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Abstract

We propose a new sufficient condition for total balancedness of reg-
ular cooperative games. In a regular game each player is characterized
by a ”vector of properties” that specifies the initial quantities of a
number of resources owned by the player. The characteristic function
value of a coalition depends only on the vectors of properties of its
members through an algebraic expression. Within this class we focus
on aggregation games, where the formation of a coalition is equivalent
to aggregating its players into a single ”new” player having a cost that
is a kind of an average of the costs of the aggregated players. We
prove that under some conditions such games are totally balanced and
their nonnegative part of the core is fully identifiable. Applications in
queueing and scheduling are presented.

Subject classification: Games/Group Decisions: Bargaining, Cooperative; Queues;
Production/Scheduling
Area of Review: Games, information, and Networks or Operations and Supply
Chain
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1 Introduction

The trigger of this article comes from [1] where we analyzed the total balancedness
of the most basic type of cooperation among parallel M/M/1 queues that combine
their arrival streams as well as their service capacities to form a new M/M/1 queue,
where the value of a coalition is its congestion. In that paper, the game in question
is shown to be non-concave but we propose a concave auxiliary game whose core
coincides with the nonnegative part of the core of the original game, proving the
total balancedness of the original game. The question that has been often raised
in the context of the proof is whether the genuine idea behind the auxiliary game
can be generalized beyond the specific game considered in [1]. In this paper we
generalize the type of games that the auxiliary game technique is useful in proving
total balancedness.

We consider the total balancedness of a class of cooperative games with trans-
ferrable utilities, which we call centralizing aggregation games. For that sake we
first review the main concepts in cooperative game theory. Cooperative games, in
general, are coalitional games defined by a pair (N,V ) where N = {1, . . . , n} is a set
of n players and the characteristic function V is a set function that returns the cost
V (S) ≥ 0 of any coalition S ⊆ N, i.e., V : 2N → <+

0 , (<+
0 are the nonnegative real

numbers), such that V (∅) = 0. The coalition S = N is called the grand-coalition.
The cost of the game, if the grand-coalition is partitioned into disjoint coalitions
S1, . . . , Sm, so that ∪m`=1S` = N and Sk ∩ S` = ∅ for any 1 ≤ k < ` ≤ m, is∑m
`=1 V (S`), meaning that the total cost is additive in the coalitions. A sufficient

and necessary condition for all the players of N to fully cooperate in order to form
a single coalition that is the grand-coalition, is subadditivity of the game. A game
(N,V ) is subadditive if and only if the characteristic function V is subadditive, i.e.,
for any two disjoint coalitions S, T ⊂ N, V (S ∪ T ) ≤ V (S) + V (T ). Subadditivity
implies that V (N) ≤

∑m
`=1 V (S`) for all partitions {S1, . . . , Sm}, m ≥ 1, of N,

implying that the grand-coalition is an optimal formation of coalitions.
Once that the grand-coalition is formed, a bargaining process starts among

the players in order to determine how to fairly allocate the cost V (N) among the
players. Researchers have proposed various cost allocation concepts, where the
common guideline is achieving a reasonable amount of fairness among the players.
Let the n− vector x̂ = (x1, . . . , xn) ∈ <n, where xi, i ∈ N, is the cost allocated
to player i, be a cost allocation vector. The condition

∑n
i=1 xi = V (N), called

efficiency, is preliminary for an n− vector to be a cost allocation. For the sake
of this paper we describe the two most renowned concepts. The core of the game
(N,V ) consists of all efficient cost allocations that allocate to the members of S,
for any coalition S ⊂ N, no more than V (S), i.e.,

∑
i∈S xi ≤ V (S). These last

conditions are called the stand-alone conditions. The core of a game (N,V ) is thus
defined by n decision variables and 2n−1 linear constraints. As a consequence, the
core is either empty, consists of a single cost allocation or it contains an infinitely
large set of cost allocations. A cooperative game (N,V ) whose core is nonempty is
said to be balanced, and a game whose core and the cores of all its sub-games are
nonempty is called totally balanced. Finding out whether a given game is balanced
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or totally balanced or alternatively pointing out a specific cost allocation within the
core might be challenging questions because of the exponential size of the problem.
Another well known fairness concept is the Shapley value. Any cooperative game
is associated with a unique value, called its Shapley value, even if the core of the
game is empty. The Shapley value of player i ∈ N is the average marginal cost of
adding the player to the players that precede him where averages are taken with
respect to all potential orders of the players, see [8]. The Shapley value does not
necessarily belong to the core of a balanced game as it does not necessarily satisfy
all the stand-alone conditions. On the other hand, the Shapley value does satisfy
three other desired properties of symmetry, linearity and null player, in addition to
the efficiency, see [8]. In fact, the Shapley value is the only value that satisfies all
the above four properties.

Many cooperative games, especially in operations management and logistics,
have a further feature that makes it possible to represent them in a more efficient
and compact way than by listing the 2n values that the characteristic function as-
sumes. In two former papers we propose a class of cooperative games called regular
games see [2] and [3], which are defined by a finite list of κ ≥ 1 different quanti-
tative resources indexed by ` = 1, . . . , κ that the players own. Each player is fully
characterized by a vector of properties of size κ whose `−th element represents the
amount of resource ` that the player owns. The cost of a coalition is a symmetric
mapping of the vectors of properties of the players in the coalition into <+

0 and it
is otherwise independent of n or the identity of the players. Regular games can
be presented in a simple and compact way by stating the form of the mapping as
a function of the collection of vectors of properties. As a consequence it allows
flexibility that the classic presentation (N,V ) does not permit, as instead of having
a rigid set of players N , the mapping returns a value for any collection of κ−vectors
even if the vectors are not associated with players in N. Furthermore, manipulat-
ing real functions using appropriate mathematical rules in order to prove desired
properties is simpler and a safer haven than doing the same with set functions.
For example, consider the following definition, see [2], on homogenous of degree p,
p ≥ 0, cooperative games:

Definition 1 A regular game is homogeneous of degree p, p ≥ 0, if for any integer
m, the cost of cloning m times a collection of vectors of properties, is mp times the
cost of the original collection of vectors of properties.

In a non-regular game (N,V ), cloning a player is meaningless as the character-
istic function is defined only on coalitions of N. A regular game that is homogenous
of degree 0 displays economies of scale as the cost of m ≥ 1 copies of a collection
of vectors of properties is the same as the cost of a single copy, thus the cost per
player decreases implying that efficiencies are improved by scale. In homogenous
of degree 1 games the cost increases linearly in the number of copies of the play-
ers, thus there are not any economies of scale. Homogenous of degree p games for
0 < p < 1 (p > 1) display economies (diseconomies) of scale, as the average cost
per player improves (deteriorates). Paper [2] exploits the advantages of regular
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games in proving a new sufficient condition for a game to be totally balanced, see
Condition 3 below. The regularity of the game allows to prove the condition by
applying arithmetic operations on the cost function rather than dealing with the
characteristic function.

Below we list the few known sufficient conditions for proving total balancedness
of a game. The first two conditions hold in general, where the third is applicable
only on regular games.

• Condition 1. A game G = (N,V ) is concave if its characteristic function is
concave, meaning that for any two coalitions S, T ⊆ N , V (S∪T )+V (S∩T ) ≤
V (S) +V (T ). Concave games are subadditive but not the other way around.
It was shown in [9] that the core of a concave game possesses n! extreme
points, each of which being the vector of marginal contribution of the players
to a different permutation of the players. In particualr, the Shapley value of
a concave game is the center of gravity of its core.

Remark 1. The authors of [4] introduce the set of average concave games
that contains as a subset the concave games. These games are totally bal-
anced and their Shapley value is within their core, similarly to concave games.

• Condition 2. A market game, see e.g., Chapter 13 in [5], is defined as
follows: Suppose there are κ inputs. An input vector is a nonnegative vec-
tor in (<+

0 )κ. Each of the n players possesses an initial commitment vector
wi ∈ (<+

0 )κ, 1 ≤ i ≤ n, which states a nonnegative quantity for each input.
Moreover, each player is associated with a continuous and convex cost func-
tion fi : (<+

0 )κ → <+
0 , 1 ≤ i ≤ n. A profile (zi)i∈N of input vectors for which∑

i∈N zi =
∑
i∈N wi is an allocation. The game is such that a coalition S of

players seeks an optimal redistribution of its members’ commitments among
its members in order to get a profile (zi)i∈S of input vectors that minimizes
the total cost across the members of S. Formally, for any ∅ ⊆ S ⊆ N ,

V (S) = min
{∑
i∈S

fi(zi) : zi ∈ (<+
0 )κ, i ∈ S and

∑
i∈S

zi =
∑
i∈S

wi
}

(1)

Market games are known to be totally balanced, see [6], Corollary 3.2.4.
However, in contrast to concave games whose entire core is well defined, just
a single core cost allocation that is based on competitive equilibrium prices is
known for market games, see [5] page 266.

It is interesting to note that in [10] it is proved that a game is totally balanced
if and only if it is a market game. In particular, it means that all concave
games are market games. In addition it means that any totally balanced
game has a presentation as a market game (see (1)), even if originally it
is not presented in this way. The drawback is that the attempt to prove
total balancedness by representing a game by a characteristic function that
satisfies (1) may be as challenging as the task of proving that the game is
totally balanced.
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• Condition 3. A regular game G = (N,V ) that is subadditive and homoge-
nous of degree 1 is totally balanced, see [2].

No core allocation is proposed in [2] for a subadditive and homogenous of
degree 1 game. However, the fact that it is totally balanced implies that a
core cost allocation based on competitive equilibrium prices can be derived
once that the game is presented as a market game.

We note that neither concave games nor market games are necessarily regular.
A market game (N,V ) is a regular game if and only if the characteristic function
value of the grand-coalition V (N), (see (1)), is given as the minimum of the sum of
n identical functions, i.e., fi = f for all i ∈ N. In such a case, the cost of a vector
of properties is independent of the identity of the player that owns the vector.

In this article we concentrate on a subclass of regular games that we call cen-
tralizing aggregation games, where an aggregation function aggregates any number
of vectors of properties into a single new vector of properties. Centralizing means
that the cost of the aggregated vector of properties generated by an input of vec-
tors of properties behaves like a measure of centrality of the costs of the individual
vectors of the input. More specifically, the cost of the new vector is in between the
cost of the cheapest vector and the cost of the most expensive vector in the input,
and it is strictly increasing in the cost of the vectors in the input. Note that the
aggregated vector is not necessarily associated with a player of N , but nevertheless,
as the game is regular, the cost of the aggregated vector is well defined.

In the main theorem of the paper we prove that under a certain condition, a
centralizing aggregation game is totally balanced and its nonnegative core is fully
identifiable. This is done by defining an auxiliary game whose core is contained in
the core of the original game, and showing that the auxiliary game is monotone
and concave thus its core is nonnegative, see [9]. Finally, we show that the core of
the auxiliary game coincides with the nonnegative core of the original game.

The outline of the paper is as follows: In Section 2 we present some notations
and preliminaries, including a rigorous definition of regular games. In Section 3
we present the class of regular centralizing aggregation games and some of their
properties that are required for proving the main theorem in Section 4. These results
are used in Section 5 to show that two specific games, one in queueing and one in
scheduling, are totally balanced. Section 6 summarizes the paper and raises an open
question about the total balancedness of a family of regular centralizing aggregation
games whose characteristic function returns, for any coalition, a generalized mean
of the scores of its members.

2 Notations and Preliminaries

In this article we focus on a class of cooperative games, called regular games, see [2],
and [3], described hereafter. In a regular game G = (N,V ), with a set of n players
N = {1, . . . , n}, the players own an integer number κ ≥ 1 of resources indexed by
` = 1 . . . , κ. Each player i ∈ N is associated with a vector yi ∈ D ⊂ <κ, called its
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vector of properties where yi` specifies the amount of resource `, 1 ≤ ` ≤ κ, that
is initially owned by the player. The set D is assumed to be a convex set. The
set D may coincide with <κ if any real κ−vector is a possible vector of properties,
though usually D is a subset of (<+

0 )κ. The resources can be reallocated among
the players of a coalition according to the rules of the game. In a regular game
the cost induced by any coalition S ⊆ N consisting of s ≥ 1 players, namely the
characteristic function value V (S), is independent of n or the players’ identity, and it
depends only on the s vectors of properties that are associated with the players of S.
More specifically, V (S) can be represented as a symmetric mathematical expression
of the s vectors of properties of the members of S, i.e., Vs : Ds → <+

0 . In particular,
for the empty coalition, V0 ≡ 0, and for singleton coalitions V ({i}) = V1(yi) for
any i ∈ N. A null vector of properties denoted by y0 ∈ D, whose cost is zero, i.e.,
V1(y0) = 0, exists. However, these requirements are insufficient for a game to be
a regular game, as we further need the various functions in the infinite sequence
V0, V1 . . . to be interrelated. This interrelation is achieved by using the null vector
of properties, as explained below.

Let y(s) denote a sequence of s vectors of properties y1, . . . , ys in D. The
following two definitions formally define a regular game:

Definition 2 An infinite sequence of symmetric functions V0, V1, . . . , Vm, . . . is
said to be Infinite Increasing Input-Size Symmetric Sequence (IIISSS) of functions
for given integer κ ≥ 1, and a convex set D of <κ, if

• V0 ≡ 0;

• For any m ≥ 1, Vm : Dm → <+
0 ;

• There exists a vector y0 ∈ D such that V1(y0) = 0 and for any given se-
quence of m − 1 vectors of properties y(m−1) = (y1, . . . , ym−1) ∈ Dm−1,
Vm−1(y(m−1)) = Vm(y(m−1), y0).

The third item of the definition guarantees that the IIISSS of functions is con-
sistent, i.e., it excludes the possibility that there exist two functions V` and Vk for
` 6= k, where each is defined by a different mathematical expression. The null vector
of properties y0 ∈ D links the different functions through a forward recursion.

Definition 3 A game G = (N,V ) is called regular if there exists a convex set
D ⊆ <κ, such that each player i, i ∈ N, is associated with a vector of properties
yi ∈ D, and there exists an IIISSS of functions V` : D` → <+

0 , ` ≥ 0, such that for
any S ⊆ N , V (S) = V|S|(y

i|i∈S).

A regular game is easily extendable to any set of players once that each player is
associated with a vector of properties. As a consequence, it is possible to duplicate
players as shown in Definition 1 and in the proof of the main theorem in paper [2].
The class of regular games is quite large and it contains many well-known games
in economics, operations and service management, graph theory etc. As stated in
Section 1, a market game (N,V ) is a regular game if and only if V (N), see (1),
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is given as the minimum of the sum of n identical functions, i.e., fi = f for all
i ∈ N. Consider a market game where the cost of player i that owns a vector of
properties yi ≥ 0 is f(yi). In order to define it as a regular game, let D be (<+

0 )κ,
y0 is the zero-vector in <κ, and Vm(y1, y2, . . . , ym) = min{

∑m
i=1 f(zi) :

∑m
i=1 z

i =∑m
i=1 y

i} = mf(

∑m

i=1
yi

m ). The last equality follows from the convexity of f, see
definition of a market game in Section 1.

The next definition is general:

Definition 4 A cooperative game (N,V ) is monotone non-decreasing if and only
if V (T ) ≥ V (S) for any S ⊂ T ⊆ N.

In the sequel we say that a game is monotone if it is monotone non-decreasing.

3 Centralizing Aggregation Games

We now present a few more definitions.

Definition 5 The IIISSS of functions {Vk}k≥0 of a regular game (N,V ) is cen-
tralizing if for any m ≥ 1 vectors of properties y1, . . . , ym with V1(y1) ≤ V1(y2) ≤
. . . ≤ V1(ym), the following two properties hold:

• V1(y1) ≤ Vm(y1, . . . , ym) ≤ V1(ym), and

• Vm(y1, . . . , ym−1, z) is strictly increasing in V1(z), for z ∈ D.

We now proceed to the definition of aggregation games:

Definition 6 An aggregation function maps a 2−fold cartesian product of a con-
vex set into the same set, given that it is reflexive, symmetric and it satisfies the
commutative and the associative laws.

Thus, an aggregation function g, g : D2 → D, satisfies the following equalities:
for any yi, yj , yk ∈ D, g(yi, yi) = yi, g(yi, yj) = g(yj , yi), and g(g(yi, yj), yk) =
g(yi, g(yj , yk)). Let gm−1 : Dm → D be the aggregation function that aggregates
m ≥ 2 vectors of properties into one, where g1 ≡ g. In other words, gm−1 is the
m−fold aggregation function.

Next, we consider an IIISSS of functions and an aggregation function g : D2 →
D that satisfy Vm(y1, . . . , ym) = V1(gm−1(y1, . . . , ym)).

Definition 7 A game (N,V ) is an aggregation game if

• It is a regular game with an IIISSS of functions {Vk}k≥0.

• There exists an aggregation function g : D2 → D such that the IIISSS of
functions satisfies Vm(y1, . . . , ym) = V1(gm−1(y1, . . . , ym)) for any m ≥ 1
vectors of properties y1, . . . , ym ∈ D.
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Thus, a regular aggregation game (N,V ) associated with an IIISSS of functions
{Vk}k≥0, is fully characterized by its aggregation function g : D2 → D and the cost
function V1 : D → <+

0 .

Definition 8 An aggregation game (N,V ) that is associated with a centralizing
IIISSS of functions {Vk}k≥0 is a centralizing aggregation game.

The next claim provides an alternative definition to a centralizing aggregation
game that is given in terms of V1 and the aggregation function g. The proof of the
claim is by induction using the properties of the aggregation function.

Claim 1 An aggregation game defined by the aggregation function g : D2 → D and
the cost function V1 : D → <+

0 is a centralizing aggregation game if and only if

• V1(y) ≤ V1(z) implies that V1(y) ≤ V1(g(y, z)) ≤ V1(z).

• V1(g(y, z)) is strictly increasing in V1(z) or any y, z ∈ D.

For demonstration of centralizing aggregation games, we present two examples
where the characteristic function is either the arithmetic mean or the geometric
mean of the scores. The first example is presented also in [2]. The games are easily
verified to be centralizing aggregation games by Claim 1. Let N = {1, 2, . . .} be
the set of positive integers, and N0 = N ∪ {0}.

• The arithmetic mean game: Each player i is associated with a nonnegative
score αi and the value of a coalition is the average score of its members. In
order to define the game as a regular aggregation game let κ = 2, y0 = (0, 0),
D = {(0, 0)}∪{(x, `) : x ≥ 0, ` ∈ N} and each individual player is associated
with a vector of properties (a, 1) where a is the score of the player. In
addition, let the aggregation function g : D2 → D be g((x1, k1), (x2, k2)) =
(x1 +x2, k1 +k2). Each group of k original players is associated with a vector
of properties of the form (x, k) where x is the sum of the scores of the group’s
players. Let V1(y0) = 0 and otherwise, for any (x, k) ∈ D, (x, k) 6= y0 let
V1((x, k)) = x

k . Given a collection of m ≥ 1 vectors of properties y(m) in Dm,

with yi = (xi, ki) ∈ y(m), i = 1, . . . ,m, let Vm(y(m)) = V1(gm−1(y(m))) =∑m
i=1 xi/

∑m
i=1 ki if

∑m
i=1 ki > 0, i.e., Vm(y(m)) is the average score of the

non-null vectors in D, and otherwise, it is zero. In subsection 5.2 we show
that this game is totally balanced.

• The geometric mean game: Each player i is associated with a positive score αi
and the value of a coalition is the geometric mean of the scores of its members.
For example, the value of a coalition of three players is the cube root of the
product of their three scores. Thus, let κ = 2 and similarly to the average
game, each individual player is associated with a vector of properties (a, 1)
where a is the score of the player. However, unlike the average game, the null
vector of properties here is y0 = (1, 0) and D = {(1, 0)} ∪ {(x, `) : x > 0, ` ∈
N}. Let the aggregation function g((x1, k1), (x2, k2)) = (x1x2, k1 + k2). Each

8



group of k original players is associated with a vector of properties of the form
(x, k) where x is the product of the scores of the group’s players. Let V1(y0) =
0 and otherwise, for any (x, k) ∈ D, (x, k) 6= y0, let V1((x, k)) = x1/k. Given a
collection of m ≥ 1 vectors of properties y(m) in Dm, yi = (xi, ki) ∈ y(m), i =
1, . . . ,m, the corresponding IIISSS of functions is given by V1(y0) = 0, and

otherwise Vm(y(m)) = V1(gm−1(y(m))) = (Πm
i=1xi)

(
∑m

i=1
ki)
−1

, i.e., Vm(y(m))
is the geometric mean score of the non-null vectors of properties in D.

As shown above, the choice of the null vector of properties y0 depends on the
IIISSS of functions that should satisfy the third requirement in Definition 2. In
Section 6 we pose an open question regarding the total balancedness of a large
family of centralizing aggregation games that deal with generalized means that
the arithmetic and geometric mean games are special cases. The maximum of a
set of numbers is another a special case of a generalized mean. Consider a game
where each player is associated with a score and the characteristic function value
of any coalition is the maximum score in the coalition. This game, which we call
the maximum game, can easily be presented as a regular aggregation game, but
it is not a centralizing game as it does not satisfy the second item of Claim 1.
I.e., V1(g(y, z)) for y, z ∈ D, is increasing but not strictly increasing in V1(z), as
required. For more on the maximum game see Claim 3.

Claim 2 A centralizing aggregation game (N,V ) is subadditive, homogenous of
degree 0 and nonmonotone.

Proof:
In order to prove the subadditivity, consider two disjoint coalitions S, T ⊂ N,

with V (S) ≤ V (T ). The centralizing property implies that V (S) ≤ V (S ∪ T ) ≤
V (T ), which implies that V (S ∪ T ) ≤ V (S) + V (T ). Such a game is homogenous
of degree 0, see Definition 1, as cloning the players of any coalition S ⊆ N m times
results in m coalitions S1, . . . , Sm where each such coalition is a copy of S, thus
V (S1) = . . . = V (Sm) = V (S). The centralizing property implies that V (S) =
V (S1) ≤ V (S1∪ . . .∪Sm) ≤ V (Sm) = V (S), i.e., V (S1∪ . . .∪Sm) = V (S). Finally,
regarding the nonmonotonicity, consider any two vectors of properties y1, y2 ∈ D
such that V1(y1) < V1(y2). By Claim 1, V1(y1) = V1(g(y1, y1)) < V1(g(y1, y2)) <
V1(g(y2, y2)) = V1(y2), proving that adding a player to a coalition may increase or
decrease the cost of the coalition.

Consider now the class of nonmonotone games, not necessarily regular, that
contains as a subset the regular centralizing aggregation games.

Definition 9 Any nonmonotone game G = (N,V ) is associated with another
monotone game G̃ = (N, Ṽ ) called its auxiliary game where Ṽ (S) = min{V (T ) :
S ⊆ T ⊆ N}.

Note that the auxiliary game of a monotone game coincides with the game itself.
The following Lemma follows from [1].
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Lemma 1 • The auxiliary game G̃ = (N, Ṽ ) of a nonmonotone game G =
(N,V ) is a monotone game, with Ṽ (∅) = 0, Ṽ (N) = V (N), and Ṽ (S) ≤
V (S).

• If the auxiliary game G̃ = (N, Ṽ ) is totally balanced, then the game G =
(N,V ) is also totally balanced.

• If the auxiliary game G̃ = (N, Ṽ ) is concave, then the nonnegative core of
the game G = (N,V ) coincides with the core of the auxiliary game.

Definition 10 Coalition T ⊂ N is minimal for coalition S ⊆ T for a given game
(N,V ) if and only if Ṽ (S) = V (T ).

A minimal coalition is not necessarily unique. In [1] it is proved that the maxi-
mal coalition among the minimal ones is unique, and a Construction Algorithm that
generates the maximal coalition is presented. In the sequel let S̃ be the maximal
coalition among all minimal coalitions of S ⊆ N.

An alternative definition for a concave game, see Section 1, Condition 1, is given
in Definition 11. In the sequel let S ∪ {`} = S` for any coalition S ∪ {`} ⊂ N.

Definition 11 A cooperative game (N,V ) is concave if and only if it satisfies the
following property for any S ⊂ T ⊂ N and for any ` ∈ N\T :

V (T`)− V (T ) ≤ V (S`)− V (S).

The next claim states that the maximum game is concave.

Claim 3 Consider a set of players N where each player i ∈ N is associated with
a score αi ∈ <. The maximum game (N,V ) where V (S) = maxS{αi} is monotone
and concave. Moreover, the core of the maximum game is nonnegative.

Proof: The maximum game is monotone as adding a player to a coalition can
cannot reduce the cost. The proof that the maximum game is concave follows
directly from Definition 11. As specified in Condition 1, see Section 1, and [9], in
concave games each cost allocation vector that is an extreme point of the core is
associated with a certain permutation of the players, so that each player is allocated
a cost that is equal to the marginal cost of adding the player to all the players that
precede him according to the permutation. Thus, the core of a monotone concave
game is nonnegative.

Concave games are the most structured cooperative games whose core is fully
characterized, see [9] and Condition 1 in Section 1. According to Lemma 1, if
the auxiliary game of a nonmonotone game is concave, then the original game is
totally balanced and the core of the auxiliary game coincides with the nonnegative
part of the core of the original game. This result is in contrast to the result of [2]
that provides just a sufficient condition for a game to be totally balanced without
specifying any cost allocation in the core. Even for market games that are known to
be totally balanced, just a single core allocation based on competitive equilibrium
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prices is known. We will show that under the sufficient conditions presented in
Theorem 1 in Section 4, the whole nonnegative core of a centralizing aggregation
game is fully characterized. The sufficient conditions are based on the function
V1 ◦ g : D2 → <+

0 . For that sake we need the next definition:

Definition 12 The composition V1 ◦ g : D2 → <+
0 of an aggregation game G =

(N,V ) is said to have decreasing differences if for any three vectors of proper-
ties x, y, z ∈ D such that V1(x) < V1(y) ≤ V1(z), the following inequality holds:
V1(g(y, z))− V1(y) ≤ V1(g(x, z))− V1(x).

In centralizing aggregation games both sides of the last inequality are nonneg-
ative. Before concluding this section, we consider a few basic observations. The
first two consider ratios of nonnegative numbers, where the proof of the first one is
direct. We will use these observations in Section 5 where we present the examples.

Observation 1 Let ai, aj ≥ 0 and bi, bj > 0. aibi ≤
aj
bj

if and only if ai
bi
≤ ai+aj

bi+bj
≤

aj
bj

. Moreover, ai
bi
<

aj
bj

, if and only if ai
bi
<

ai+aj
bi+bj

<
aj
bj

.

Observation 2 If ai, aj , ak ≥ 0 and bi, bj , bk > 0 such that ai
bi
<

aj
bj
≤ ak

bk
, then

0 ≤ aj+ak
bj+bk

− aj
bj
≤ ai+ak

bi+bk
− ai

bi
.

Proof:
Consider the function φ(α, β) = α

β for α ≥ 0 and β > 0. Proving the observation

is equivalent to proving that the function φ(α, β) has decreasing differences. For
that sake consider the function ψ(α, β) = α+θ

β+δ −
α
β , where θ ≥ 0, δ > 0 are fixed

constants, and α
β < θ

δ . Rewrite the function ψ(α, β) as a function π of the two

variables β and ρ = α
β : π(β, ρ) = ρ+θβ−1

1+δβ−1 −ρ. It remains to verify that the function

π(β, ρ) is decreasing in ρ. This is done by checking the sign of the first partial
derivative of π with respect to ρ,

∂π(β, ρ)

∂ρ
=

1

1 + δβ−1
− 1 < 0, (2)

completing the proof.

Note that Observations 1,2 hold for the arithmetic mean game by substituting
the second entry in the vector of properties of each individual player i ∈ N by 1.

Observation 3 Consider a game (N,V ), where V (S) = max{U1(S), U2(S), . . . , UL(S)},
L ≥ 2, for any coalition S ⊆ N. If each of the games (N,Uk) for k = 1 . . . L,
is totally balanced, then, the game (N,V ) is also totally balanced. Moreover, let
k∗ = arg max{Uk(N) : k = 1 . . . L}, then the core of the game (N,Uk

∗
) is a subset

of the core of the game (N,V ).

11



Proof: Let ~α = (α1, . . . , αn) be a core cost allocation of the game (N,Uk
∗
). We

will show that ~α is a core cost allocation also for the game (N,V ). The efficiency
property of the cost allocation ~α holds as

∑n
i=1 αi = V (N) follows from the choice

of k∗. For any proper coalition S ⊂ N, the stand-alone property for (N,V ) holds
as
∑
i∈S αi ≤ Uk

∗
(S) ≤ max{Uk(S) : k = 1 . . . L} = V (S).

We now proceed to the main theorem of the paper.

4 Main Theorem

Theorem 1 Consider a regular nonmonotone centralizing aggregation game (N,V )
defined by V1 and the aggregation function g : D2 → D and let its auxiliary game
be G̃ = (N, Ṽ ). If the composition V1 ◦ g : D2 → <+

0 has the property of decreasing
differences (see Definition 12) then:

• The auxiliary game G̃ = (N, Ṽ ) is monotone and concave, and therefore its
core is nonempty and nonnegative.

• The game (N,V ) is totally balanced.

• The core of the auxiliary game (N, Ṽ ) coincides with the nonnegative part of
the core of the game (N,V ).

Proof: Monotonicity follows from the definition of the auxiliary game. By Con-
dition 1 in Section 1 and Lemma 1 it is sufficient to show that the auxiliary game
G̃ = (N, Ṽ ) associated with this game is concave. We prove the concavity of Ṽ by
using Definition 11 and showing that

Ṽ (T`)− Ṽ (T ) ≤ Ṽ (S`)− Ṽ (S) for any S ⊂ T ⊂ T` ⊂ N.

First note that by the first item of Lemma 1 the auxiliary game (N, Ṽ ) is monotone,
implying that both sides of the above inequality are nonnegative. Moreover, if ` ∈ T̃
then Ṽ (T`) − Ṽ (T ) = 0 and the proof is trivial. Thus we assume that ` /∈ T̃ . For
this case, we prove a tighter inequality than the above one in three steps:

1. We show that the l.h.s. of the inequality satisfies

Ṽ (T`)− Ṽ (T ) ≤ V (T̃ ∪ {`})− V (T̃ ).

2. We show that the r.h.s. of the inequality satisfies

Ṽ (S`)− Ṽ (S) ≥ V (S̃`)− V (S̃`\{`}).

3. We conclude the proof by showing that

V (T̃ ∪ {`})− V (T̃ ) ≤ V (S̃`)− V (S̃`\{`}).
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For the first item note that Ṽ (T`) = V (T̃`) ≤ V (T̃ ∪{`}) where the equality follows

from the definition of T̃` and the inequality follows from the fact the coalition T̃∪{`}
contains T` but it is not necessarily one of its minimal coalitions (see Definition 10),

where T̃` is. Also, Ṽ (T ) = V (T̃ ) by definition.

In order to prove the second item note that Ṽ (S`) = V (S̃`) by definition, and

Ṽ (S) ≤ V (S̃`\{`}) as coalition S̃`\{`} contains coalition S but is not necessarily a
minimal coalition of S.

Finally, in order to show that V (T̃ ∪ {`})− V (T̃ ) ≤ V (S̃`)− V (S̃`\{`}), let (i)
u1 be the vector of properties obtained by aggregating all the vectors of properties
of S̃`\{`} by using repeatedly the aggregation function g, (ii) u2 be the vector
of properties obtained by aggregating all the vectors of properties of T̃ by using
repeatedly the aggregation function g, and (iii) z = y` be the vector of properties
of player `. Recall our assumption that ` /∈ T̃ . As the game is a centralizing game it
means that V (T̃ ) < V ({`}), or equivalently V1(u2) < V1(z). Note that S` ⊂ T̃ ∪{`}
and therefore, V (S̃`) ≤ V (T̃ ∪ {`}), where V (S̃`) = V1(g(u1, z)) and V (T̃ ∪ {`}) =
V1(g(u2, z)). Thus, V1(g(u1, z)) ≤ V1(g(u2, z)). This last inequality together with
the fact that the game is centralizing imply that V1(u1) ≤ V1(u2). It remains to
show that V1(g(u2, z)− V1(u2) ≤ V1(g(u1, z))− V1(u1), which follows directly from
the decreasing differences property of the composition V1 ◦ g : D2 → <+

0 .
Note that under the conditions of Theorem 1 the game (N,V ) is not necessarily

concave, as is the case with the game in [1] that is presented in Sub-section 5.1.

5 Examples

In this section we present two examples of cooperative games. The first is the
queueing model that triggered this research, and the second is in scheduling.

5.1 Cooperation of M/M/1 queueing system

In the model presented in [1], servers can cooperate in order to minimize the total
congestion. When a set of servers cooperate, they form a single server whose service
rate is the sum of the individual service rates, and its stream of arrivals is the union
of the respective streams of arrivals. More precisely, let N = {1, . . . , n} be a set of
n M/M/1 queueing systems. Queueing system i is associated with an exponential
service rate µi and a Poisson arrival rate λi, λi < µi, i ∈ N . Cooperation of a set
S ⊆ N results in a single M/M/1 queue whose capacity is µ(S) =

∑
i∈S µi, and its

arrival rate is λ(S) =
∑
i∈S λi. The congestion of any coalition S ⊆ N is given by

V (S) =
λ(S)

µ(S)− λ(S)
. (3)

Next we present this game as a regular aggregation game: each queueing sys-
tem is associated with a vector of properties of size κ = 2, y0 = (0, 0), and
D = {0, 0}∪{(λ, µ)|0 ≤ λ < µ} ⊂ (<+)2. Let V1(y0) = 0, and for (λ, µ) ∈ D\{0, 0)},
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V1((λ, µ)) = λ
µ−λ . The aggregation function g that combines two vectors of proper-

ties in D into one is g((λ1, µ1), (λ2, µ2)) = (λ1 +λ2, µ1 +µ2). Consider m vectors of
properties y1, . . . , ym where yi = (λi, µi) for i = 1 . . .m. Thus gm−1(y1, . . . , ym) =
(
∑m
i=1 λi,

∑m
i=1 µi) and Vm(y1, . . . , ym) = V1(gm−1(y1, . . . , ym)). If gm−1(y1, . . . , ym) 6=

y0, then Vm(y1, . . . , ym) =
∑m
i=1 λi/

∑m
i=1(µi − λi), and otherwise it is zero.

It was shown in [1] that this game is nonmonotone and non-concave. However,
its auxiliary game was proved to be concave and therefore it is totally balanced.
By the third item of Lemma 1, the original game is totally balanced and the non-
negative part of its core coincides with the core of the auxiliary game. The proof
in [1] is based on showing that the set function defined by Equation (3) is concave.
Alternatively, as explained below, Theorem 1 allows a much simpler proof based on
real functions only.

Note that each of the IIISSS of functions {Vk}k≥1 is a ratio of a non- negative
real number by a positive real number. Thus, by Observation 1, the IIISSS of func-
tions is centralizing. By Theorem 1 we further need to show that the composition
V1 ◦ g : D2 → <+

0 has the decreasing differences property, which follows directly
from Observation 2.

5.2 Minimizing Makespan with Preemptions

Consider a number of production units i ∈ N = {1, . . . , n}, hereafter players,
where each player i owns ki ≥ 1 machines, and is associated with a set of jobs
where its longest job is of duration qi ≥ 0 and the total processing time of all its
jobs is pi ≥ qi. The machines of all players are assumed to be parallel, identical
and they have the same speed. Each player schedules its jobs on its machines so
that its makespan is minimized. The schedules allow for preemptions, but a job
cannot be processed simultaneously on different machines. The optimal solution to
the scheduling problem of each player is known, see [7] Chapter 5: The minimum
makespan of a player is the maximum of its longest job and the ratio between its
total processing time and its number of machines. If the makespan is determined
by the longest processing time, then it is possible that the optimal schedule on some
of the machines include idle times. Otherwise, all machines are fully used during
the makespan duration. In the cooperative game proposed here, players can form
coalitions, where the players of a coalition share their machines in order to produce
their jobs in a minimum makespan. For any coalition S ⊆ N, let k(S) =

∑
i∈S ki be

the number of machines owned by the players of S, q(S) = max{qi : i ∈ S}, be the
duration of the longest job in S, and p(S) =

∑
i∈S pi, the total processing time of

all jobs in S. Clearly, p(S) ≥ q(S). If q(S) = 0 then also p(S) = 0 as it means that
coalition S has no jobs. Let (N,V ) be the respective game where the characteristic
function value V (S) for S ⊆ N denotes the optimal makespan of running the jobs

of S on its machines. More specifically, V (S) = max{q(S), p(S)k(S)}. If the players

break into m disjoint coalitions S1, . . . , Sm, such that N = ∪m`=1S`, then the total
cost is

∑m
`=1 V (S`). This game is clearly subadditive.

Next we represent the game as a regular aggregation game: Each individ-
ual player i ∈ N is initially associated with a vector of properties of size 3,
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(pi, qi, ki), such that pi ≥ qi > 0 or pi = qi = 0. Let the null vector of proper-
ties y0 = (0, 0, 0), D = {(p, q, k) : k ∈ N and (p ≥ q > 0, or q = p = 0)}, and
the aggregation function g((p1, q1, k1), (p2, q2, k2)) = (p1 + p2,max{q1, q2}, k1 +k2).
Finally, let V1(y0) = 0 and V1((p, q, k)) = max{q, p/k}, otherwise. The game
(N,V ) is not a centralizing game though V1(g((p1, q1, k1), (p2, q2, k2))) is in be-
tween min{V1(pi, qi, ki) : i = 1, 2} and max{V1(pi, qi, ki) : i = 1, 2} but it is not
strictly increasing in V1(p2, q2, k2) assuming that (p1, q1, k1) is maintained fixed. To
see this, take for example, (p1, q1, k1) = (5, 3, 2) and (p2, q2, k2) = (6, b, 3). Thus,
V1(5, 3, 2) = 3, and for b ≥ 2, V1(6, b, 3) = b. In particular, for b ∈ (2, 3) the value
of V1(6, b, 3) = b is strictly increasing in b where the value of the aggregated vector,
V1(g((5, 3, 2), (6, b, 3))) = V1((11, 3, 5)) = 3, is not. Thus, the second item in Claim
1 is not satisfied. This means that Theorem 4 cannot be invoked directly to prove
that the makespan game with preemptions is totally balanced. Below we use a
different approach to prove this assertion.

Claim 4 The makespan with preemptions game is totally balanced, and a convex
subset of its nonnegative core is fully identified.

Proof:
The characteristic function of the makespan game with preemptions (N,V ) can

be presented as V (S) = max{U1(S), U2(S)} where U1(S) = q(S) = max{qi : i ∈

S}, and U2(S) = p(S)
k(S) =

∑
i∈S

pi∑
i∈S

ki
.

According to Claim 3, the maximum game (N,U1) is concave and therefore it is
totally balanced and its core is nonnegative and it can be completely characterized.

The form of the characteristic function of the game (N,U2) is similar to the
form of the characteristic function in the queueing game presented in Subsection
5.1 as it is the ratio of a nonnegative real number by a positive number, and it is
defined as 0 for the null vector of properties. As shown above, a regular game with
this form of a characteristic function is a centralizing aggregation game that has
the decreasing differences property. Therefore, according to Theorem 1, the game
(N,U2) is totally balanced, the core of its auxiliary game is fully identified and it
coincides with the nonnegative core of the game (N,U2). The total balancedness
of the makespan game with preemptions thus follows from Observation 3.

Note that the arithmetic mean game presented in Section 3 is a special case of
the game (N,U2) implying that it satisfies all the conditions required by Theorem
4. Thus, the arithmetic mean game is totally balanced.

6 Conclusions

The determination of whether a given cooperative game has a nonempty core, let
alone identifying core cost allocations if the answer is positive, is a challenging task
because of the exponential size of the problem, see Section 1. Thus, the identifica-
tion of general sufficient conditions for proving the total balancedness of cooperative
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games may greatly simplify this task and unify the research in the field. As men-
tioned in Section 1, the literature provides just a few sufficient conditions for total
balancedness: a concave game where the entire core is fully characterized, a market
game where a single core cost allocation can be derived, and regular subadditive
and homogenous of degree 1 games that are known to be totally balanced but no
general core cost allocation for them has been identified yet. In this article we
propose a new sufficient condition: a regular centralizing aggregation game that
has the decreasing differences property is totally balanced and, moreover, its non-
negative part of the core is fully characterized. For such a game we propose a
concave auxiliary game whose core is contained in the core of the original game.
Applications in queueing and scheduling games are presented.

An interesting open question deals with cooperative games where each of its
players is associated with a score and the characteristic function is one of the
various generalized mean functions. We note that the games whose characteristic
function is the arithmetic or the geometric means, mentioned in this paper, are two
specific such means. The maximum of a collection of scores is also considered as a
generalized mean. More specifically, let (α1, . . . , αn) be a vector of positive scores.
Let p be a real number. The generalized mean that is associated with p 6= 0 is

Mp(α1, . . . , αn) =

(
1

n

n∑
i=1

αpi

) 1
p

,

where for p = 1, Mp is the arithmetic mean. For p = 0 we get the geometric mean:

M0(α1, . . . , αn) = (Πn
i=1αi)

1
n .

In addition, M−∞(α1, . . . , αn) = min{α1, . . . , αn} andM∞(α1, . . . , αn) = max{α1, . . . , αn}
are also considered as generalized means. A further generalization deals with the
case that the scores do not necessarily have the weight of 1

n each. Each player
i is then associated with a score αi and relative weight w′i > 0. For any given
coalition S, the real weight for player i ∈ S, is calculated by normalizing the

relative weights, i.e., wi =
w′i∑
j∈S

w′
j

, implying that
∑
i∈S wi = 1. The various

generalized means for any coalition take into account these weights. For p 6= 0,

Mp(α1, . . . , αn) = (
∑n
i=1 wiα

p
i )

1
p , and for p = 0, M0(α1, . . . , αn) = Πn

i=1α
wi
i , the

weighted geometric mean, is generated.
As we have seen in this article, the arithmetic mean game satisfies the conditions

of Theprem 4, and therefore it is totally balanced. The maximum game, on the
other hand, is not a centralizing game but it is concave and therefore it is also totally
balanced. An interesting question to investigate is whether all the generalized mean
games are totally balanced.
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