

0.5λT 2

I + βTI [λ1(T − TI) + λ2∆2]
]

− A
}

.

Looking for an internal solution with respect to p, we equate to zero the
partial derivative with respect to p, giving

p =
1

2

{(

λ1

λ2
T + TI

)

σ + (w2 + c) + hfβTI

}

,

and therefore, ∆2 = 1
2σ

[(w2 − c − λ1
λ2

Tσ) − (σ + hfβ)TI ]. These relations

imply that V (T, TI) = 1
T

[

aσT 2
I + b(T )TI + d(T )

]

, where

a =
1

4
λ2 +

1

2σ
hfβλ2 +

1

4σ2
h2

fβ2λ2 −
1

2σ
hfλ +

1

σ
hfλ1β

=
λ2

4σ2
(σ + hfβ)2 − hf

σ

(

λ

2
− λ1β

)

,

b(T ) =
1

2
(σ − hfβ)

(

λ1T +
λ2(w2 − c)

σ

)

,

d(T ) =
σ

4λ2

(

λ1T +
λ2(w2 − c)

σ

)2

− A.

Equating to zero the partial derivative of V (T, TI) with respect to TI

gives TI = − b(T )
2aσ

and for an internal solution we need ab(T ) < 0, T − TI ∈
[∆2,∆1], and c < p < w2.

Substituting TI into V (T, TI) gives

V (T ) =
1

T

(

−b2(T )

4aσ
+ d(T )

)

= α1σT + α0 +
α

−1

T

where

α1 =
λ2

1

4

(

−(σ − hfβ)2

4aσ2
+

1

λ2

)

,

α0 = 2α1λ2
w2 − c

λ1
,

α
−1 = α1σ

(

λ2(w2 − c)

λ1σ

)2

− A.

The sign of b(T ) is determined by the sign of (σ − hfβ) = β(hc − hf ).
We consider three cases: hc = hf ; hc > hf ; and hc < hf .
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• hc = hf : In this case b(T ) = TI = 0, implying that an optimal semi-
continuous sales policy does not exist.

• hc > hf : In this case b(T ) > 0, and we must have a < 0 to have an

internal optimal solution. This also implies α1 > 0. Now, TI = − b(T )
2aσ

and p are linear increasing functions of T , while ∆2 and ∆1 are linear
decreasing functions of T .

V (T ) is convex if α
−1 ≥ 0 and otherwise it is concave. If it is convex,

its maximum is obtained at an extreme point. In this case either T
is as large as possible, namely the T that gives p = w2, which is not
the case considered here, or T is as small as possible, i.e., when either
T = TI or TI = 0, resulting in a simple solution considered in Section
3. If α

−1 < 0 then V (T ) is monotone increasing and concave, meaning
again that there is no internal solution.

• hc < hf : In this case b(T ) < 0. For an internal solution for TI to exist,
we must have a > 0. Also in this case TI and p are linear increasing
functions of T , while ∆2 is linear decreasing in T .

– If α
−1 ≥ 0, V (T ) is convex and therefore, the optimal T is at an

extreme value and either p = w2, which is not the case considered
here, or T ∈ {0, TI}, which gives a simple solution.

– If α
−1 < 0, V (T ) is concave.

∗ If α1 ≥ 0, V (T ) is an increasing function, attaining its max-
imum at the extreme value where p = w2.

∗ If α1 < 0 then the maximum of V (T ) is obtained at a value

that satisfies T =
√

α
−1

α1σ
. This case requires further investiga-

tion. Note that α1 < 0 is equivalent to 0 < a <
λ2(σ−hf β)2

4σ2 .
Substituting a in this inequality, α1 < 0 is equivalent to
β < 0.5. Thus, β < 0.5 implies that both α1 < 0 and
α

−1 < 0.

This internal semi-continuous solution is given in Figure 7.

4.2 p = w2

In this case both customer types buy the product during [0, TI ], and only
1-customers buy it during (TI , T ). As we consider here semi-continuous
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If β < 0.5, hc < hf , and if a > 0, c < p < w2, and T − TI ∈ [w2−p
σ

, w1−p
σ

], where

a = λ2
4

(

1 +
Hf

σA
β
)2

− Hf

σA

(

λ
2 − λ1β

)

;

α1 =
λ2
1
4

(

− 1
4a

(

1 − Hf

σA
β
)2

+ 1
λ2

)

;

T =

√

(

λ2(w2−c)
λ1σ

)2
− A

α1σ
;

TI = − 1
4a

(σ − hfβ)
(

λ1T + λ2
w2−c

σ

)

;

p = 1
2

{(

λ1
λ2

T + TI

)

σ + (w2 + c) + hfβTI

}

;

then,

V (6) = 2α1

(

λ2
w2−c

λ1
+

√

(

λ2
w2−c

λ1

)2
− σA

α1

)

.

Figure 7: Semi-continuous sales: p < w2

policies, we restrict ourselves to 0 < TI < T . Clearly, T − TI ≤ ∆1 in order
to avoid loss of 1-customers.

V (T, TI) = λ1(w2 − c) +
1

T

{

λ2(w2 − c)TI − hf

[

1

2
λT 2

I + TIβλ1(T − TI)

]

− A

}

= λ1(w2 − c) +
1

T

{

T 2
I hf

(

βλ1 −
1

2
λ

)

+ TI(λ2(w2 − c) − hfλ1βT ) − A

}

.

Fix T .

• If 2βλ1 ≤ λ, the function V (TI) is concave, implying a candidate for

an internal maximum, namely TI =
λ2(w2−c)−βλ1hf T

hf (λ−2βλ1) . This candidate

is relevant (internal) only if 0 < TI < T , and T − TI < ∆1.

Substituting TI in V (T, TI) gives

V (T ) = λ1(w2 − c) +
1

T

{

2(λ2(w2 − c) − hfβλ1T )2

(λ − 2βλ1)hf

− A

}

= λ1(w2 − c) +
2

(λ − 2βλ1)hf

{

α1T + α0 +
α

−1

T

}

,
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where α1 = h2
fβ2λ2

1 > 0, and α
−1 = λ2

2(w2 − c)2 − 0.5(λ − 2βλ1)hfA.
If α

−1 ≥ 0 then V (T ) is convex, and if α
−1 < 0 then it is monotone

increasing. In both cases the maximum is obtained at an extreme
value of T where TI ∈ {0, T, T − ∆1}. The solutions TI ∈ {0, T} are
simple, and were considered in Section 3. Thus, only TI = T − ∆1 is
relevant.

• If 2βλ1 > λ, the function V (TI) is convex and its maximum is obtained
at a boundary value, TI ∈ {0, T, T − ∆1}. As only semi-continuous
policies are considered here, we get also here that only TI = T − ∆1

is relevant.

Therefore, we continue by substituting TI = T − ∆1 into V (T, TI):

V (T ) = λ1(w2 − c) +
1

T

{

λ2(w2 − c)(T − ∆1) − hf

[

λ

2
(T − ∆1)

2 + (T − ∆1)∆1βλ1

]

− A

}

≡ α
−1

T
+ α

0
+ α

1
T,

where α
−1 = ∆2

1hf (βλ1 − 0.5λ) −∆1λ2(w2 − c) −A ≤ 0, α0 = λ(w2 − c) +
hf∆1(λ − βλ1), and α1 = −0.5hfλ < 0. If α

−1 = 0, V (T ) is decreasing in
T , and therefore the maximum is obtained at T = ∆1, resulting in a simple
solution, see Section 3. If α

−1 < 0, then V (T ) is concave having an internal

maximum with T =
√

α
−1

α1
and profit α0 − 2

√
α1α−1, as described in Figure

8.

p = w2;
∆1 = w1−w2

σ
;

T =

√

λ2(w2−c)∆1+0.5hf∆2
1(λ−2βλ1)+A

0.5hf λ
;

TI = T − ∆1;
If TI > 0 then

V (7) = λ(w2 − c) − Hf
w1−w2

σA
(−λ + βλ1) −

√

2λHf

[

w1−w2

σA

(

λ2(w2 − c) + Hf
w1−w2

σA

(

λ
2
− βλ1

))

+ 1
]

.

Figure 8: Semi-continuous sales: p = w2
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4.3 w2 < p < w1

Here only 1-customers buy. Again, as in this section we deal with semi-
continuous policies, we look for solutions with 0 < TI < T . In addition,
T − TI ≤ ∆1 in order to avoid loss of 1-customers in some intervals. Thus,

V (T, TI , p) = λ1(p − c) − 1

T

(

0.5λ1hfT 2
I + λ1hfβ(T − TI)TI + A

)

.

In an optimal solution T −TI = ∆1 = w1−p
σ

, otherwise p can be increased
to increase profits. Substituting p = w1 − σ(T − TI) into the cost function
we get:

V (T, TI) = λ1 (w1 − c − σ(T − TI))−
1

T

(

0.5λ1hfT 2
I + λ1hfβ(T − TI)TI + A

)

.

By fixing T we get V (TI) = a(T ) + bTI + c(T )T 2
I , where

a(T ) = λ1 (w1 − c − σT ) − A

T
,

b = λ1(σ − hfβ) > 0,

d(T ) =
λ1hf

T
(β − 0.5).

The sign of d(T ) is determined by the sign of β−0.5. If d(T ) ≥ 0 then V (TI)
is convex in TI , meaning that its maximum is obtained at an extreme value
of TI , namely TI ∈ {0, T}, both are simple solutions that were considered
in Section 3. Thus, suppose that d(T ) < 0, or equivalently β < 0.5. In this
case V (TI) is concave in TI and a possible internal maximum is

TI = − b

2c(T )
=

σ − hfβ

hf (1 − 2β)
T.

In order for TI to be positive, and because β < 0.5, it must hold that
σ − hfβ > 0, which is equivalent to hc > hf . In addition we need TI < T ,
which holds only if hf > s. The two conditions hf < hc and hf > s
imply that β < 0.5. Note also that the condition p > w2 implies that
T − TI < w1−w2

σ
.

Substituting the expression for TI into V (T, TI) gives

V (T ) = λ1(w1 − c) − A

T
+

(σ + hfβ)2 − 2σhf

2hf (1 − 2β)
λ1T,
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which is a concave function of T . If the coefficient of T is nonnegative,
V (T ) is increasing meaning that its maximum is obtained at an extreme
point which occurs when p = w2, a case which we don’t consider here.
Otherwise, if the coefficient of T is negative, (that is, (σ + hfβ)2 < 2σhf )

V (T ) is maximized at T =

√

2Ahf

λ1

1−2β
2σhf−(σ+hf β)2

. The resulting solution is

given in Figure 9.

T =
√

2Ahf (1−2β)

λ1[2σhf−(σ+hf β)2]
;

TI =
(σ−hf β)
hf (1−2β)T ;

p = w1 − σ(T − TI);

If s < hf < hc, (σ + hfβ)2 < 2σhf , p > w2, and T − TI ≤ w1−p
σ

then

V (8) = λ1(w1 − c) − 2

√

λ1
2Hf

2σAHf−(σA+Hfβ)2

1−2β
.

Figure 9: Semi-continuous sales: w2 < p < w1

5 Solutions which are neither simple nor semi-

continuous

In the next lemma we prove that optimal policies which are neither simple
nor semi-continuous consist of a single, possibly empty, continuous-sales
interval that starts at the replenishment epoch, followed by at least two no-
sales intervals. The next lemma provides some further properties of such an
optimal solution.

Lemma 5 There exists an optimal solution where the no-sale intervals are
ordered in nondecreasing length. Moreover, a no-sale interval is not fol-
lowed by an interval of continuous sales (hence there may be at most one
continuous-sales interval and it must start at 0).

Proof: We prove the first part of the theorem. The second part can be
considered as a limit case and be proved similarly. Consider consecutive
sales at τ0, τ0 + x, τ0 + x + y, and suppose that x > y. We will show that
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selling at τ0 + y instead of at τ0 + x does not decrease profits. W.l.o.g. let
τ0 = 0 and hf = 1. The change doesn’t affect the total sales and therefore
we only consider inventory holding costs. We assume in the analysis below
that x + y < T , since if x + y = T (i.e., [x, x + y] is a no-stock interval) it
is clear that the savings associated with selling earlier and thus postponing
more sales to T are greater, so that the claim in this case also follows.

Let Ci(x) (Ci(y)) be the holding cost associated with i-customers if the
product is sold at x (y, respectively). We distinguish three cases:

• x, y ≤ ∆i. In this case

Ci(x) = λi{x[(1 − β)x + βy] + [(x + y)y(1 − β)]}
= λi[(x

2 + y2)(1 − β) + xy].

and Ci(x) = Ci(y).

• y ≤ ∆i < x. In this case

Ci(x) = λi{x[(1 − β)∆i + βy] + [(x + y)y(1 − β)]},

and
Ci(y) = λi{y[(1 − β)y + β∆i] + [(x + y)∆i(1 − β)]},

giving Ci(x)−Ci(y) = λiy(x−∆i) > 0 by our assumption that x > ∆i.

• y > ∆i. Also here Ci(x) > Ci(y). The sales to i-customers at x + y
are of size (1 − β)∆i, and at the middle sales point (x or y) they are
of size ∆i. But selling at y rather than at x saves in inventory costs.

In view of the lemma, a general cyclic policy for the problem can be
represented by a continuous-sales interval [0, TI ], TI ≥ 0 followed by k ≥ 0
no-sale intervals. In Sections 3 and 4 we considered the case TI = 0 and
k = 1, which is the simple policy with sales only at replenishment instants,
the case TI = T and k = 0, which is the simple continuous-sales policy, and
the case 0 < TI < T and k = 1, which is the semi-continuous policy. Let
xi for i = 1, . . . , k denote the length of the i−th no-sale interval. Thus,
T = TI +

∑k
i=1 xi. By Lemma 5, w.l.o.g. x1 ≤ x2 ≤ · · · ≤ xk. Thus, the

product is sold continuously in [0, TI ], and thereafter positive quantities are
sold in discrete points: TI +

∑`
i=1 xi for ` = 0, 1, . . . , k.
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6 High customer holding cost: β ≤ 0.5

In this section we characterize the solution assuming β ≤ 0.5, or equivalently,
the customers’ holding cost rate, hc, is higher than their backlogging cost
rate, s. We prove that in this case there exists an optimal solution which is
either simple or semi-continuous. Then we analyze the case β = 0.5 sepa-
rately as we use it in the next section to characterize the optimal solutions
when β > 0.5.

Theorem 6 If β ≤ 0.5, there exists an optimal policy which is either simple
or semi-continuous.

Proof: Consider an optimal policy such that TI > 0 is the last point of time
in the cycle where the firm holds stock. Suppose also that in the given policy
there exists a no-sale interval [a, a + ∆], such that 0 ≤ a < a + ∆ ≤ TI .
Denote by Da and Da+∆ the amounts sold at the respective ends of the
no-sale interval. According to the analysis of Section 2 and because β ≤ 0.5,
Da ≤ Da+∆. Thus, the average holding cost paid by the firm for these units
would decrease if it sold continuously to each of these customers at time
they were born. Moreover, continuous sales may cause reneging customers
born during the interval to buy as well, resulting in more profits to the firm.

Indeed, in view of Theorem 6, the optimal solution for β ≤ 0.5 can be
obtained by enumerating all the solutions V (`) for ` = 1, . . . , 8 and picking
up max{0, V (1), V (2), . . . , V (8)}.

6.1 β = 0.5

According to Theorem 6, the optimal solution for β = 0.5 is either simple
or semi-continuous. We next strengthen this result for the case that the
optimal price p 6= w2.

Theorem 7 If β = 0.5 and p 6= w2 then the optimal solution is simple.

Proof: In view of Theorem 6 the optimal solution for β = 0.5 is either
simple or semi-continuous. By Lemma 4, a necessary condition for a semi-
continuous policy to be optimal is p < w1. It remains to show that if p < w1,
β = 0.5 and p 6= w2, there does not exist an optimal semi-continuous policy.
If p < w2, the only possible optimal semi-continuous policy obtained requires
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β < 0.5, see Figure 7. If w2 < p < w1, the only possible optimal semi-
continuous policy obtained requires s < hc which is equivalent to β < 0.5,
see Figure 9, concluding the proof.

This result turns out to be useful in the sequel when analyzing the case
β > 0.5.

7 High shortage cost: β > 0.5, and p 6∈ {w1, w2}
We now analyze the case where the customer’s shortage cost is higher than
the customer’s holding cost, i.e., β > 0.5. Theorem 8 states that when β >
0.5 it is suboptimal to have intervals of continuous sales, unless p ∈ {w2, w1}.

Theorem 8 If β > 0.5 and p /∈ {w2, w1} then the optimal solution does not
contain continuous-sales intervals.

Proof: First we exclude semi-continuous policies. By Lemma 4 semi-
continuous policies may be optimal only for p < w1. According to Fig-
ures 7-9, if p 6= w2, there does not exist a semi-continuous optimal policy if
β > 0.5. Moreover, from Figures 5 and 6, a simple policy with continuous
sales cannot be optimal.

Theorem 8 implies that if β > 0.5, the optimal price p satisfies p < w1.
In the next two theorems we prove that for β > 0.5 and p 6= w2 the optimal
policy is sales at replenishment instants only.

Theorem 9 Consider an optimal solution sol for an instance I defined by
β > 0.5, c, hf , hc, s and A, with monotone non-decreasing no-sale intervals
of lengths x1 ≤ · · · ≤ xk. Define the associated instance I ′ with c′ = c,
h′

f = hf , A′ = A, and h′

c = s′ = 2hcs
hc+s

. Note that β ′ = 1
2 and σ′ = σ. Denote

the profits for these instances by V (sol) and V ′(sol). Then V (sol) ≤ V ′(sol).

Proof: Denote by Di the total sales to customers arriving during the ith no-
sale interval. Clearly D1 ≤ · · · ≤ Dk, and the sequence D1, . . . , Dk depends
on σ but not on β. However, β does affect the timing of the sales in the
sales points. The sales at time TI + x1 + · · · + xl for ` = 1, . . . , k − 1 are
(1 − β)Dl + βDl+1. Since Dl ≤ Dl+1, the coefficients of β are nonnegative
in all of these cases. It follows that the holding cost with β > 1

2 is at least
as large as the holding cost of the firm with β = 1

2 and the same value of σ.
Since the total revenue is the same, the profit decreases with β, for β > 0.5,
while σ is kept constant. Therefore V (sol) ≤ V ′(sol).
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Theorem 10 The optimal solution for an instance with β > 0.5 and p 6= w2

is sales at replenishment instants only.

Proof: Consider an instance I with β > 0.5 and its associated instance
I ′ as in Theorem 9. Consider any non-simple solution sol with monotone
nondecreasing no-sale intervals as in Lemma 5. By Theorem 7, if β = 0.5
and p 6= w2 then there is an optimal simple solution sol′ to I ′. Then,

V (sol) ≤ V ′(sol) ≤ V ′(sol′) = V (sol′).

The first inequality follows from Theorem 9, the second by optimality of sol ′

to I ′, and the equality since the value of a simple solution depends on σ
but not on β. Therefore sol′ is a better solution for I than sol. According
to Lemma 8 an optimal solution for I does not contain a continuous-sales
interval, implying that the optimal policy for I is simple with sales only at
replenishment instants.

Corollary 11 When β > 1
2 the optimal solution is the best among the sim-

ple solutions with discrete sales, see Figures 2-4, and the best solution ob-
tained under the assumption p = w2.

8 High shortage cost: β > 0.5, and p = w2

Lemma 12 The optimal solution consists of an initial interval of length
TI ≥ 0 with continuous sales to both types, and sales to 1-customers only
after this. These sales consist of k ≥ 0 no-sale intervals all of length ∆1,
and possibly another no-sale interval of length α∆1 with 0 ≤ α < 1 which
starts at TI .

Remark 13 This section assumes p = w2, and therefore only 1-customers
buy in no-sale intervals. In view of Lemma 4, all no-sale intervals have a
length of at most ∆1. Considering the first case in the proof of Lemma 5,
which is the case relevant here as there is no loss of 1-customers, the profit
is not affected by the order of the no-sale intervals, except for the last one
which must be the longest one.

Proof: By Lemma 5 there exists an optimal solution with nondecreasing no-
sale intervals. If the claim doesn’t hold then there exists an index 1 < i ≤ k
such that xi−1 ≤ xi < ∆1. We claim that increasing xi while decreasing xi−1

by the same amount increases the profit. First note that the change does
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not affect sales since only 1-customers are involved and all no-sale intervals
remain bounded by ∆1. For comparing holding costs assume w.l.o.g. that
xi−1 starts at 0, and we mark x = x1. Let x1 + x2 = τ and by assumption
x ≤ τ/2. It is sufficient to show that the holding cost is increasing in x. The
inventory holding costs associated with customers born in [0, τ ], for τ < T ,
in the given solution amount to

C1(x) = λ1hf{x[(1 − β)x + β(τ − x)] + τ(τ − x)(1 − β)}.

If τ = T the last term in the curly brackets should be removed. The deriva-
tive with respect to x for τ < T is proportional to

2(1 − 2β)x + τ [2β − 1] ≥ 2(1 − 2β)
τ

2
+ (2β − 1)τ = 0,

where the inequality follows since β ≥ 0.5 and x ≤ τ/2. If τ = T the
derivative with respect to x is proportional to 2x(1 − 2β) + βτ ≥ τ(1 −
2β) + βτ = τ(1 − b) ≥ 0 for the same reasons as above. That means that
the holding cost is increasing in x. Performing a sequence of changes of this
type we end up with a solution as claimed and its cost is not greater than
that of the original solution.

Therefore, for β > 0.5 and p = w2, if the optimal solution is not simple
then it falls in one of the following two options:

• A semi-continuous solution with TI = T − ∆1 and of profit V (7), see
Figure 8.

• A solutions which is neither simple nor semi-continuous. Such a solu-
tion consists of a continuous-sales interval [0, TI ], 0 ≤ TI < T , followed
by k+1 no-sale intervals. The first of these intervals, i.e., the one start-
ing at TI , may be empty, and in any case its length is strictly less than
∆1. All the other k no-sale intervals are of length ∆1. In the sequel
of this section we consider this type of policies that are neither simple
nor semi-continuous, namely, policies with k + dαe ≥ 2.

The following observation states that the possibility of 0 < α < 1 and
k = 0 can be excluded:

Observation 14 Consider a problem with β > 0.5. If there exists an opti-
mal policy with p = w2 whose cycle contains a single no-sale interval (which
is also a no-stock interval), then its length is ∆1.

The proof follows directly from Figures 2 and 8.
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8.1 0 < α < 1 and k ≥ 1

In this subsection we prove that the possibility of 0 < α < 1 can be excluded
from consideration also when k > 0.

Using Remark 13, we assume without loss of generality that the no-sale
interval of length α∆1 starts at TI . Fix T and k, then TI +α∆1 is also fixed
at value T − k∆1, and dα

dTI
= − 1

∆1
. The terms in the profit function that

are affected by the choice of α are: The profit from sales to 2-customers,
λ2(w2 − c)TI ; The holding costs on sales in [0, TI), 0.5hf (λ1 + λ2)T

2
I ; the

holding costs on sales at TI , hfλ1βα∆1TI ; and the holding costs on sales
at TI + α∆1, hfλ1(1 − β)α∆1(T − k∆1). We use dα

dTI
= − 1

∆1
to obtain

that the derivative of the profit V with respect to TI is proportional to
λ2(w2 − c) − hf [TIλ2 + αλ1∆1(2β − 1)] .

The second derivative is proportional to 2βλ1 − λ.

• Suppose 2βλ1 ≥ λ. In this case, for any given T and k ≥ 1, the profit
function V is a convex function of TI and therefore it is maximized at
one of the extreme values α = 0, α = 1.

• Suppose 2βλ1 < λ. In this case, for any given T and k ≥ 1, the profit
function V is a concave function of TI , and therefore the there is
another candidate which satisfies the first-order optimality conditions.
We will show that this solution cannot be optimal.

Equating the derivative of V with respect to TI to 0 gives,

TI =
w2 − c

hf

− α∆1λ1
2β − 1

λ2
. (2)

Thus,

T = TI + (α + k)∆1 =
w2 − c

hf

+ k∆1 − α∆1
2βλ1 − λ

λ2
. (3)

For this solution, with at least two no-sale intervals, to be optimal,
the cost of carrying inventory to TI + α∆1 must be smaller than the
profit from selling there:

TI + α∆1 =
w2 − c

hf

− α∆1
2βλ1 − λ

λ2
≤ w2 − c

hf

,

or equivalently 2βλ1 ≥ λ, contradicting the assumption of the claim.
Therefore, an improved solution can be obtained by canceling the sale
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at TI + α∆1. The effect of this cancellation is that some customers
who previously bought there will buy instead at TI and by that save
the firm inventory holding costs. Others who previously bought there
will not buy at all, and by assumption this also increases the firm’s
profit.

8.2 α = 0

Denote V (T ) = Vk(T ) if T = TI + k∆1, where k ≥ 1. Thus,

Vk(T ) = λ(w2 − c) −
1

T

{

λ2(w2 − c)k∆1 +
1

2
hfλT

2
I + λ1hf

[

TI(k − 1 + β)∆1 + k
k − 1

2
∆2

1

]

+ A

}

= λ(w2 − c)
1

T

{

λ2(w2 − c)k∆1 +
1

2
hfλ(T − k∆1)

2 + λ1hf∆1

[

(T − k∆1)(k − 1 + β) + k
k − 1

2
∆1

]

+ A

}

.

Substituting TI = T − k∆1 gives Vk(T ) = E −
(

BT + C
T

)

, where

E = λ(w2 − c) + (w1 − w2)
Hf

σA
[λ2k + λ1(1 − β)];

B = 1
2hfλ;

C = A + k∆1

[

λ2(w2 − c) + 1
2hf∆1(λ2k − λ1(2β − 1))

]

;

BC = 1
2λHf

(

1 + k w1−w2
σA

[

λ2w2 + w1−w2
2

Hf

σA
(λ2k − λ1(2β − 1))

])

.

If C < 0 then Vk(T ) is decreasing in T and obtains its maximum at
the lower boundary, T = k∆1 and TI = 0, so that there are sales to 1-
customers only. Using the results of Glazer and Hassin (1986) for a single
type of customers, such a structure with k > 1 is not possible. Therefore,
we assume that C > 0. In this case Vk(T ) is concave with maximum at

T =
√

C/B. The solution is given in Figure 10. Note that V
(9)
1 = V (7), i.e.,

the case k = 1 is the semi-continuous case of Figure 8.

9 Summary

The nine possibilities for an optimal solution are:

• Sales at replenishment instants to 1-customers only, with value V (1).

• Sales at replenishment instants without loss of any customers, with
value V (2).

• Sales at replenishment instants to all 1-customers but only a fraction
of the 2-customers, with value V (3).
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Let

E = λ(w2 − c) + (w1 − w2)
Hf

σA
[λ2k + λ1(1 − β)];

B = 1
2hfλ;

C = A + k∆1

[

λ2(w2 − c) + 1
2hf∆1(λ2k − λ1(2β − 1))

]

.

If C > 0, and
√

C/B ≥ k∆1, then

V
(9)
k = E − 2

√
BC.

Figure 10: Solution with multiple no-sale intervals

• Continuous sales to 1-customers only at price w1 and value V (4).

• Continuous sales to all customers at price w2, with value V (5).

• Continuous sales to all customers followed by a no-sale interval with
sales to all 1-customers but only a fraction of the 2-customers. This is
a semi-continuous policy at price lower than w2, and value V (6).

• Continuous sales to all customers followed by a no-sale interval with
sales to 1-customers only. This is a semi-continuous policy at price
w2, and value V (7).

• Continuous sales to 1-customers followed by a no-sale interval with
sales to 1-customers only. This is a semi-continuous policy at price
higher than w2 but lower than w1, and value V (8).

• Continuous sales to all customers at price w2 during an initial interval
followed by k no-stock intervals in which 2-customers are lost, with

value V
(9)
k .

We note that with a single type of customers, Glazer and Hassin (1986)
proved that the optimal solution is either simple or semi-continuous. Indeed,
multiplicity of no-sale intervals in our generalized model comes with p = w2,
meaning that if w1 = w2 the solution requires continuous sales, without a
no-sale interval

Our computational experience demonstrated that the case, which is not

possible with homogeneous customers, where V
(9)
k is optimal for k ≥ 2,
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k β V
(9)
1 V

(9)
2 V

(9)
3 V

(9)
4 V

(9)
5 V

(9)
6 V

(9)
7

1 0.500 5.077 4.940 4.705 4.373 3.948 3.433 2.830
2 0.605 3.730 3.730 3.630 3.430 3.136 2.747 2.268
3 0.682 2.729 2.831 2.831 2.731 2.534 2.241 1.855
4 0.761 1.722 1.928 2.030 2.030 1.930 1.733 1.442
5 0.839 0.708 1.017 1.222 1.323 1.323 1.224 1.028
6 0.919 0 0.101 0.409 0.613 0.714 0.714 0.615
7 0.999 0 0 0 0 0.101 0.202 0.202

Table 1: The minimum β ≥ 0.5 such that k no-sale intervals are opti-

mal, and the values V
(9)
i i = 1, . . . , 7 at this β. (w1, w2, l1, l2,Hf , σA, c) =

(8.1, 7.7, 19.3, 1.6, 635, 345, 0).

is obtained only with extreme input values. The appendix contains two
theorems which prove that in certain ranges of the parameters this case is
not possible. Figure 11 shows the optimal solution value as a function of
β, for (w1, w2, λ1, λ2,Hf , σA, c) = (8.1, 7.7, 19.3, 1.6, 635, 345, 0). For these
values of the parameters we have V (i) ≤ 0 for i = 1, . . . , 5. The values of

V
(9)
k are given in Table 1 for k = 1, . . . , 7.

Future research should address the possible structures of optimal policies
for a general number of customers. In particular, an interesting question to
be posed is if the optimal policy for a discrete number of customer types
greater than 2, is still either simple, semi-continuous, or consisting of a
continuous sales interval followed by a number of no-sales interval? If the
answer is positive then a further question is the specific policies that may
be optimal for each of the possible structures with respect to the customers
who are served. The challenging extension assumes a continuous probability
distribution F (w) for w ≥ 0, on the proportion of customers with a reserva-
tion price no greater than w. The question then is to develop an algorithm
that generates an optimal policy as a function of F .
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[8] Güllü, R., “Base stock policies for production/inventory problems with
uncertain capacity levels,” European Journal of Operational Research
105 (1998), 43-51.
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Appendix

We have shown that optimal solutions which are neither simple nor semi-
continuous are possible only if β > 0.5 and p = w2. In this appendix we
present two theorems restricting the range of input parameters for which it
is possible that the optimal solution is neither simple nor semi-continuous.

In this appendix we simplify notation and mark V
(9)
k by Vk.

Theorem 15 If β ∈
[

1
2 , 1

2

(

1 + λ2
λ1

)]

then V1 ≥ Vk for k ≥ 2.

Proof: Fix T and consider a solution with k > 1. The sales at T −(k−1)∆1

positively contribute to the profitability of the solution only if (w2 − c) ≥
hf [T − (k − 1)∆1], and therefore we make this assumption.

Vk(T )−Vk−1(T ) = −∆1

T

{

λ2(w2 − c) + hfλ

(

−T +
2k − 1

2
∆1

)

+ λ1hf [T − k∆1 + ∆1(1 − β)]

}

.

We now apply w2 − c ≥ hf [T − (k − 1)∆1] and use the identity λ = λ1 + λ2

to obtain

Vk(T ) − Vk−1(T ) ≤ −∆2
1hf

2T
[λ2 + λ1(1 − 2β)].

Thus, if β ≤ 1
2

(

1 + λ2
λ1

)

, Vk(T )−Vk−1(T ) ≤ 0 and k = 1 gives higher profits

than any greater value of k. These inequalities hold for any fixed T and
therefore also for the respective optimal values.

We are left with the case β > 1
2

(

1 + λ2
λ1

)

, where, in particular, λ2 < λ1.

The following theorem further limits the possibility that V
(9)
k is optimal for

some k ≥ 2.

Theorem 16 Suppose that λ2 < λ1 and σ ≤ 1
2hf (equivalently σA ≤ 1

2Hf).

For every k > 1, if Vk > 0 then Vk ≤ V (3).

Proof: Clearly, Vk(T ) decreases with hf . We also note that it decreases
with β: When β grows, there are more sales at T , and the same amount
everywhere else, except for that the reduced sale at T is now sold at TI ,
so this change increases the holding costs and decreases V . Consequently,
we can upper bound Vk(T ) by its value at the extreme values hf = 2σ and
β = λ

2λ1
. For these extremes we get

E = λ(w2 − c) + (w1 − w2)[λ2(2k − 1) + λ1],
BC = λ {σA + k(w1 − w2)λ2[(w2 − c) + (k − 1)(w1 − w2)]} .
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Note that V (3) is independent of β and hf . We claim that even with

these values, V (3) ≥ Vk, or equivalently

λ2(w1 − w2)(2k − 3) ≤

2
√

λ
(

√

σA + kλ2(w1 − w2)[(w2 − c) + (k − 1)(w1 − w2)] −
√

σA + λ2(w1 − c)(w1 − w2)
)

,

whenever Vk > 0 and
√

C/B ≥ k∆1. For k > 1, the right-hand side of
the inequality decreases with σA. Therefore, if we prove the inequality for
certain value of σA then it also holds for smaller values of σA. Let

σ0 =
(λ(w2 − c) + (w1 − w2)[λ2(2k − 1) + λ1])

2

4λ
−k(w1−w2)λ2[(w2−c)+(k−1)(w1−w2)].

By assumption Vk > 0 or equivalently σA < σ0. Hence, it is sufficient to
prove that for σA = σ0, V (3) ≥ 0. Using Figure (4), we need to prove that
this σA satisfies

Diff =
[

λ(w1 − c) + λ2(w1 − w2)
]2

− 4λ
[

σA + λ2(w1 − c)(w1 − w2)
]

≥ 0.

Equivalently, we prove the inequality after substituting wi for wi−c, i = 1, 2.
Substituting the σ0 for σA and simplifying gives

Diff = λ1λ2

{

w2
1(4k

2 − 8k + 2) + w2
2(4k

2 − 8k) − w1w2(8k
2 + 16k − 2)

}

+λ2
2

{

−w2
1 − 3w2

2 + 4w1w2

}

≥ λ1λ2(w1 − w2)
2(4k2 − 8k) + λ2

2(w
2
1 − 3w2

2 + 2w1w2) ≥ 0,

where we used the relations w1 ≥ w2, λ1 > λ2, and k ≥ 2.
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