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Abstract

We recover approximate parametric preferences from consistent and

inconsistent consumer choices. The procedure seeks to utilize revealed

preference information contained in choices by minimizing its ranking

inconsistency with the proposed parametric preferences. We provide a

novel characterization of the Varian Ine�ciency Index, generalize it to

a goodness-of-�t measure of recovered preferences, and decompose the

latter into inconsistency and misspeci�cation measures. This provides a

reasonable way to test restrictions on parametric models. An application

of the method to the data set constructed by Choi et al. (2007) to

study choice under risk suggests more pronounced non-expected utility

preferences than previously suggested.
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1 Introduction

This paper is a contribution to the applicability of revealed preference theory

to the domain of recovering stable preferences from individual choices. The

need for such an application emerges from the recent availability of relatively

large data sets composed of individual choices made directly from linear budget

sets.1 These rich data sets allow researchers to recover approximate individual

stable utility functions and report the magnitude and distribution of behavioral

characteristics in the subject population.

Given a data set constructed from a generic consumer choice problem,

which satis�es the Generalized Axiom of Revealed Preference (henceforth

GARP), Afriat (1967) suggests a nicely behaved piecewise linear utility func-

tion that satis�es the restrictions imposed by the revealed preference relation.

This method requires recovering twice the number of parameters as there are

observations (Diewert, 1973) and therefore the behavioral implications of such

functional forms may be di�cult to interpret and apply to economic problems.

Varian (1982) builds on this work to construct non parametric bounds that

partially identify the utility function, assuming that preferences are convex.

In many cases, however, researchers assume simple functional forms with

few parameters that lend themselves naturally to behavioral interpretation.

The drawback of this approach is that simple functional forms are often too

structured to capture every nuance of individual decision making, and thus

preferences recovered in this way are almost always misspeci�ed. That is,

the ranking implied by the recovered preferences may be inconsistent with

the ranking information implied by the decision maker's choices (summarized

through the revealed preference relation). Following this line of reasoning,

given a parametric utility function, one should seek a measure to quantify the

extent of misspeci�cation and use this measure as a criterion for selecting the

element of the functional family which minimizes the misspeci�cation. This

measure should apply continuously to inconsistent choice data, and inform the

1Notable references are Andreoni and Miller (2002); Fisman et al. (2007); Choi et al.
(2007); Ahn et al. (2013); Andreoni and Sprenger (2012).
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extent of misspeci�cation by all possible utility functions.

Our proposed measure of misspeci�cation used in recovering preferences

relies on insights gained from the literature that quanti�es internal inconsis-

tencies inherent in a data set. The Varian (1990) Ine�ciency Index is a popular

measure of the decision maker's inconsistency. It is calculated by aggregating

the minimal budget adjustments required to remove cyclic revealed prefer-

ence relations, that cause the dataset to fail GARP. We provide the following

novel theoretical characterization of the Varian Ine�ciency Index: for every

continuous and locally non-satiated utility function we calculate the Money

Metric Index. This index is an aggregation, taken over all observations, of the

minimal budget adjustments required to remove inconsistencies between the

ranking information induced by the utility function and the revealed preference

information contained in the choices.2 We prove that the Varian Ine�ciency

Index equals the in�mum of the money metric indices, taken over all contin-

uous and locally non-satiated utility functions. Hence, the Varian Ine�ciency

Index lends itself naturally as a benchmark for minimizing misspeci�cation

between the data set and all possible utility functions.

Our proposed procedure of recovering approximate preferences within a

restricted parametric family generalizes the principle we introduced in charac-

terizing the Varian Ine�ciency Index, by calculating the in�mum of the Money

Metric Index over the restricted subset. If a data set satis�es GARP, the mea-

sure we propose quanti�es the extent of misspeci�cation that arises solely from

considering a speci�c family of utility functions, rather than all utility func-

tions. If the data set does not satisfy GARP, the measure can be decomposed

into the Varian Ine�ciency Index and a misspeci�cation index, which is the

di�erence between the Money Metric Index and the Varian Ine�ciency Index.

Since for a given data set the Varian Ine�ciency Index is constant (zero if

GARP is satis�ed), the measure can be used to recover parametric preferences

within some parametric family by minimizing the misspeci�cation.

Furthermore, the procedure can be used to evaluate the increase in mis-

2The latter corresponds to the relations between observed choice (the observation) and
all feasible alternatives.
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speci�cation implied by restricting the set of parameters, and to choose among

functional forms. For example, consider some parametric form of non-expected

utility that includes expected utility as a special case. Given a data set of

choices under risk, one can recover the values of the parameters that mini-

mize misspeci�cation, and evaluate the additional misspeci�cation implied by

restricting to expected utility.

To illustrate, we apply our method to recover preferences from data on

choice under risk collected by Choi et al. (2007). We recover parameters for

the disappointment aversion functional form of Gul (1991)3 using both the

widely used Euclidean-distance-based Non Linear Least Squares (NLLS) and

the proposed approach. We identify several important qualitative di�erences

in the recovered parameters. In several cases, the recovered parameters are

contradictory with respect to whether subjects are elation loving or disappoint-

ment averse, and as such the behavioral conclusions of our analysis may depend

critically on the chosen recovery method. Moreover, quantitative di�erences

in the distribution of parameter values in the subject population suggest that

the preferences recovered by minimizing inconsistency with revealed preference

information put higher weight on �rst-order risk aversion and lower weight on

second-order risk aversion (Segal and Spivak, 1990) than previously found us-

ing distance-based approaches. We calculate the additional misspeci�cation

implied by restricting to expected utility, and �nd that choices of between

one third and one half of the subjects may be reasonably approximated by

expected utility.

Our proposed method of recovering preferences using revealed preference

information is fundamentally di�erent from the traditional approach that re-

lies on the distance between observed and predicted choices. While the latter

compares only two points and utilizes auxiliary assumptions (e.g. �closer is bet-

ter�) to select among utility functions (each providing di�erent predictions),

we point out that choosing an alternative from a menu informs the observer

that it is revealed preferred to every other feasible alternative. Independently

3Within the considered setup of two-states of the world it is observationally equivalent
to models of Rank Dependent Utility (Quiggin, 1982).
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of the misspeci�cation criterion, a desired recovery method should incorpo-

rate as much revealed preference information as available in the data. The

proposal made in the current work is one possible candidate that follows this

methodology. While possessing nice theoretical and computational properties,

other methods that follow similar principle may exist. Studying such potential

proposals is an important avenue for future research.

In the next section we reintroduce familiar de�nitions and results from the

literature that applied revealed preference theory to non-parametric recovery

of preferences given consistent and inconsistent data sets of choices from bud-

get sets. The discussion regarding the shortcomings of the non-parametric

approach in the second section, serves as a motivation for the next section.

Our main analytical results and the suggested recovery method are presented

in the third section. In the fourth section we apply the proposed method

to recover preferences from data on choice under risk collected by Choi et al.

(2007). We conclude with �ve brief discussions on related theoretical, practical

and interpretational issues.

2 Non-Parametric Recoverability

2.1 Preliminaries

Consider a decision maker (DM) who chooses bundles xi ∈ <K+ (i ∈ 1, . . . , n)

out of budget menus
{
x : pix ≤ 1, pi ∈ <K++

}
. Let D =

{
(pi, xi)

n
i=1

}
be a �nite

data set, where xi is the chosen bundle at prices pi. The preference information

incorporated in the observed choices is summarized by the following binary

relations.

De�nition 1. An observed bundle xi ∈ <K+ is

1. directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
Dx, if p

ixi ≥
pix.

2. strictly directly revealed preferred to a bundle x ∈ <K+ , denoted xiP 0
Dx,

if pixi > pix.
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3. revealed preferred to a bundle x ∈ <K+ , denoted xiRDx, if there exists a

sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xiR0
Dx

j, xjR0
Dx

k, . . . , xmR0
Dx.

4. strictly revealed preferred to a bundle x ∈ <K+ , denoted xiPDx, if there
exists a sequence of observed bundles

(
xj, xk, . . . , xm

)
such that

xiR0
Dx

j, xjR0
Dx

k, . . . , xmR0
Dx at least one of them is strict.

The data is said to be consistent if it satis�es the General Axiom of Revealed

Preference.

De�nition 2. Data set D satis�es the General Axiom of Revealed Preference

(GARP) if for every pair of observed bundles, xiRDx
j implies not xjP 0

Dx
i.

The following de�nition relates the revealed preference information implied

by observed choices to ranking induced by utility maximization.

De�nition 3. A utility function u : <K+→ < rationalizes data set D, if for

every observed bundle xi ∈ <K+ , u(xi) ≥ u(x) for all x such that xiR0
Dx. We

say that D is rationalizable if such u (·) exists.
Rationalizability does not imply uniqueness. There could be di�erent util-

ity functions (not related by a monotonic transformation) that rationalize the

same data set. Afriat's celebrated theorem provides tight conditions for the

rationalizability of a data set.

Theorem. (Afriat, 1967) The following conditions are equivalent:

1. There exists a non-satiated utility function that rationalizes the data.

2. The data satis�es GARP.

3. There exists a non-satiated, continuous, concave, monotone utility func-

tion that rationalizes the data.

Proof. See Afriat (1967); Diewert (1973); Varian (1982).
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2.2 Shortcomings

2.2.1 Simplicity

The traditional problem of recoverability is to �nd a utility function that

rationalizes the data. Indeed, Afriat's proof of the Theorem is construc-

tive: he shows that if a data set D of size n satis�es GARP then U (x) =

mini {U i + λipi (x− xi)}, where U i and λi > 0 are 2n real numbers that sat-

isfy a set of n2 inequalities: U i ≤ U j + λjpj(xi − xj), rationalizes D. It is

important to note that although Afriat's utility function does not rely on any

parametric assumptions, it is di�cult to directly learn from it about behav-

ioral characteristics of the decision maker, which are typically summarized

by few parameters (e.g. risk aversion, ambiguity aversion). Moreover, this

utility function that rationalizes the data is generically non-unique. Hence,

if one can �nd a �simpler� (parametric) utility function that rationalizes the

data set - it will have equal standing in representing the ranking information

implied by the data set. If one accepts that �simple� may be superior, then

one should consider paying a price in terms of misspeci�cation. We pursue

this line of reasoning by considering the minimal misspeci�cation implied by

certain parametric speci�cations.

2.2.2 Convexity Assumption

Varian (1982) suggests a non-parametric recovery method that partially iden-

ti�es the subject's preferences by constructing upper and lower bounds on her

indi�erence curves. However, this method imposes the restriction of convexity

on the preferences that may be recovered. In Appendix A we demonstrate

that if the data set is generated by a DM who correctly maximizes a non-

convex preference relation, the ranking implied by Varian's non-parametric

bounds may be inconsistent with the underlying preferences of the DM. The

reason is that while Afriat's Theorem states that if a data set is rationalizable,

there exists a concave utility function that rationalizes it, these convexi�ed

preferences rank unobserved bundles di�erently than a utility function that

represents non-convex preferences and rationalizes the same data set. We �nd
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that in view of the evolving literature on the importance of non-convex pref-

erences in domains like risk, ambiguity and other-regarding preferences, this

exclusion seem to be unwarranted in many contexts. The parametric approach

to recoverability permits the observer to identify non-convex preferences within

a given functional family.

2.3 Inconsistent Data Sets

Afriat (1973, 1987) and Houtman (1995) use similar methods to those used in

Afriat (1967) to recover non-parametrically an approximate utility function, in

the sense that the existence of an underlying preference relation is maintained

by allowing the DM to not exactly maximize that relation. This approach

su�ers from the same shortcomings of Afriat (1967) discussed above. The

non-parametric approach of Varian (1982) has been extended and developed

in Blundell et al. (2003, 2008) and Cherchye et al. (2009), however, to the best

of our knowledge, it had not been expanded to include treatment of inconsis-

tent data sets, and doing so will probably entail some behavioral assumptions

regarding the nature of the inconsistencies. The parametric approach devel-

oped in the current paper, not only extends naturally to inconsistent data

sets, but also permits an insightful decomposition of the goodness of �t into

measures of inconsistency and misspeci�cation.

The following de�nition is a generalization of De�nition 1. Similar concepts

have been introduced into the literature on consistency (Afriat, 1972, 1987;

Varian, 1990, 1993) in order to measure how close is a DM to satisfying GARP.4

De�nition 4. Let D be a �nite data set. Let v ∈ [0, 1]n.5 An observed bundle

xi ∈ <K+ is

1. v−directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
D,vx, if

vipixi ≥ pix.

4A di�erent but related concept of inconsistency is presented in Echenique et al. (2011).
5Throughout the paper we use bold fonts (as v or 1) to denote vectors of scalars in <n.

For v,v′ ∈ <n v = v′ if ∀i : vi = v′i, v = v′ if ∀i : vi ≥ v′i, v ≥ v′ if v = v′and v 6= v′

and v > v′ if ∀i : vi > v′i. We continue to use regular fonts to denote vectors of prices and
goods.
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2. v−strictly directly revealed preferred to a bundle x ∈ <K+ , denoted xiP 0
D,vx,

if vipixi > pix.

3. v−revealed preferred to a bundle x ∈ <K+ , denoted xiRD,vx, if there

exists a sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xiR0
D,vx

j, xjR0
D,vx

k, . . . , xmR0
D,vx.

4. v−strictly revealed preferred to a bundle x ∈ <K+ , denoted xiPD,vx, if

there exists a sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xiR0
D,vx

j, xjR0
D,vx

k, . . . , xmR0
D,vx at least one of them is strict.

Similarly, consider the following generalization of GARP (Varian, 1990):

De�nition 5. Let v ∈ [0, 1]n. D satis�es the General Axiom of Revealed

Preference Given v (GARPv) if for every pair of observed bundles, xiRD,vx
j

implies not xjP 0
D,vx

i.

The vector v is used to generate the adjusted relation RD,v that is acyclic

although RD may contain cycles. Obviously, usually there are many vectors

such that D satis�es GARPv. Following are two useful and trivial properties

of GARPv:

Fact 1. Every D satis�es GARP0.
6

Fact 2. If v,v′ ∈ [0, 1]n and v ≥ v′ and D satis�es GARPv then D satis�es

GARPv′.

Varian (1990) proposed an ine�ciency index that measures the minimal

adjustments of the budget sets which remove cycles implied by choices.7 While

Varian suggests to aggregate the adjustments using the sum of squares, we

de�ne this index with respect to an arbitrary aggregator function.

6P 0
D,0 is the empty relation.

7Afriat (1972, 1973) Critical Cost E�ciency Index employs a uniform adjustment for all
budgets.
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De�nition 6. f : [0, 1]n → [0,M ], whereM is �nite, is an Aggregator Function

if f(1) = 0, f(0) = M and f(·) is continuous and weakly decreasing.8

For a given aggregator function, this index is a measure of the decision

maker's inconsistency.

De�nition 7. Let f : [0, 1]n → [0,M ] be an aggregator function. Varian's

Ine�ciency Index is9,

IV (D, f) = inf
v∈[0,1]n:D satis�es GARPv

f(v)

Fact 3. IV (D, f) always exists.10

3 Parametric Recoverability

This section proposes a loss-function that measures the inconsistency between

the ranking information encoded in choices made within a data set and a

given utility function. For a data set that satis�es GARP, this will constitute

a measure of the misspeci�cation in representing the data set by the utility

function.

Consider, for example, a data set of a single observation D = {(p1, x1)} and
two candidate utility functions u and u′ (the two utility functions represent the

parametric restriction) as depicted in Figure 3.1. The data set includes only a

single observation, hence is trivially consistent. However, both utility functions

8An aggregator function f is weakly decreasing if for every v,v′ ∈

[0, 1]n:
v ≥ v′ =⇒ f(v) ≤ f(v′)
v >v′ =⇒ f(v) < f(v′)

. One may wish to restrict the set of potential

aggregator functions to include only separable functions that satisfy the cancellation
axiom. All our examples belong to this restricted set (and assume an additive structure).
The theoretical result does not require the richness of possible aggregator functions. It
remains an interesting theoretical exercise to axiomatically characterize possible aggregator
functions.

9Consider a data set of two points D =
{(
p1, x1

)
; (p2, x2)

}
such that p1x2 = p1x1 but

p2x1 < p2x2. D is inconsistent with GARP or GARP1 (since x1RDx
2 and x2P 0

Dx
1), but

consider the series vl = (1− 1
l , 1) where l ∈ N>0. It is easy to verify that for every l ∈ N>0,

D satis�es GARPvl
.

10f(·) is bounded and by Fact 1, the set {v ∈ [0, 1]
n
: D satisfies GARPv} is non-empty.
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x2

x1

u′
u

Iu

Iu′

x1

Figure 3.1: Measuring misspeci�cation with budget adjustments

fail to rationalize the data since for both utility function there exist feasible

bundles that are preferred to x1 according to the respective utility function.

Consider the unobserved bundles in the lightly shaded region of Figure 3.1.

These are bundles to which x1 is directly revealed preferred and yet are ranked

higher than x1 by the utility function u. In other words, u is misspeci�ed since

for these bundles the ranking induced by u is inconsistent with the ranking

implied by choices. Yet, if we look at the union of the light and dark shaded

regions, it is easy to see that all inconsistencies with the revealed preference

information implied by u are also implied by u′. In this sense, we say that the

utility function u dominates u′ and that u′ is more misspeci�ed than u.11

Our proposed loss-function seeks the minimal adjustment to the expen-

diture levels such that all inconsistencies between the revealed preference in-

formation and the ranking information are removed. In Figure 3.1, Iu and

Iu′ are the highest expenditure levels (keeping the prices constant) such that

there is no a�ordable bundle that is ranked strictly higher than x1 by the

utility functions u and u′ respectively. Since Iu′ < Iu < p1x1 it is evident that

11Following this example of a single data point, it might be tempting to conclude that as
the preferences become less convex (for the same prediction), the misspeci�cation diminishes.
However, this intuition is misleading since in larger data sets the variability in prices may
be high enough so that less convex preferences will result in more misspeci�cation than the
more convex one.
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although both utility functions are misspeci�ed, the misspeci�cation implied

by u is smaller than the misspeci�cation implied by u′ relative to the data

set.12 In the following subsection we introduce theoretical foundations for this

approach.

3.1 v-Rationalizability and the Money Metric Index

Afriat (1967) showed that D satis�es GARP if and only if there exists a non-

satiated utility function that rationalizes the data. However, if we consider an

arbitrary utility function, it will very rarely rationalize the data (even if choices

are consistent). Next we de�ne the following generalization of rationalizability:

De�nition 8. Let v ∈ [0, 1]n. A utility function u(x) v-rationalizes D, if for

every observed bundle xi ∈ <K+ , u(xi) ≥ u(x) for all x such that xiR0
D,vx.

That is, the intersection between the set of bundles strictly preferred to

an observed bundle xi according to u, and the set of bundles to which xi is

revealed preferred when the budget constraint is adjusted by vi, is empty.

Notice that 1−rationalizability reduces to De�nition 3.

To illustrate, consider Figure 3.1, where x1 is chosen but is not optimal

according to utility function u. For every v1 such that 0 ≤ v1p1x1 ≤ Iu there

is no x that satis�es v1p1x1 ≥ p1x and is strictly preferred to x1 according to

u. In this case we say that u v−rationalizes x1 (v is a one-dimensional vector

that equals v1). We de�ne the minimum adjustment (supremum v in this case)

as the basis for our measure of misspeci�cation. In Figure 3.1 the minimal

adjustment required to v−rationalize x1 by utility function u is given by Iu
p1x1

.

Naturally, we would expect utility functions that represent the decision maker's

preferences using less misspeci�cation, to require smaller budget adjustments

in order to v−rationalize the observed choices. This is evident in Figure 3.1

where Iu′ < Iu captures the intuition that u is less misspeci�ed than u′.

12Obviously, this measure is not unique. For example, an alternative measure could use
the area contained in the intersection of the upper counter set that goes through x1 and the
budget line. We defer the discussion of this alternative measure to section 5.1.1.
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Below we show that the minimal adjustment to the budget set for ev-

ery observation is given by the value of the Money Metric Utility Function

(Samuelson, 1974) at the observation:

De�nition 9. The normalized money metric vector for a utility function u(·),
v?(D, u), is such that v?i(D, u) = m(xi,pi,u)

pixi
where

m(xi, pi, u) = min{y∈<K+ :u(y)≥u(xi)}p
iy. The Money Metric Index for a utility

function u(·) is f (v? (D, u)).

The money metric vector and the money metric utility function upon which

it is based, measure, for a given utility function, the minimal expenditure

required to achieve at least the same level of utility as the observed choices.13

Proposition 1. Let D =
{

(pi, xi)
n
i=1

}
and let u (·) be a continuous and locally

non-satiated utility function.

1. u(·) v?(D, u)-rationalizes D.

2. v? (D, u) = 1 if and only if u (·) rationalizes D.

3. Let v ∈ [0, 1]n. u (·) v-rationalizes D if and only if v 5 v?(D, u).

Proof. Is immediate and is provided in Appendix B for completeness.

Proposition 1 establishes that f (v? (D, u)) may be viewed as a function that

measures the loss incurred by using a speci�c utility function to describe a

data set. Part 3 shows that v? (D, u) measures the minimal adjustments to

the budget sets required to v−rationalize D by u, that is - to remove incon-

sistencies between the revealed preference information contained in D and the

ranking information induced by u.

Part 3 also implies that each coordinate of v? (D, u) is calculated indepen-

dently of the other observations in the data set. This is a crucial feature of

this procedure which deserves some discussion. One may intuitively believe

that such independent calculation uses only the directly revealed preference

13We include (D,u) in the de�nition to emphasize that the optimal budget set adjust-
ments depend on both the observed choices and on the speci�c utility function.
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Figure 3.2: The removal of direct inconsistencies removes all indirect incon-
sistencies

information and may fail to rationalize the data based on the indirect revealed

preference information. However, since RD is the transitive closure of R0
D, it

follows that a utility function is consistent with the directly revealed prefer-

ence information if and only if it is consistent with all the indirectly revealed

preference information. In other words, if the utility function is inconsistent

with some indirect revealed preference information, it must be inconsistent

with some directly revealed preference information as well.

Figure 3.2 demonstrates this point. The data set includes two observa-

tions, where x1 is directly revealed preferred to x2. The utility function u (·)
ranks x1 above x2 but fails to rationalize the data since u (y) > u (x1) although

x1 is strictly indirectly revealed preferred to y (which is feasible when x2 is

chosen). First, note that if this is the case, it must be that u (y) > u (x2).

That is, u (·) does not rationalize the direct revealed preference information.

Second, as is evident from Figure 3.2a, D will be v?−rationalized by adjusting

only observation 2's budget set to remove inconsistencies between the utility

ranking and the directly revealed preference information. More generally, the

v?− adjustments can be calculated observation-by-observation: for each ob-

servation the minimal adjustment is independent of the required adjustments
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for other observations.14 Moreover, Figure 3.2b15 demonstrates that v? (D, u)

retains most of the indirect revealed preference information that is consistent

with the ranking encoded in the utility function under consideration since

RD,v?(D,u) is just the transitive closure of R
0
D,v?(D,u).

Part 2 of Proposition 1 is merely a restatement of the familiar de�nition of

rationalizability using the money metric as a criterion. It shows that a non-

satiated and continuous utility function u (·) rationalizes the observed choices

if and only if it is the case that for all observations there exist no a�ordable

bundles that achieve strictly higher level of utility than the observed choices

themselves. In this case we would say that the utility function is correctly

speci�ed.

Recall that given an aggregator function f (·), f (v? (D, u)) measures the

inconsistency between a data set D and a speci�c preference relation repre-

sented by the utility function u. Let U c be the set of all continuous and locally

non-satiated utility functions. Given a set of utility functions U ⊆ U c, the
Money Metric Index measures the inconsistency between U and the data set

D.

De�nition 10. For a data set D and an aggregator function f(·), let U ⊆ U c.
The Money Metric Index of U is

IM(D, f,U) = inf
u∈U

f (v? (D, u))

The following observation follows directly from the de�nition of IM(D, f,U).

Fact 4. For every U ′ ⊆ U : IM(D, f,U) ≤ IM(D, f,U ′).

In particular, it implies that for every U ⊆ U c: IM(D, f,U c) ≤ IM(D, f,U).

That is, the value of the Money Metric Index calculated for all continuous

14An additional implication of this property is that given m data sets Di of
ni observations, and utility function u (·), if u v? (Di, u)− rationalizes Di for
every i, then u v? (

⋃m
i=1Di, u)− rationalizes

⋃m
i=1Di where v? (

⋃m
i=1Di, u) =(

v? (D1, u)
T
, . . . ,v? (Dm, u)

T
)T

. Moreover, if f (·) is additive separable (as are all the

aggregators mentioned in this paper) then f (v? (
⋃m
i=1Di, u)) =

∑m
i=1 f (v

? (Di, u)).
15The shaded area represents those bundles that are directly and indirectly v? (D,u)−

dominated by x1.
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and locally non-satiated utility functions is a lower bound on IM(D, f,U) for

every subset of utility functions.

3.2 Decomposing the Money Metric Index

Thus far we have been primarily concerned with GARP-consistent data sets

that can be rationalized by some utility function. Given such data sets we

argued that IM(D, f,U) is a natural measure of the misspeci�cation induced

by the choice to recover the utility function of the DM using the parametric

family U . By Afriat's Theorem, data sets that do not satisfy GARP cannot be

rationalized by any utility function. Were we to restrict our analysis to only

consistent data sets, the scope of our analysis would be somewhat limited.16

The method we propose to construct v? (D, u) does not depend on the

consistency of the data set D. Therefore, even if a decision maker does not

satisfy GARP, we can recover preferences (within the parametric family U)
that approximate the consistent revealed preference information encoded in

the choices. The di�culty with this arises from the fact that IM (D, f,U)

includes both the inconsistency with respect to GARP and the misspeci�cation

implied by the chosen parametric family. In this section we study how we can

decompose our measure into these two components.

Our strategy in developing the decomposition is to employ Varian (1990)

Ine�ciency Index as a measure of inconsistency, which is independent of

the parametric family under consideration. We prove that the money met-

ric index calculated for all locally non-satiated and continuous utility func-

tion - IM(D, f,U c) coincides with Varian's Ine�ciency index. It follows that

IM(D, f,U)−IM(D, f,U c) is a measure of misspeci�cation. Note that Varian's
Ine�ciency Index is independent of any preference ranking, and, as de�ned, is

16Andreoni and Miller (2002), one of the �rst experimental papers that utilizes revealed
preference approach with moderate price variation, �nds that a great majority of the subjects
satisfy GARP. However, in several recent experimental studies that employ considerable
price variation (Choi et al., 2007; Ahn et al., 2013; Choi et al., 2013), about 75 percent of
subjects did not satisfy GARP. Most of them can be shown to be very nearly consistent with
GARP according to various measures of consistency as Afriat (1972) Critical Cost E�ciency
Index, Varian (1990) Ine�ciency Index, and the Houtman and Maks (1985) Index.
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just a measure of the inconsistency incorporated in the data set. On the other

hand, recall that for a family of utility functions U , the Money Metric Index

measures the inconsistency between U and the data set. The following The-

orem establishes that Varian's Ine�ciency Index can be viewed as a measure

of the inconsistency between the set of all continuous and locally non-satiated

utility functions and the data set.

Theorem 1. For every �nite data set D =
{

(pi, xi)
n
i=1

}
and aggregator func-

tion f : [0, 1]n → [0,M ] :

IV (D, f) = IM(D, f,U c)

where U c is the set of continuous and locally non-satiated utility functions.

Proof. See Appendix C.

The proof proceeds to show that IV (D, f) ≤ IM(D, f,U c) since if IV (D, f) >

IM(D, f,U c) there exists a utility function u (·) such that IM(D, f,U c) ≤
f (v? (D, u)) < IV (D, f) and D satis�es GARPv?(D,u) in contradiction to the

de�nition of IV (D, f). On the other hand, we show that if D satis�es GARPv

then IM(D, f,U c) ≤ f(v). Moreover, we show that there exists a vector of

adjustments v such that f (v) = IV (D, f) and for every 0 ≤ λ < 1 D satis�es

GARPλv, and therefore we conclude that IM(D, f,U c) ≤ IV (D, f).

Theorem 1 enables us to decompose the Money Metric Index into a familiar

measure of inconsistency (Varian's Ine�ciency Index) and a natural measure

of misspeci�cation that quanti�es the cost of restricting preferences to a subset

of utility functions (possibly through a parametric form). By monotonicity of

IM (Fact 4), for every U ⊆ U c :

IV (D, f) = IM(D, f,U c) ≤ IM(D, f,U)

Therefore, we can write IM(D, f,U) as the sum of IV (D, f) and IM(D, f,U)−
IM(D, f,U c). The former is a measure of the cost associated with inconsistent

choices that is independent of any parametric restriction and depends only on

17



the DM, while the latter measures the cost of restricting the preferences to

a speci�c parametric form by the researcher who tries to recover the DM's

preferences. This decomposition has the advantage that the two measures are

comparable (same units) and are constructed to maintain revealed preference

information encoded in the choices. As such, IM(D, f,U)−IM(D, f,U c) serves
as a natural measure of misspeci�cation that is rooted in economic theory. Two

reasons lead us to believe that such a decomposition is essential for any method

of recovering preferences of a DM who is inconsistent, although we are not

aware of its existence elsewhere in the literature. First, since for a given data

set, the inconsistency index is constant (zero if GARP is satis�ed) we can be

certain that IM(D, f,U) can be used to recover parametric preferences within

some parametric family U by minimizing the misspeci�cation. Second, only

when the decomposition exists, one can truly evaluate the cost of restricting

preferences to some parametric family compared to the cost incurred by the

inconsistency in the choices.

Figure 3.3 demonstrates the decomposition graphically. Consider a data set

of size 2: D = {(p1, x1) , (p2, x2)} where pixi = 1. The dataset is inconsistent

with GARP since xiRDx
j and xjP 0

Dx
i for i, j ∈ {1, 2} i 6= j. It is easy to

see that for any anonymous aggregator, the Varian Index will be IV (D, f) =

f (1, v2). Hence, the dashed line (together with the original budget line from

which x1 was chosen) represents graphically the minimal adjustments required

for D to satisfy GARPv. Now consider, for example, the singleton set of utility

functions that includes the monotonic and continuous function u. We would

like to �nd v? (D, u). Since x1 is rationalizable by this utility function, then

v?1 (D, u) = 1. v?2 (D, u) is the minimal expenditure required to achieve utility

level of u (x2) under prices p2, which is represented graphically by the dotted

line. IM (D, f, {u}) = f (1, v?2 (D, u)) and since v?2 (D, u) is smaller than v2,

it implies that IM (D, f, {u}) is weakly greater than IV (D, f). The di�erence

between the original budget line from which x2 was chosen and the dashed

line - v2p2x2, represents graphically the inconsistency implied by D, while the

di�erence between the dashed line and the dotted line - v?2p2x2, represents

the misspeci�cation implied by u. Their sum is the goodness of �t measured
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Figure 3.3: Decomposition

by the money metric index. If one considers an alternative utility function u′

such that x1 is not rationalizable by u′ (but suppose v?2 (D, u′) = v?2 (D, u)),

this would not a�ect the Varian Index but would imply higher money metric

index than u and therefore u′ would be more misspeci�ed than u.

It is crucial to note that since, for a given data set, the inconsistency index

is constant, the goodness of �t measure can be used to recover parametric

preferences within some parametric family. The same idea can be applied to

hypotheses testing and model selection. Consider two parametric families U
and U ′. A researcher will calculate IM(D, f,U ′) and IM(D, f,U). As argued

before, both incorporate the same inconsistency measure - IV (D, f), hence the

data set D may be better approximated by U or U ′ depending on the relative

magnitude of the money metric index. Moreover, an important implication of

Fact 4 is that if we impose an additional parametric restriction on preferences

(hence reduce the set of possible utility functions we consider), the misspeci�-

cation will necessarily (weakly) increase. That is, if U ′ is a subset of U that is

generated by some parametric restriction, then IM (D,f,U ′)−IM (D,f,U)
IM (D,f,U)−IV (D,f)

is a measure

of the relative marginal misspeci�cation implied by the restriction of U to U ′.
We will tend to accept the restriction if this ratio is low. This methodology

resembles statistical hypothesis testing, although the current study does not

incorporate any error structure. Inclusion of such structure may provide an
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interesting avenue for future research, but is not pursued here.17

4 Application to Choice under Risk

The goal of this section is to demonstrate the empirical applicability of the

Money Metric Index as a criterion for recovering preferences. First, we com-

pare this method and a recovery method that utilizes a loss-function that is

based on the Euclidean distance between observed and predicted choices in

the commodity space, in particular Non-linear Least Squares (NLLS). Impor-

tant qualitative di�erences arise including varied emphasis on �rst-order versus

second-order risk aversion. Additionally, we demonstrate how the suggested

method can be used to recover approximate preferences for decision makers

who are not strictly rational (in the GARP sense) and assess the degree to

which these recovered preferences encode the revealed preference information

contained in the choices. Finally, we illustrate how this method can be ap-

plied to evaluate nested parametric restrictions, as is the case when we compare

models of disappointment aversion with expected utility, as well as non-nested

model restrictions, as is the case when we compare various functional forms,

e.g. CRRA versus CARA.

We apply the parametric recoverability method developed in this study

and NLLS to a data set of portfolio choice problems collected by Choi et

al. (2007). In their experiment, subjects were asked to choose the optimal

portfolio using a combination of Arrow securities from linear budget sets with

varying prices. We focus our analysis only on the treatment where the two

states are equally probable. For each subject, the authors collected 50 ob-

servations and proceeded to test these choices for rationality (i.e. GARP) as

well as estimate a parametric utility function in order to determine the mag-

nitude and distribution of risk attitudes in the population. Choi et al. (2007)

estimate a Disappointment Aversion functional form introduced by Gul (1991)

(for equally probable states):18

17See related discussions in Afriat (1972) and in Varian (1985).
18A reader who is not familiar with Gul (1991) model, may �nd the following footnote
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(a) Disappointment aversion, β > 0
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(b) Elation loving, −1 < β < 0

Figure 4.1: Typical non-expected utility indi�erence curves induced by Gul
(1991) Disappointment Aversion function

u(xi1, x
i
2) = γw

(
max

{
xi1, x

i
2

})
+ (1− γ)w

(
min

{
xi1, x

i
2

})
(4.1)

helpful: Let p = (p1, x1; ...pn, xn) be a lottery such that x1 ≤ · · · ≤ xn. Assuming (for
simplicity) that ce (p) /∈ supp (p), the support of p can be partitioned into elation and
disappointment sets: there exists a unique j such that for all i < j : (xi, 1) ≺ p and
for all i ≥ j : (xi, 1) � p. Gul's elation/disappointment decomposition is then given by
r =(x1, r1; · · · ;xj−1, rj−1), q = (xj , qj ; · · · ;xn, qn) and α =

∑n
i=j pi such that ri =

pi
1−α and

qi =
pi
α . Note that p = αq + (1− α) r. Then:

uDA (p) = γ (α)E (v, q) + (1− γ(α))E (v, r)

and ∃ − 1 < β <∞ such that

γ (α) =
α

1 + (1− α)β
where v (·) is a utility index and E (v, µ) is the expectation of the functional v with respect
to measure µ. If β = 0 disappointment aversion reduces to expected utility, if β > 0 the
DM is disappointment averse (γ (α) < α for all 0 < α < 1), and if β < 0 the DM is elation
seeking (γ (α) > α for all 0 < α < 1). Gul (1991) shows that the DM is averse to mean
preserving spreads if and only if β ≥ 0 and v is concave. That is, if v is concave then, by
Yaari (1969), preferences are convex if and only if the DM is weakly disappointment averse.
For binary lotteries: Let (x1, p;x2, 1− p) be a lottery. The elation component is x2 and

the disappointment component is x1 and α = 1− p (in our case α = 0.5). Therefore:

uDA (x1, p;x2, 1− p) = γ (1− p) v (x2) + (1− γ (1− p)) v (x1)

and since γ (0) = 0, γ (1) = 1 and γ (·) is increasing, γ (·) can be viewed as a weighting
function, and DA is a special case of Rank Dependent Utility (Quiggin, 1982).
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where

γ =
1

2 + β
β > −1 w(z) ∈

{
z1−ρ

1− ρ
,−e−Az

}
ρ ≥ 0, A ≥ 0

The parameter γ is the weight placed on the better outcome. For β > 0,

the better outcome is under-weighted relative to the objective probability (of

0.5) and the decision maker is disappointment averse. For β < 0, the better

outcome is over-weighted relative to the objective probability (of 0.5) and the

decision maker is elation seeking. In the knife-edge case, when β = 0, (4.1)

reduces to expected utility. β has important economic implication: if β > (=)0

the decision maker exhibits �rst-order (second order) risk aversion (Segal and

Spivak, 1990). That is, the risk premium for small fair gambles is proportional

to the standard deviation (variance) of the gamble.19 First-order risk aversion

can account for important empirical regularities that expected utility (with its

implied second-order risk aversion) cannot, such as in portfolio choice problems

(Segal and Spivak, 1990), calibration of risk aversion in the small and large,

and disentangling intertemporal substitution from risk aversion (see Epstein,

1992 for a survey). Figure 4.1 illustrates characteristic indi�erence curves

for disappointment aversion and elation seeking (locally non-convex) subjects,

respectively. Additionally, w(x) is a standard utility for wealth function and

is represented here by either the CRRA or CARA functional form.

We recover parameters using two di�erent methods: Non-Linear Least

Squares (NLLS) based on Euclidean distance and the Money Metric Index

developed here. To calculate the Varian Ine�ciency Index, IV (D, f), and the

Money Metric Index, IM (D, f,U),20 we use both the mean and sum-of-squares

19−1 < β < 0 implies local risk-seeking behavior.
20Computing the Varian Index is a hard computational problem (see discussion in Sec-

tion 5.4), hence we implemented an algorithm that over-estimates the real Varian Index (the
details of the implementation are in Appendix D). The implication of this overestimation is
that in most of the results that follow, the decomposition of the Money Metric Index over-
estimates the irrationality component and underestimates the misspeci�cation component.
An unavoidable consequence of this computational bias is that in some cases the misspec-
i�cation component will be negative. That said, while the extent of misspeci�cation with
respect to the approximate preferences may be underestimated, the recovered parameters
are independent of the calculation of the Varian Index, i.e. minimizing the the Money Metric
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NLLS (SSQ) Money Metric (SSQ) Money Metric (MEAN)
w(·) β ρ/A β ρ/A IM β ρ/A IM

CRRA
GARP (12) 0.006 1.279 0.413 0.732 0.029 0.249 0.791 0.016
All (47) 0.171 0.580 0.333 0.356 0.050 0.268 0.387 0.028

CARA
GARP (12) -0.07 0.047 0.452 0.022 0.028 0.16 0.024 0.012
All (47) 0.077 0.028 0.383 0.018 0.060 0.2385 0.019 0.028

Table 1: The median recovered parameters

aggregators:

f (v) ∈

 1

n

n∑
i=1

(
1− vi

)
,

√√√√ 1

n

n∑
i=1

(1− vi)2


For both methods we use an analytical optimization algorithm that allows

us to instantaneously recover individual parameters from observed choices for

each subject.21

4.1 Qualitative Comparison of Methods

In this section we compare di�erences in recovered parameters according to

the choice of recovery methods (NLLS vs Money Metric), speci�cation (CRRA

vs CARA), and aggregator (mean vs sum-of-squares). Summary statistics for

the recovered parameters are reported in Table 1.22,23 Additionally, we report

the goodness of �t, expressed as the Money Metric Index. The �rst and third

row report the statistics for only those subjects that satisfy GARP (12 out of

47), and the second and fourth row report the statistics for the entire sample.

Index is su�cient and exact. Moreover, in those cases the Money Metric Index is a better
approximation to the real Varian Ine�ciency Index than the computed value.

21For the CRRA functional form we require a restriction of ρ < 1 for all subjects that
exhibit corner choices. For ρ ≥ 1 both assets are essential, hence utility is in�nitely negative
at the corners. This is not a problem for the CARA functional form.

22Note that the recovered parameters for NLLS may di�er from those reported in Choi
et al. (2007) for several reasons: we allow for elation loving (−1 < β < 0); we permit
boundary observations (xi = 0); we use Euclidean norm (instead of the geometric mean);
we use multiple initial points (including random) in the optimization routine (instead of a
single predetermined point). We were able to replicate the results reported by Choi et al.
(2007).

23Table 1 reports medians since the recovered parameter values of a handful of subjects
are extreme and distort the average statistics.
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The summary statistics suggest substantial qualitative and quantitative

di�erences between recovery methods.24 Since the Money Metric Index does

not include any stochastic component, these di�erences cannot be tested for

statistical signi�cance, yet we may still interpret them in terms of economic

signi�cance. In other words, numerical di�erences in the recovered parameters

are suggestive of important qualitative di�erences in behavior. Consider, for

example, the higher median value of β reported for all subjects (as well as for

the restricted sample of consistent subjects): NLLS results in β ≈ 0 implying

that the decision makers are roughly expected utility maximizers on average,

i.e. exhibit only second-order risk aversion, whereas the Money Metric Index

suggests the opposite, i.e. decision makers are disappointment averse on av-

erage and exhibit �rst-order risk aversion. Note the smaller curvature of the

utility function measured by lower median value of ρ for the Money Metric

Index, indicates lesser emphasis on second-order risk aversion.25

4.2 Recovering Preferences for Inconsistent Subjects

In Section 3.2 we proved the decomposition of the Money Metric Index into

the Varian Ine�ciency Index - which serves as a measure of inconsistency, and

a remainder - which is a measure of misspeci�cation. As such, we recover

parameters that are closest to approximating preferences for those subjects

who fail GARP .26 We exclude only those subjects with a value of the Varian

Index exceeding 10%.

24The code and disaggregated data is available for download from the online Appendix.
25We �nd important qualitative di�erences at the individual level as well. For all combi-

nations of loss function and functional form we �nd some subjects that are disappointment
averse according to the Money Metric Index (β > 0), yet elation loving according to NLLS
(β < 0), or vice versa. For CRRA and the mean aggregator, we �nd 8 subjects for which
the Money Metric Index reports β > 0 and NLLS reports β < 0, and none for which the
opposite is true. The incidence and subjects a�ected vary according to functional form and
aggregator selected.

26Approximate preferences are de�ned by the set Ũ =
{u ∈ Uc : IV (D, f) = IM (D, f, {u})} where D, f, and Uc are de�ned as above. In
general, this set is not a singleton as the vector of budget adjustments, v, required by
the calculation of the Varian Ine�ciency Index, is not unique nor is the utility function
that rationalizes a given revealed preference relation, RD,v, for a particular vector of

24



Subject IV β ρ IM

320 0 -0.698 1.025 0.083
206 0.011 0.044 1.793 0.023

Table 2: Comparing consistent and inconsistent subjects

To illustrate, consider Table 2 that compares the recovered parameters us-

ing the Money Metric Index for the mean aggregator and the CRRA functional

form for two subjects taken from Choi et al. (2007). Subject 320's choices are

consistent with GARP while subject 206's are inconsistent. In spite of the fact

that 320 is consistent, the parametric preferences considered do not accurately

encode the ranking implied by her choices, as it requires 8.3% wasted income

on average. On the other hand, the revealed preference information implied

by 206's choices are well captured by the parametric family, since it implies

ine�ciency of only 2.3%, in spite of the fact that her choices are not strictly

consistent (IV = 0.0105 > 0, 116 GARP violations between pairs of observa-

tions). Additionally, the decomposed misspeci�cation for Subject 206 amounts

to only 1.2% (IM − IV ) with respect to her approximate preferences. In other

words, although 320 is consistent with GARP, the choices of 206 are better

approximated using the speci�ed functional form. As such, the Money Metric

Index can be applied uniformly to all data sets, and the appropriateness of a

certain functional form can be evaluated ex-post.

Using the decomposition of the Money Metric Index into the Varian In-

dex (measure of consistency) and a residual which measures misspeci�cation,

we can calculate the misspeci�cation for each subject (recall that these are

underestimations). Figure 4.2 presents the distribution of misspeci�cation in

the Choi et al. (2007) sample for various functional forms controlling for the

two aggregators we study. Due to the underestimation of the misspeci�cation

and the lack of information about the properties of this bias, all that can be

learned in certainty is that the percentage of subjects with misspeci�cation

exceeding the 5% threshold is considerably higher using the sum-of-squares

aggregator function than the mean aggregator. In this case, at least 25% of

adjustments.
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Figure 4.2: Cumulative distribution of misspeci�cation for CRRA/CARA
functional forms for mean/sum-of-squares aggregators

subjects exceed the 5% threshold. Results are similar when CARA is used

instead of CRRA.

4.3 Evaluating a Restriction to Expected Utility

The expected utility model is a nested alternative of the disappointment aver-

sion model, satisfying the restriction that β = 0. We propose two methods for

evaluating whether or not this restriction is justi�ed: one based on the addi-

tional misspeci�cation implied by this restriction and the other utilizing the

bootstrap method. The former has the advantage of being based on Theorem

1, but su�ers from the fact that the computed Varian Ine�ciency Index is an

upper bound to the real index (and hence the misspeci�cation under the more
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general model of disappointment aversion is downward biased). The latter can

be viewed as appropriate to testing the sensitivity of the recovered parameters

to extreme observations and is independent of the overestimation of the incon-

sistency (through the Varian Ine�ciency Index), but is not directly derived

from the theoretical considerations explored in the current study.

4.3.1 Misspeci�cation Test

Utilizing a speci�c functional form, we recover parameters under the restric-

tion that β = 0 and calculate the additional misspeci�cation implied by this

restriction. As proposed in Section 3.2, given the choice of functional form

(CRRA or CARA) and aggregator (mean or sum-of-squares), we use the ra-

tio IM (D,f,EU)−IM (D,f,DA)
IM (D,f,DA)−IV (D,f)

where DA stands for the disappointment aversion

(unrestricted) model , EU stands for expected utility model and f is the cho-

sen aggregator. We allow up to 10% additional misspeci�cation. That is, if

the restriction to expected utility implies a proportional increase in the mis-

speci�cation of more than 10%, then we tend to reject the expected utility

speci�cation. Note that since IV (D, f) is an overestimation of the Varian In-

e�ciency Index, the calculated ratio is also an overestimation of the real ratio,

meaning that the test is actually more strict and will tend to reject expected

utility for inconsistent subjects for whom IV is overestimated.27 In contrast,

the calculation of the Money Metric Index is exact.

The left hand side of Table 3 reports the percentage of subjects with ad-

ditional misspeci�cation below the 10% threshold. The number of subjects

included in each scenario is in brackets. We exclude subjects for three reasons:

Subjects with a Varian Ine�ciency Index of more than 10% are too incon-

sistent to consider any reasonable recoverability; those with a Money Metric

Index of more than 10% implies that the disappointment aversion speci�cation

does not capture their behavior; and those where the Varian Ine�ciency Index

is overestimated to the extent that it exceeds the value of the Money Metric

27For certain subjects it is the case that IV (D, f) > IM (D, f,DA) and hence the ratio
above is a negative number. In these cases we exclude these subjects from analysis. The
incidence of this problem varies depending on the loss function and the choice of functional
form.
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misspeci�cation* bootstrapping**
MEAN SSQ MEAN SSQ

CRRA 34.1% (41) 40.0% (35) 26.7% (45) 29.7% (37)
CARA 56.4% (39) 40.6% (32) 40.1% (42) 35.3% (34)

*Percentage of subjects for which additional misspeci�cation implied by expected utility
restriction is less than 10%.
**Percentage of subjects for which β = 0 is included in the 95% range of recovered
parameters.

(Number of subjects included in each sample in brackets)

Table 3: Evaluating restriction to expected utility using misspeci�cation and
bootstrapping

Index. The results between scenarios are qualitatively similar, with a range

of subjects consistent with the restriction to expected utility maximization

between 13 and 22 (out of 47), depending on the combination of functional

form and loss function being used. On the other hand, there does exist some

variation in the speci�c subjects that are excluded due to high values for the

Varian Ine�ciency or Money Metric Indices as well as which subjects are re-

jected as expected utility maximizers. While some of this variation is inherent

due to the somewhat arbitrary choice of loss function, we will show below how

the Money Metric Index can be used to select amongst functional forms.

4.3.2 Bootstrapping

As an alternative to the procedure above, we use a bootstrapping technique

in order to determine the sensitivity of recovered parameters to inclusion of

all 50 observations. In other words, this procedure provides a sense of how

sensitive the recovered parameters are to certain observations by quantifying

the variation in recovered parameters that occurs as the composition of the

data set varies. The exact procedure is described in detail in Appendix D.

This more standard method enables to check the robustness of the conclusions

presented in the left hand side of Table 3.

The bootstrapping procedure may be applied to evaluate a parametric

restriction. If the interval of recovered β generated by 95% of samples includes
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β = 0 then we may conclude that the expected utility model is a reasonable

approximation of individual choices. In the right hand side of Table 3 we

present the fraction of subjects for which β = 0 falls within the 95% range.28,29

As before, there is some variation in the identity and number of subjects for

which this is the case depending on the choice of functional form and loss

function. For the combinations tested we �nd between 11 and 17 subjects

may be represented by expected utility according to this procedure.

Although the percentages are somewhat lower, we �nd there is generally

agreement between these procedures for evaluating the expected utility re-

striction. For example, with respect to the CRRA functional form and mean

aggregator, of the 14 subjects with additional misspeci�cation below the 10%

threshold, 11 of these subjects satisfy the restriction under the bootstrapping

procedure. Additionally, there is one subject that satis�es the bootstrapping

criterion for expected utility but is not under the threshold for misspeci�ca-

tion. A similar pattern is present for various combinations of functional form

and loss function. It is important to note that the lower proportion of expected

utility under bootstrapping is in the opposite direction of the bias introduced

by the overestimation of IV .

4.4 Comparison of Non-nested Alternatives

The Money Metric Index also allows one to evaluate non-nested alternatives

as is the case if we wish to compare functional forms, for example CRRA

versus CARA. We can calculate the extent of misspeci�cation implied by

each functional form and select the functional form which best represents a

decision maker's preferences on a subject by subject basis. For the two loss

functions used, we �nd that most subjects are better represented by the CRRA

functional form. The percentage of subjects for which the Money Metric Index

is lower using CRRA rather than CARA is reported in Table 4. The number

28As above, we exclude subjects for having a Varian Ine�ciency Index or Money Metric
Index exceeding 10%.

29The 95% range is constructed in exactly the same way as with standard statistical
bootstrapping procedure by excluding the bottom and top 2.5% percentile of recovered
parameters from all samples.
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aggregator
MEAN SSQ

CRRA (vs CARA)* 68.9% (45) 80.0% (37)

Expected Utility (allowing CRRA or CARA)** 46.3% (41) 48.6% (37)

*Percentage of subjects for which misspeci�cation is lower with CRRA than CARA.
**Percentage of subjects for which the additional misspeci�cation implied by expected
utility restriction is less than 10% including both CRRA and CARA.

(number of subjects included in each sample are in brackets)

Table 4: Choice of utility index and evaluation of expected utility restriction

of subjects included in our calculations is in brackets, again excluding subjects

with a Varian Index or Money Metric Index exceeding 10% for both functional

forms.

In Section 4.3.1 we evaluated the expected utility model under the re-

striction of a particular functional form for utility, CRRA or CARA, for all

subjects. In contrast we can evaluate the Money Metric Index for each sub-

ject including both functional forms for both the restricted (expected utility)

and unrestricted (disappointment aversion) models. Hence, it may be the case

that for a single subject the functional form that minimizes misspeci�cation

for each model may di�er, and of course, the functional form that minimizes

misspeci�cation may also di�er across subjects. Table 4 reports the results

from this more �exible version of the misspeci�cation test above. We conclude

that choices of close to half of all subjects may be reasonably approximated

by the expected utility model when we allow the utility function to be either

CRRA or CARA.

5 Short Discussions

5.1 Comments on alternative loss-functions

5.1.1 Area-based Parametric Recoverability

Figure 3.1 suggests an obvious alternative to the money metric as a founda-

tion for measuring misspeci�cation: a measure that is based on the area of
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Figure 5.1: Modi�ed budget sets

intersection between the upper contour set corresponding to a speci�c utility

function, and the set of alternatives that are revealed worse than the observed

choice. This measure is related to the Minimal Swaps Index, which is a mea-

sure of inconsistency proposed recently by Apesteguia and Ballester (2013)

for the case of �nite number of alternatives. To generalize their method to

in�nite alternatives set as studied in the current paper, in light of Theorem

1, one needs to calculate an index that is based on the area above for the

entire set of continuous and non-satiating utility functions. When the set of

utility functions is restricted to a parametric family the Minimal Swaps Index

could then measure the inconsistency, while the remainder will represent the

misspeci�cation. While the current study demonstrates how to achieve this

goal with respect to the Money Metric Index and the corresponding Varian

Ine�ciency Index, it is not entirely clear how to measure inconsistency directly

using areas.

One can de�ne a measure of inconsistency based on the area of intersec-

tion between the revealed preferred set and the budget set corresponding to

an observed choice. De�ne the revealed preferred set as only those bundles

which are either revealed preferred or monotonically dominate a bundle that

is revealed preferred to a given bundle. Hence, as illustrated in Figure 5.1,

violations of consistency are removed by modifying budget sets so as to elim-
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inate the area of overlap between the budget set and those bundles which are

revealed preferred. Hence, we can use this measure to decompose an area

index into separate measures of inconsistency and misspeci�cation just as we

did with the Money Metric Index.

Nevertheless, an area index is not ideal. First, there does not exist an

elegant theoretical analog to Afriat (1987) Theorem with respect to the mod-

i�ed budget sets in Figure 5.1 as there does for the speci�c type of budget set

adjustments utilized in calculating the Money Metric Index (see footnote 36

in Appendix C). Second, computing the inconsistency index suggested above

would not be any easier than computing the Varian Ine�ciency Index, a prob-

lem which is NP-hard. Third, it is a simple exercise to show that choices with

modi�ed budget sets as in Figure 5.1 can be easily rationalized by non-convex

preferences and, in fact, any recovery procedure based on an area index would

be biased towards these types of non-convexities. Put another way, with the

area loss function as a criterion, any convex preferences which rationalize the

modi�ed data set can be improved upon with similar non-convex preferences.

Lastly, the simple area index may lack intuitive interpretation that the Money

Metric Index enjoys. All these are surmountable di�culties, that we think are

worthwhile pursuing in future work. Ultimately, since the Money Metric Index

does not appear to su�er from the same issues we currently believe it dom-

inates the proposed area loss-function both as a measure of misspeci�cation

and as a method for recovering preferences.

5.1.2 When Closer is NOT Better

As noted above, a recovery method that employs a loss function that is based

only on the distance between observed and predicted choices (as NLLS) fails

to account for all the ranking information encoded in the choices, since it

compares only the distance between predictions and choices and does not in-

corporate all other bundles that were feasible but were not chosen. Moreover,

if the �true� (unobserved) preferences are not convex, the ranking information

induced by a utility function that generates a prediction closer to the observed

bundle may be more inconsistent with the �true� ranking of bundles. In other
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Figure 5.2: Non-convex preferences and a distance-based loss-function

words, the intuition that a closer prediction represents less misspeci�cation

relies crucially on the assumption of convex preferences, which is not part of

revealed preference theory. Figure 5.2 demonstrates this argument. Consider

a choice of x0 generated by the non-convex preferences depicted in the �gure.

These preferences would imply that had the DM faced the menu {x′, x′′}, she
would choose x′′. Since x′ is closer to x0 than x

′′, every recovery method that

is based on a distance between observed and predicted choices, would assign a

lower loss to preferences with predicted choice at x′ than to preferences with

predicted choice at x′′. This would imply that x′ is preferred to x′′ - contrary

to the �true� preferences that generated the data.

5.2 Relation to Varian (1990)

This work continues the line of thought taken by Varian (1990). There, Varian

suggests the money metric as a �natural measure of how close the observed con-

sumer choices come to maximizing a particular utility function� (page 133) and

then recommends its usage as a criterion for recovering preferences. He argues

that measuring di�erences in utility space has a more natural economic inter-

pretation than measuring distances between bundles in commodity space. We

augment Varian's intuition by providing theoretical and practical substance
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for the usage of the money metric as a measure of misspeci�cation. First,

we demonstrate that the money metric utilizes more preference information

encoded in the observed choices to recover preferences than distance-based

methods. Second, we relate the budget adjustments implied by the money

metric to the Varian Ine�ciency Index. Third, we prove that the money met-

ric measure can be constructed observation-by-observation while maintaining

most revealed preference information contained in choices.30 Finally, since we

show that the goodness of �t can be decomposed into an inconsistency index

and a misspeci�cation index, we introduce several novel applications including

evaluating parametric restrictions and model selection.

5.3 Random Utility Maximization

A Random Utility Maximization (henceforth, RUM) model is a probability

space over a set of utility functions. A data set is rationalizable if there exists

an RUM model such that for every choice problem, the expected frequency of

every feasible alternative as generated by the RUM model equals the observed

frequency of this alternative.31

RUM models have been introduced into economics in the context of pop-

ulation level data, where for each problem only the distribution of choices is

observed. In such framework, the population is assumed to be heterogeneous

and individuals are assumed to hold deterministic preferences (McFadden,

2005). However, some authors interpret RUM models as describing homoge-

neous population of individuals with stochastic preferences, or, equivalently, an

individual with stochastic preferences that encounters the same choice problem

repeatedly (Gul and Pesendorfer, 2006).

The application of RUM to individual level data seems conceptually at-

30On the other hand, the computation of the Varian Ine�ciency Index is NP-hard since
the required budget adjustments are interdependent.

31See McFadden (2005), Kitamura and Stoye (2013) and Stoye and Hoderlein (2012)
for revealed stochastic preference characterizations and tests for rationalizablity. Gul and
Pesendorfer (2006) consider the case where the objects of choice are lotteries and provide
necessary and su�cient conditions for a random choice behavior to represent a maximization
of some RUM model on lotteries.
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tractive. Previously, such application was challenged by experimental results

that exhibited monotonicity32 violations. Recently, extensions were introduced

to account for monotonicity violations due to the attraction e�ect (Gul et al.

2012; Natenzon 2013). However, the �nding that subjects exhibit stochastic

behavior more frequently when facing �di�cult� decision problems (Rubinstein

2002; Agranov and Ortoleva 2014) poses an additional challenge in applying

RUM models to individual level data analysis, since it implies deliberate ran-

domization rather than random preferences.

5.4 The Computation of the Varian Ine�ciency Index

Afriat (1972, 1973, 1987) and Varian (1990) discuss non-uniform adjustments

of the budget lines so that the inconsistencies in the data are removed. Varian

(1990) argues that given an aggregator function an optimal vector of adjust-

ments can be found. Moreover, the value of this vector can be interpreted as

the inconsistency level of a given data set. The problem of �nding this ex-

act value is equivalent to the minimum cost feedback arc set problem.33 Karp

(1972) shows that the minimum cost feedback arc set problem is NP-Hard

and therefore �nding the exact Varian Ine�ciency Index is also NP-Hard as

suggested in Varian (1990).

Three algorithms to compute a polynomial approximation were suggested

in the economics literature. The �rst algorithm (Tsur (1989) and Algorithm

1 in Alcantud et al. (2010)) suggests to report the vector v such that vj is

the minimal adjustment required to exclude all xi such that xiRxj from the

budget set of observation j. The second algorithm (Algorithm 2 in Alcantud

et al. (2010)) is such that vj is the minimal adjustment required to exclude one

xi such that xiRxj from the budget set of observation j. If the data satis�es

GARPv, v is reported, otherwise another point is removed for each observation

j and so on until GARPv is satis�ed. The third algorithm (Varian (1993)

32A random choice rule is monotonic if the probability of an existing alternative being
chosen cannot increase when a new alternative is introduced into the choice set. Monotonic-
ity is a common property to all RUM models.

33Given a directed and weighted graph, �nd the �cheapest� subset of arcs such that its
removal turns the graph into an acyclic graph
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and Algorithm 3 in Alcantud et al. (2010)) suggests to calculate the minimal

adjustment to one of the budget sets, such that one violation of GARP is

removed. This minimal value should be substituted into v and GARPv should

be checked. If the data satis�es GARPv, v is reported, otherwise another point

is removed and the procedure is repeated until the data satis�es GARPv.

Alcantud et al. (2010) show that Algorithms 2 and 3 are better approxima-

tions than Algorithm 1 and that they do not dominate each other. Moreover,

Alcantud et al. (2010) show that D satis�es GARPv for the v found by Al-

gorithms 2 and 3. This implies that these approximations overestimate the

actual Varian Ine�ciency Index. We do not know of any measure for the qual-

ity of this approximation. Also, note that none of these algorithms uses the

chosen aggregator function as part of its iterative mechanism. We believe that

incorporating the computer science literature on the �minimum cost feedback

arc set problem� and using the chosen aggregator may improve considerably

the quality of approximation.

5.5 From Ine�ciency to Consideration Sets

In the consistency literature, Afriat (1972) and Varian (1990, 1993) view the

extent of the adjustment of the budget line as the amount of income wasted

by a decision maker relative to a fully consistent one (hence the term �Ine�-

ciency Index�). A related interpretation, mentioned by Houtman (1995), holds

that the DM overestimates prices and hence does not consider all feasible al-

ternatives. An alternative interpretation (due to Manzini and Mariotti, 2007,

2012; Apesteguia and Ballester, 2013; Masatlioglu et al., 2012; Cherepanov et

al., 2013), views the adjusted budget set as a consideration set which includes

only the alternatives from the original budget menu that the DM compares

to the chosen alternative. By construction, those bundles not included in the

attention set are irrelevant for revealed preference consideration. Another line

of interpretation for inconsistent choice data, is measurement error (Varian,

1985; Tsur, 1989). These errors could be the result of various circumstances

as (literally) trembling hand, indivisibility, omitted variables etc.
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All above interpretations take literally the existence of an underlying �wel-

fare� preferences that generate the data (Bernheim and Rangel, 2009). In

addition there exist other plausible data generating processes that result in

approximate (and even exact) consistent choices (Simon, 1976; Rubinstein

and Salant, 2012). We do not �nd a clear reason to favor one interpretation

over the other, and would rather remain agnostic about the nature of the

adjustments required to measure inconsistency.

More importantly, this paper studies the problem of recoverability of pref-

erences and not consistency. That is, we take the data set as the primitive and

the utility function as an approximation. As such, the adjustments serve us

as a measurement tool (�ruler�) for quantifying the extent of misspeci�cation.

We view the current work as contributing to the measurement of misspeci�-

cation and recovery of approximate preferences rather than to the literature

that explains how inconsistency arises.
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A Non-Parametric Recovery and Non-Convex

Preferences (for online publication)

Assume D satis�es GARP. The following de�nitions follow Varian (1982).

De�nition 11. Pu (x) ≡ {x′ : u (x′) > u (x)} is the strictly upper contour set

of a bundle x ∈ <K+ given a utility function u(x).

Next, consider the set of prices at which an unobserved bundle, x, is chosen

and the augmented data set continues to be consistent with GARP.

De�nition 12. Suppose x ∈ <K+ is an unobserved bundle, then

S (x) = {p |{(p, x)} ∪D satis�es GARP and px = 1}

For every unobserved bundle x, Varian (1982) employs S (x) to construct

lower and upper bounds on the upper and lower contour sets through x.

De�nition 13. For every unobserved bundle x ∈ <K+ :

1. The revealed worse set is RW (x) ≡
{
x′
∣∣∀p ∈ S(x), xPD∪{p,x}x

′}. The

not revealed worse set, denoted byNRW (x), is the complement ofRW (x).

2. The revealed preferred set is RP (x) ≡
{
x′
∣∣∀p ∈ S(x′), x′PD∪{p,x′}x

}
.

In Fact 5, Varian (1982) (page 953) states: �let u(x) be any utility function that

rationalizes the data. Then for all (unobserved bundles - HPZ) x , RP (x) ⊂
Pu(x) ⊂ NRW (x)�. Thus, given a data set that satis�es GARP and a utility

function that rationalizes these data, every indi�erence curve through a given

unobserved bundle must be bounded between the revealed worse set and the

revealed preferred set of this bundle.

Suppose a DM has to decide how to allocate a wealth of 1 between consump-

tion in two mutually exclusive, exhaustive and equally probable states of the

world. The allocation is attained by holding a portfolio of Arrow securities with

unit prices p = (p1, p2). Figure A.1 presents a data set D of two observations.

Portfolio x1 = (0.124, 2.222) is chosen when prices are p1 = (0.450, 0.425), and
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Figure A.1: Violations of Fact 5

portfolio x2 = (3.850, 0.094) is chosen when prices are p2 = (0.250, 0.400). No-

tice that since p2 < p1, every portfolio that is feasible under p1 is also feasible

when prices are p2, therefore x2R0
Dx

1. Now consider two unobserved portfolios

A = (0.390, 1.806) and B = (1.390, 1.390). Portfolio A is feasible under both

prices, but portfolio B is feasible only under p2. The revealed preferred set of

A and the revealed worse set of B are drawn in panels A.1a and A.1b, respec-

tively. Now consider the following utility function over portfolio x = (x1, x2)

:

u(x1, x2) =
√

max {x1, x2}+
1

4

√
min {x1, x2} (A.1)

which represents the preferences of an elation seeking DM (Gul, 1991) with

β = −0.75 and a CRRA utility index with ρ = 0.5 over Arrow securities.

Therefore, the DM's preferences are not convex and u (·) is not quasi-concave
(let alone not concave). The indi�erence curves drawn in Figure A.1 through

x1 and x2 demonstrate that this utility function rationalizes the data.

Recall that Fact 5 in Varian (1982) states that for any unobserved bundle

39



x, if u rationalizes the data then RP (x) ⊂ Pu(x) ⊂ NRW (x). However,

Figure A.1a clearly demonstrates that while B ∈ RP (A), it is not true that

B ∈ Pu(A). Similarly, Figure A.1b shows that while A ∈ Pu(B) it is not true

that A ∈ NRW (B). That is, the ranking of unobserved portfolios implied

by the Revealed Preferred and Revealed Worse sets is inconsistent with the

ranking of portfolios induced by a utility function that rationalizes the data.

In other words, the utility function's indi�erence curves do not abide by Varian

(1982) non-parametric bounds.

Figure A.1 suggests the source of the above inconsistency with Varian's

Fact 5: when the DM is elation seeking, her preferences are non-convex and

the utility function is not concave. The failure of the nonparametric bounds

can be traced back to the construction of the revealed preferred and revealed

worse sets. Since by Afriat's Theorem if the data satis�es GARP there exists a

concave utility function that rationalizes it, S (x) (De�nition 12) is non-empty

for every x. However, there may exist a utility function that rationalizes the

data for which there is no price vector p that supports x as an optimal choice.

Therefore, even if x′ is such that xPD∪{p,x}x
′ for every p ∈ S (x), it does not

imply that the utility function that never chooses x will rank x above x′. In

Figure A.1a BPD∪{p,B}A for every p ∈ S (B) , however the utility function

never chooses B and therefore can rank B below A.34

34De�nitions 12 and 13 can be trivially extended to include observed bundles, and then
a similar argument can be constructed for the observed portfolio x1 in Figure A.1a. Note
that the violation of the revealed worse set demonstrated in Figure A.1b cannot occur for an
observed bundle since there exists a price vector p that supports the bundle as an optimal
choice.
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B Proof of Proposition 1 (for online publica-

tion)

Notation. Let x ∈ <K and δ > 0. Bδ (x) =
{
y ∈ <K : ‖y − x‖ < δ

}
.

De�nition. A utility function u : <K → < is

1. locally non-satiated if ∀x ∈ <K and ∀ε > 0 ∃y ∈ Bδ (x) such that

u(y) > u(x).

2. continuous if ∀x ∈ <K and ∀ε > 0 there exists δ > 0 such that y ∈ Bδ (x)

implies u (y) ∈ Bε (u (x)).

Lemma. If u (·) is a locally non-satiated utility function that rationalizes D ={
(pi, xi)

n
i=1

}
, then xiP 0

Dx implies u (xi) > u (x).

Proof. Suppose xiP 0
Dx (pixi > pix). Then by the de�nition of the revealed

preference relations (De�nition 1), xiR0
Dx. Since u (·) rationalizes D, xiR0

Dx

implies u (xi) ≥ u (x). Suppose that u (xi) = u (x). Since pixi > pix ∃ε > 0

such that ∀y ∈ Bε (x) : pixi > piy. By local non-satiation ∃y′ ∈ Bε (x) such

that u (y′) > u (x) = u (xi). Thus, y′ is a bundle such that pixi > piy′ and

u (y′) > u (xi), in contradiction to u (·) rationalizes D. Therefore, u (xi) >

u (x).

For what follows, let D =
{

(pi, xi)
n
i=1

}
and let u (·) be a continuous and locally

non-satiated utility function.

Part 1: u(·) v?(D, u)-rationalizes D

Proof. Suppose that for some observation (pi, xi) ∈ D there exists a bun-

dle x such that xiR0
D,v?(D,u)x and u (xi) < u (x). By the de�nition of the

revealed preference relations induced by adjusted data sets (De�nition 4.1),

v?i(D, u)pixi ≥ pix. By the normalized money metric de�nition (De�nition

9), m (xi, pi, u) ≥ pix. Since m (xi, pi, u) is the minimal expenditure required

to achieve a utility level of at least u (xi), the case where the inequality is strict
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contradicts De�nition 9. If m(xi, pi, u) = pix and u(xi) < u(x), by continuity

of u (·) there exists γ > 0 such that u (xi) < u ((1− γ)x). However, since

pi (1− γ)x < pix = m(xi, pi, u), we reach a contradiction to De�nition 9.

Part 2: v? (D, u) = 1 if and only if u (·) rationalizes D.

Proof. First, let us show that if u (·) rationalizes D then v? (D, u) = 1. Sup-

pose that for some observation (pi, xi) ∈ D, v?i (D, u) < 1, that is: m (xi, pi, u) <

pixi. By De�nition 9, there exists a bundle x such that pix < pixi and

u (x) ≥ u (xi). However, since by De�nition 1.2, xiP 0
Dx, and since u (·) is

a locally non-satiated utility function that rationalizes D, the above proven

lemma implies, in contradiction, that u(xi) > u(x). Thus, v?i (D, u) = 1 for

all i. Therefore v? (D, u) = 1.

Next, let us show that if v? (D, u) = 1 then u (·) rationalizes D. By De�ni-
tion 9, v?(D, u) = 1 implies m(xi, pi, u) = pixi for every (pi, xi) ∈ D. Suppose
that u(·) does not rationalize the data. That is, for some observation (pi, xi),

there exists a bundle x such that u(x) > u(xi) and xiR0
Dx. By continuity

of u (·) there exist γ > 0 such that u ((1− γ)x) > u (xi). However, since

pi (1− γ)x < pixi = m (xi, pi, u) we reach a contradiction to De�nition 9.

Part 3: Let v∈ [0,1]n. u (·) v-rationalizes D if and only if v 5 v?(D, u).

Proof. First, let us show that if u (·) v-rationalizes D then v 5 v?(D, u).

Suppose that v is such that u (·) v-rationalizes D and for observation i, vi >

v?i (D, u). By De�nition 8, u (xi) ≥ u (x) for all x such that xiR0
D,vx or

equivalently vipixi ≥ pix. By De�nition 9 and since vi > v?i (D, u) we get

that vipixi > m (xi, pi, u) = pixi? where xi? ∈ argmin{y∈<K+ :u(y)≥u(xi)}p
iy. It

follows that ∃ε > 0 such that ∀y ∈ Bε (xi?) : vipixi > piy. By local non-

satiation ∃y′ ∈ Bε (xi?) such that u (y′) > u (xi?) ≥ u (xi). Thus, y′ is a bundle

such that vipixi > piy′ and u (y′) > u (xi) contradicting that u (·) v-rationalizes
D.

Next, let us show that if v 5 v?(D, u) then u (·) v-rationalizes D. By Part
1: u(·) v?(D, u)-rationalizes D. That is, for every observation (pi, xi) ∈ D,
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v?i(D, u)pixi ≥ pix implies u (xi) ≥ u (x). Since v 5 v?(D, u), for every obser-

vation (pi, xi) ∈ D, v?i (D, u) pixi ≥ vipixi. Therefore, for every observation

(pi, xi) ∈ D, vipixi ≥ pix implies u (xi) ≥ u (x). Hence, u (·) v-rationalizes

D.
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C Proof of Theorem 1 (for online publication)

Notation. We use the following notations throughout the proof:

• Let v ∈ [0, 1]n and δ > 0. B̄δ(v) = {v′ ∈ [0, 1]n : ‖v′ − v‖ < δ} .

• Ev = {v ∈ [0, 1]n : f(v) = IV (D, f)}

• ∀ε < M − IV (D, f) : Ev+ε = {v ∈ [0, 1]n : f(v) = IV (D, f) + ε}.

• EG =
{
v ∈ [0, 1]n : ∀r > 0, ∃v′ ∈ B̄r(v), D satis�es GARPv′

}
.

• Ê = Ev ∩ EG.

Lemma 1. Ev is non-empty, bounded and closed.

Proof. First, by Fact 3, IV (D, f) always exists. Second, by De�nition 6 f(·) is
continuous and bounded. By the Intermediate Value Theorem, for every value

of IV (D, f) there exists a vector v such that f(v) = IV (D, f), concluding that

Ev is non-empty. Third, Ev ⊆ [0, 1]n and therefore it is bounded. Finally,

since f(·) is continuous it induces a continuous ordering on [0, 1]n. Therefore,

for every IV (D, f), the upper contour set and the lower contour set are closed

and their intersection, Ev, is closed as well.

Lemma 2. Ê is non-empty.

Proof. Assume IV (D, f) < M . Suppose that Ê is empty, that is v ∈ Ev ⇒
v /∈ EG (due to Lemma 1, this condition is not vacuous). Thus, ∀v ∈ Ev, ∃r >
0, ∀v′ ∈ B̄r(v), D violates GARPv′ .

Let r(v) = sup{r∈(0,
√
n]:∀v′∈B̄r(v), D violates GARPv′} r. r(v) is uniform continuous

on Ev since ∀v,v′ ∈ Ev if ‖ v − v′ ‖< ε then by the triangle inequality

|r(v)− r(v′)| < ε.35 Let r̄ = minv∈Ev r(v). r̄ exists since r(v) is continuous on

Ev and Ev is bounded and closed (by Lemma 1). In addition, r̄ > 0 since ∀v ∈
Ev : r(v) > 0. Then, ∀v ∈ Ev, ∀r < r̄, ∀v′ ∈ B̄r(v), D violates GARPv′ .

35The distance between v and v′ is at most ε, the distance between v and some w such
that D satis�es GARPw is r(v) and by the triangle inequality the distance between v′ and
w, which serves as a bound on r(v′), is between r(v)− ε and r(v) + ε.
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Thus, we established that for every IV (D, f) < M if Ê is empty there exists a

hypercylinder H of radius r̄ > 0 around Ev such that if v′ is an interior point

in H then D violates GARPv′ .

The next step is to show that there exists 0 < ε < M − IV (D, f) such that

Ev+ε is contained in H (by Lemma 1 Ev+ε is non-empty). Suppose that for

every 0 < ε < M − IV (D, f) there exists v′ε ∈Ev+ε such that v′ε /∈H. Then, v′ε,

where ε → 0, is an in�nite bounded sequence in [0, 1]n and therefore it has a

convergent subsequence. Denote the limit of this subsequence by v̂. Since v̂

is not an interior point of H it must be that f(v̂) 6= IV (D, f). However, by

construction, limε→0 f(v′ε) = IV (D, f), suggesting that f(·) is not continuous.
Thus, there exists ε̄ such that Ev+ε̄ ⊂ H. Moreover, since f(·) is continuous

∀ε ∈ [0, ε̄) : Ev+ε ⊂ H.

That is, there exists ε̄ > 0 such that for every v′∈ [0, 1]n that satis�es

IV (D, f) ≤ f(v′) < IV (D, f) + ε̄ < M , D violates GARPv′ . Since IV (D, f)

is an in�mum there is no v∈ [0, 1]n such that f(v) < IV (D, f) and D sat-

is�es GARPv. Thus, there exists IV (D, f) < m < M such that for every

v∈ [0, 1]n : f(v) < m and D violates GARPv. That contradicts the maximal-

ity of IV (D, f) as an in�mum. Therefore, we have shown that if IV (D, f) < M

then Ê is non-empty.

Finally, suppose IV (D, f) = M . By De�nition 6, 0 ∈ Ev. By Fact 1,

0 ∈ EG. Thus, also if IV (D, f) = M then Ê is non-empty.

Lemma 3. Let v ∈ [0, 1]n. If ṽ ∈ B̄δ(v) and D satis�es GARPṽ, there exists

v̂ ∈ B̄δ(v) where v̂ ≤ v and D satis�es GARPv̂.

Proof. If ṽ ≤ v then the lemma is trivial. If v ≤ ṽ then by Fact 2 D satis�es

GARPv. By the same fact, D satis�es GARPv̂ for every v̂ ∈ B̄δ(v) where

v̂ ≤ v. Otherwise, de�ne v̂ such that ∀i ∈ {1, . . . , n} : v̂i = min {vi, ṽi}. By
construction, v̂ ≤ v and v̂ ≤ ṽ. Since ∀i ∈ {1, . . . , n} : |v̂i − vi| ≤ |ṽi − vi|
then v̂ ∈ Bδ(v). In addition, since v, ṽ ∈ [0, 1]n then v̂ ∈ [0, 1]n. Therefore,

v̂ ∈ B̄δ(v). Finally, since v̂ ≤ ṽ and D satis�es GARPṽ by Fact 2 D satis�es

GARPv̂. Thus, we constructed v̂ ∈ B̄δ(v) where v̂ ≤ v and such that D

satis�es GARPv̂.
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Lemma 4. Let v′ ∈ Ê. D satis�es GARPλv′ for all λ ∈ [0, 1).

Proof. By Lemma 2 v′ exists. If v′ = 0 the Lemma is trivial by Fact 1.

Suppose v′ ≥ 0. Denote v′min = min{v′i>0} v
′
i and let δ ∈ (0, v′min). Let B̃δ(v

′) =

{v : v ≤ v′}∩B̄δ(v
′). Let ṽ ∈ B̃δ(v

′) such thatD satis�esGARPṽ. By Lemma

3 such ṽ exists and by construction ṽ 6= v′. Note that choice of δ implies that

for every i ∈ {1, . . . , n}, v′i > 0 =⇒ ṽi > 0. De�ne λ = {λi} ni=1 such that if

v′i = 0 then λi = 0 and otherwise λi = ṽi
v′i
> 0. Then, λ ∈ [0, 1]n\{0}. Denote

λ̄ = min{λi>0} λ
i. Then, 0 < λ̄ < 1. For every i ∈ {1, . . . , n} de�ne v̂i = λ̄v′i.

First, note that ∀i ∈ {1, . . . , n} : v̂i ≤ ṽi (if v
′
i = 0 then v̂i ≤ ṽi = v′i = 0,

otherwise, v̂i = λ̄v′i≤ ṽi
v′i
v′i = ṽi) and by Fact 2 since D satis�es GARPṽ then D

satis�esGARPv̂. Second, v̂ = λ̄v′. Finally, note that ∀i ∈ {1, . . . , n} : v′i−δ ≤
ṽi ≤ v′i. Therefore, ∀i ∈ {1, . . . , n} : 1 − δ

v′i
≤ λi ≤ 1 and 1 − δ

v′min
≤ λ̄ < 1.

Thus, for every ε > 0 there exists λ̄ > 1− ε such that v̂ = λ̄v′ and D satis�es

GARPλv′ . By Fact 2 for every 0 ≤ λ ≤ λ̄ D satis�es GARPλv′ . Hence, D

satis�es GARPλv′ for all λ ∈ [0, 1).

De�nition. Let v ∈ [0, 1]n. D satis�es v -Cyclical Consistency if

vrprxr ≥ prxs, vspsxs ≥ psxt, . . . , vqpqxq ≥ pqxr

=⇒ vrprxr = prxs, vspsxs = psxt, . . . , vqpqxq = pqxr

Lemma 5. Let v ∈ [0, 1]n. D satis�es v-Cyclical Consistency if and only if it

satis�es GARPv.

Proof. Suppose D violates v-Cyclical Consistency. Then, there exists a se-

quence of observations such that vrprxr ≥ prxs, vspsxs ≥ psxt, . . . , vqpqxq ≥
pqxr and vspsxs > psxt. By De�nition 4, xrR0

D,vx
s, xsR0

D,vx
t, . . . , xqR0

D,vx
r

and therefore xtRD,vx
s. However, by the same de�nition xsP 0

D,vx
t. Thus, D

violates GARPv. On the other hand, suppose D violates GARPv. There ex-

ists a pair of observations (pt, xt) and (ps, xs) such that xtRD,vx
s and xsP 0

D,vx
t.

Again, by De�nition 4, there exists a subset of observations such that

xtR0
D,vx

u, xuR0
D,vx

v, . . . , xqR0
D,vx

s and since xsP 0
D,vx

t implies xsR0
D,vx

t there is

a subset of observations such that vtptxt ≥ ptxu, vupuxu ≥ puxv, . . . , vspsxs ≥
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psxt. In addition, since xsP 0
D,vx

t we have vspsxs > psxt. However, this combi-

nation violates v-Cyclical Consistency.

Lemma 6. IV (D, f) ≤ IM(D, f,U c)

Proof. If IV (D, f) = 0 the lemma follows from de�nitions 6 and 10. Otherwise,

suppose that IV (D, f) > IM(D, f,U c). Since IM(D, f,U c) = infu∈Uc f (v? (D, u))

there exists u ∈ U c such that f (v? (D, u)) < IV (D, f). By Proposition 1.1

u(·) v?(D, u)-rationalizes D. By Theorem 6.3.I in Afriat (1987) (p. 179)36 u(·)
v?(D, u)-rationalizes D if and only if D satis�es v?(D, u)-Cyclical Consistency,

which is equivalent, by Lemma 5, to D satis�es GARPv?(D,u). However, since

D satis�es GARPv?(D,u) and f (v? (D, u)) < IV (D, f), IV (D, f) cannot be the

in�mum of f(·) on the set of all v ∈ [0, 1]n such that D satis�es GARPv.

Lemma 7. Let v ∈ [0, 1]n be such that D satis�es GARPv. Then IM(D, f,U c) ≤
f(v).

Proof. By Lemma 5, D satis�es GARPv if and only if D satis�es v-Cyclical

Consistency. By Theorem 6.3.I in Afriat (1987) (p. 179) D satis�es v-Cyclical

Consistency if and only if there exists a non-satiated continuous utility function

u ∈ U c that v-rationalizes D. By Proposition 1.3, v ≤ v? (D, u). Since

f(·) is weakly decreasing f (v? (D, u)) ≤ f(v). Therefore, by De�nition 10,

IM(D, f,U c) ≤ f(v).

Theorem. For every �nite data set D =
{

(pi, xi)
n
i=1

}
and aggregator function

f : [0, 1]n → [0,M ] :

IV (D, f) = IM(D, f,U c)

where U c is the set of contionuous and locally non-satiated utility functions.

36Afriat (1987) does not provide a proof for this theorem. Afriat (1973) provides a proof
for the uniform case (same adjustments for all observations) which can be generalized to this
theorem. Houtman (1995) studies general cost functions that include the uniform case, the
non-uniform case that we use and many other cases. He provides a proof for a general form
of Theorem 6.3.I in Afriat (1987) that applies here as well. Note that while Houtman (1995)
elaborates on the uniform case, all his statements on this case apply also to the non-uniform
linear case that is considered here.
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Proof. Let v? ∈ Ê. By Lemma 2 such point exists. For every λ ∈ [0, 1] denote

Fλ = f(λv?). Consider the sequence of intervals [IV (D, f), Fλ). By Lemma 4,

D satis�es GARPλv? for all λ ∈ [0, 1). Therefore, by Lemma 7, ∀λ ∈ [0, 1) :

IM(D, f,U c) ≤ Fλ. In addition, by Lemma 6, IV (D, f) ≤ IM(D, f,U c). Hence,
∀λ ∈ [0, 1) : IM(D, f,U c) ∈ [IV (D, f), Fλ). Since limλ→1 Fλ = IV (D, f) we

get IV (D, f) = IM(D, f,U c).
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D The Code (for online publication)

Preliminaries

This appendix describes the code designed to implement the indices and esti-

mations mentioned in the paper. The code accommodates the data gathered

by the symmetric treatment in Choi et al. (2007) and supplies recovery proce-

dures using the family of disappointment aversion utility functions introduced

in Gul (1991) with CRRA or CARA utility indices. We hope that this ap-

pendix will ease the process of adapting this software to other data sets and

other families of parametric utility functions.

Consistency Tests (HPZ_Subject_Consistency)

To construct the relations mentioned in De�nition 1, we �rst calculate a matrix

(REF) such that the cell in the ith row and the jth column stores pixi − pixj.
If this di�erence is non-negative we say that xiR0

Dx
j (DRP matrix) while if

it is strictly positive we say that xiP 0
Dx

j (SDRP matrix).37 Then we use

the Floyd�Warshall algorithm (Warshall, 1962)38 to construct the revealed

preferred relation (RP matrix) which is the transitive closure of the directly

revealed preferred relation. Finally, we construct the strictly revealed preferred

relation (SRP matrix).

Using these relations we implement three consistency tests for a given data

set D. SARP (xiRDx
j and xjRDx

i implies xi = xj) , GARP (xiRDx
j implies

not xjP 0
Dx

i) andWARP (xiR0
Dx

j implies not xjP 0
Dx

i). For each test we report

the number of violations and the number of inconsistent pairs of observations.

If GARP is not satis�ed we calculate the inconsistency indices described in

the next section. If there are no GARP violations, we report that the Afriat

index equals 0, the Varian indices equal 0, 0 and 0 (minimum, mean and sum

37We introduce a variable named THRESHOLD (initialized to Matlab's epsilon) to allow
for some �exibility in these de�nitions. xi is directly revealed preferred over xj if pixi +
THRESHOLD > pixj while xi is strictly directly revealed preferred over xj if pixi >
pixj + THRESHOLD.

38We use an external graph theory package (matlab_bgl) that implements this algorithm.
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of squares, respectively) and that the Houtman Maks index equals 50.

Inconsistency Indices

Afriat's Index (HPZ_Afriat_e�ciency_index)

De�nition of the Afriat's Ine�ciency Index is39

IA(D) = infλ∈[0,1]:D satis�es GARPλ11− λ

We use a bisection search to approximate Afriat's index as suggested by

Houtman and Maks (1987), Varian (1990) and Houtman (1995). The input

is a matrix (expenditure) such that the cell in the ith row and the jth column

contains pixj. We initialize the index (AFRIAT) to 1
2
and the bounds to 0

and 1. In each iteration we adjust the matrix by multiplying its main diagonal

elements by AFRIAT. The adjusted data is checked for GARP . As in any

bisection search, if GARP is satis�ed the next examined index is the average

of the current index and the upper bound while the lower bound is changed

to the current index. If GARP is not satis�ed the next examined index is the

average of the current index and the lower bound while the upper bound is

changed to the current index. The number of iterations determines the extent

of approximation. We use 30 iterations and therefore we approximate IA(D)

to a level of 2−30 ≈ 10−9. To follow the de�nition we report one minus the

result of the algorithm.40

Varian's Index (HPZ_varian_e�ciency_index)

The de�nition of Varian's Ine�ciency Index is

IV (D) = inf
v∈[0,1]n:D satis�es GARPv

f(v)

Calculating Varian's index is an NP-hard problem and we use Algorithm 3 in

Alcantud et al. (2010) to approximate it (from above). The input is a matrix

39See Afriat (1972, 1973).
40The procedure reports λ.
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(expenditure) such that the cell in the ith row and the jth column contains

pixj. The vector of adjustments (denote by v and called var in the code) is

initialize to 1. The main part of the procedure is embedded in a loop that

ends only when the data satis�es GARPv. If indeed GARPv is satis�ed the

procedure is done and the vector of adjustments is the result of the loop.

Otherwise, we construct the matrix Pert_mat such that the cell in the ith

row and the jth column contains
pjxi
vjpjxj

(vj is the j
th element of v) if xiRv,Dxj

and xjp
0
v,Dxi (GARPv violation) and zero otherwise. The maximal element

of Pert_mat is picked and substituted into the corresponding element in the

vector of adjustments (the substitution is by multiplication with the previous

value). Finally, when the loop ends, the vector of adjustments is aggregated

by three distinct aggregators of wastes (1 − vi): maximum (maxi (1− vi)),
mean ( 1

n

∑n
i=1 (1− vi)) and average sum of squares ( 1

n

∑n
i=1 (1− vi)2), and

these three numbers are reported.41

Houtman Maks Index (HPZ_Houtman_Maks_e�ciency_index)

The Houtman Maks e�ciency index is de�ned as the size of the largest subset

of observations that satisfy GARP .42 The input is a matrix in which the

cell in the ith row and the jth column contains 1 if xiP
0
Dxj and 0 otherwise.

This matrix is turned into a list of the pairs in the relation P 0
D. This list

serves as an input to a program that was used in Dean and Martin (2011)

which returns an approximation of the minimum number of removals needed

for acyclicality.43 The procedure returns the approximated size of the largest

subset of observations that satisfy GARP .

Nonlinear Least Squares Method (HPZ_NLLS)

The Nonlinear Least Squares estimation procedure �nds the parameters that

minimize the aggregated distance between bundles predicted by utility maxi-

mization and observed bundles.

41For the max aggregator, the number reported by the package is mini (vi).
42See Houtman and Maks (1985).
43Downloaded from Daniel Martin's personal website on November 5th 2011.
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Input

The input includes the subject ID, the number of observations, the chosen

quantities and the given prices.44 The user de�ned parameters:

Data parameters (within Choi et al. (2007))

1. The treatment in Choi et al. (2007) (treatment, in the current version

the asymmetric treatments are disabled).

2. Correction for corner choices (zeros_�ag=1 means no correction while

zeros_�ag=2 implements the correction suggested in page 1929 in Choi

et al. (2007) with ω = 0.001, using the function HPZ_No_Corners).

Functional family parameters (within Disappointment Aversion)

1. The vNM utility function (when function_�ag equals 1 the function is

CRRA while when it equals 2 it is CARA).

2. Restricted forms (beta_zero_�ag=true �xes the disappointment aver-

sion parameter to zero to obtain expected utility).

3. Elation loving (beta_�ag=1 allows for negative values for the disap-

pointment aversion parameter while beta_�ag=2 restricts disappoint-

ment aversion parameter to be non-negative).

4. Correction for the disappointment aversion parameter in asymmetric

treatments (asymmetric_�ag=1 follows Gul (1991) while asymmetric_�ag=2

follows the implementation in Choi et al. (2007), in the current version

these treatments are disabled).

5. Restricted risk aversion for cases where there are corner choices and the

chosen vNM utility function is CRRA (restricted_rho). This parameter

is determined within the code.

44In the case of Choi et al. (2007), the prices are the reciprocals of the maximum quantities
given in the online data sheet.
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Estimation procedure parameters (within NLLS)

1. The distance norm (when metric_�ag equals 1 the distance is measured

by the Euclidean norm while when it equals 2 it is measured by the

geometric mean norm implemented in Choi et al. (2007)).45

2. Estimation approach (when numeric_�ag equals 1 numeric approxima-

tion is used to recover predicted choices while when it equals 2 we use

the analytic �rst order conditions).

3. The minimal number of repetitions with identical minimal aggregate

distance to establish convergence (NLLS_min_counter).

4. Maximal number of repetitions (max_starting_points, currently deter-

mined within the code).

5. Maximal estimation time (NLLS_max_time_estimation measured in

minutes, in�nity if time is not a constraint).

6. Parallel computing (when parallel_�ag=true the matlabpool command

is used, otherwise no parallel computing).

7. Output (determines the additional measures reported for the chosen pa-

rameters).

45The distance norm used in Choi et al. (2007) (implemented in HPZ_ldr_Criterion):

n∑
i=1

(
ln
xobserved2

xobserved1

− ln
xpredicted2

xpredicted1

)2

while the Euclidean distance aggregator (implemented in HPZ_Euclid_Criterion):

n∑
i=1

√(
xobserved1 − xpredicted1

)2
+
(
xobserved2 − xpredicted2

)2
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Main Procedure

The procedure begins with correcting corner choices (if required by the user)

and generating random initial points subject to the restrictions on the func-

tional family (HPZ_Initial_Points).46

For each initial point we search for the element of the disappointment

aversion functional family (de�ned by two parameters) that minimizes the

distances between the predicted bundles and the observed bundles. For each

initial point, the recovered parameters are held in results, while the value

is stored in criterion. Since in many cases the procedure encounters local

minima, we repeat the estimation procedure as long as the best parame-

ters combination (yield minimal aggregate distance) is recovered less than

NLLS_min_counter times, provided that the number of estimations did not

reach max_starting_points.47 If the number of repetitions reaches

max_starting_points then we report the best estimations, even if recovered

less than

NLLS_min_counter times. We also provide an option for time constraint in

which the procedure ends when the time limit expires as long as at least 5

estimations took place.

The Parameters Recovery Routine

Given an initial point the recovery is executed using fminsearchbnd48 which is

a version of fminsearch (the unconstrained non-linear optimization routine of

Matlab) that allows for simple bounds on the parameters. When one of the

parameters is �xed to zero, the optimization is uni-dimensional and the ob-

jective function is implemented in HPZ_Criterion_Extreme_Param. In case

46The �rst initial point is (ee
−3 − 1, e−2) as chosen by Choi et al. (2007), the second is

(0, 0) while the rest are chosen randomly (using Matlab's rand function which simulates a
standard uniform distribution on the open interval (0, 1)).

47Considerable part of HPZ_NLLS is dedicated to the implementation of this ad-
hoc mechanism, speci�cally to the adjustments needed when a new best is recovered.
equal_fval_counter counts the number of estimations that recovered the minimal value
and optimal_parameter_matrix stores the results of those estimations.

48Released by John D'Errico in July 2006.
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no parameter is �xed, the optimization is bi-dimensional and the objective

function is implemented in HPZ_Criterion. Given parameter(s), these func-

tions calculate the aggregate di�erence between the predicted bundles and

the observed bundles. The optimal choices can be calculated numerically or

analytically. The analytical procedure relies on �rst order condition and is

very e�cient, while the numerical procedure can be easily adapted to various

families of functions.

Numeric Approach (HPZ_Choices) The numerical calculation is car-

ried out by fmincon (the constrained non-linear optimization routine of Mat-

lab). In every call this function calculates the optimal choice for all observa-

tions. Since these calculations are independent, our code implements them us-

ing the parallel computing toolbox of Matlab. This function minimizes the ob-

jective function implemented in HPZ_Utility_Helper subject to a linear bud-

get constraint while keeping the quantities non negative. HPZ_Utility_Helper

uses HPZ_Utility, CRRA and CARA to calculate the utility level given the

parameters of the disappointment aversion utility function, the treatment and

the chosen vNM utility function.49

Analytic Approach (HPZ_Choices_Analytical) The utility function

is

u (x, y) = γw (max {x, y}) + (1− γ)w (min {x, y})

where γ = 1
2+β

for −1 < β <∞ and w (x) = x1−ρ
1−ρ for CRRA or w (x) = −e−ax

for CARA. Denote p = px
py

= my
mx

;my = M
py

;mx = M
px

(if mx = my we denote

both by m).

We �rst elaborate on the CRRA analysis. The marginal rate of substitu-

49As fmincon is an iterative process, a starting point is required. We perform fmincon
twice using two di�erent starting points which are chosen on two di�erent sides of the
intersection between the budget line and the 45 degrees line, close to the corners (not
including the corners). Then the optimal choice among those two is the one with the higher
utility level.

55



tion:

MRSxy =


1

1+β

(
y
x

)ρ
x > y[

1
1+β

, 1 + β
]

x = y

(1 + β)
(
y
x

)ρ
x < y

The utility maximization problem can be broken to the following cases

based on values of β and ρ (we refer only to identi�able cases):

1. ρ > 0, β ≥ 0 :

(x, y)d =



(
mx

1+
[p(1+β)]1/ρ

p

, my
1+ p

[p(1+β)]1/ρ

)
p < 1

1+β(
my
p+1

, my
p+1

)
1

1+β
≤ p ≤ 1 + β(

mx

1+ 1
p(

p
1+β )

1/ρ ,
my

1+ p

( p
1+β )

1/ρ

)
1 + β < p

2. ρ > 0,−1 < β < 0 :

(x, y)d =



(
mx

1+
[p(1+β)]1/ρ

p

, my
1+ p

[p(1+β)]1/ρ

)
p < 1{(

m

1+(1+β)1/ρ
, m

1+(1+β)−1/ρ

)
,
(

m

1+(1+β)−1/ρ ,
m

1+(1+β)1/ρ

)}
p = 1(

mx

1+ 1
p(

p
1+β )

1/ρ ,
my

1+ p

( p
1+β )

1/ρ

)
1 < p

3. ρ > 0, β = −1 :

(x, y)d =


(mx, 0) p < 1

{(m, 0) , (0,m)} p = 1

(0,my) 1 < p
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4. ρ = 0, β ≥ 0 :

(x, y)d =



(mx, 0) p < 1
1+β

{x ≥ y, px+ y = my} p = 1
1+β(

my
p+1

, my
p+1

)
1

1+β
< p < 1 + β

{ x ≤ y, px+ y = my} 1 + β = p

(0,my) 1 + β < p

Next we consider the CARA analysis. The marginal rate of substitution:

MRSxy =


1

1+β
e−a(x−y) x > y[

1
1+β

, 1 + β
]

x = y

(1 + β) e−a(x−y) x < y

The utility maximization problem can be broken down to the following

cases based on values of β and a (we refer only to identi�able cases):

1. a > 0, β ≥ 0 :

(x, y)d =



(mx, 0) p < 1
1+β

e−amx(
1
p+1

[
my − 1

a
ln (p (1 + β))

]
,

1
p+1

[
my + p

a
ln (p (1 + β))

] ) 1
1+β

e−amx ≤ p < 1
1+β(

my
p+1

, my
p+1

)
1

1+β
≤ p ≤ 1 + β 1

p+1

[
my − 1

a
ln
(

p
1+β

)]
,

1
p+1

[
my + p

a
ln
(

p
1+β

)]  1 + β < p ≤ (1 + β) eamy

(0,my) (1 + β) eamy < p
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2. a > 0,−1 < β < 0 :

(x, y)d =



(mx, 0) p < 1
1+β

e−amx(
1
p+1

[
my − 1

a
ln (p (1 + β))

]
,

1
p+1

[
my + p

a
ln (p (1 + β))

] ) 1
1+β

e−amx ≤ p < 1{ (
1
2

[
my − 1

a
ln (1 + β)

]
, 1

2

[
my + 1

a
ln (1 + β)

])
,(

1
2

[
my + 1

a
ln (1 + β)

]
, 1

2

[
my − 1

a
ln (1 + β)

]) } p = 1 1
p+1

[
my − 1

a
ln
(

p
1+β

)]
,

1
p+1

[
my + p

a
ln
(

p
1+β

)]  1 < p ≤ (1 + β) eamy

(0,my) (1 + β) eamy < p

3. a > 0, β = −1 :

(x, y)d =


(mx, 0) p < 1

{(m, 0) , (0,m)} p = 1

(0,my) 1 < p

Money Metric Method (HPZ_MME_Estimation)

The Money Metric recovery procedure �nds the parameters that minimize

the aggregated adjustments needed to remove all inconsistencies between the

utility function ranking and the revealed preference information.

Input

The input includes the subject ID, the number of observations, the chosen

quantities and the given prices. The user de�ned parameters are

Data parameters (within Choi et al. (2007))

1. The treatment in Choi et al. (2007) (treatment, in the current version

the asymmetric treatments are disabled).

2. Correction for corner choices (zeros_�ag, see above for details).
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Functional family parameters (within Disappointment Aversion)

1. The vNM utility function (function_�ag, see above for details).

2. Restricted forms (beta_zero_�ag, see above for details).

3. Elation loving (beta_�ag, see above for details).

4. Restricted risk aversion for cases where there are corner choices and

the chosen utility index is CRRA (restricted_rho). This parameter is

determined by the code.

Estimation procedure parameters (within MME)

1. The wastes aggregation function (when aggregation equals 1 it is the

maximum function, when it equals 2 it is the average and when it is 3 it

is the average sum of squares).

2. Estimation approach (numeric_�ag, see above for details).

3. The minimal number of repetitions with identical minimal aggregate

distance to establish convergence (MME_min_counter).

4. Maximal number of repetitions (max_starting_points, see above for de-

tails).

5. Maximal estimation time (MME_max_time_estimation, see above for

details).

6. Parallel computing (parallel_�ag, see above for details).

7. Output (see above for details).

Main Procedure

The procedure begins with correcting corner choices (if required by the user)

and generating random initial points subject to the restrictions on the func-

tional family (HPZ_Initial_Points).
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For each initial point we search for the element of the disappointment

aversion functional family (de�ned by two parameters) that minimizes the ag-

gregated adjustments needed to remove all inconsistencies between the utility

function ranking and the revealed preference information. For each initial

point, the recovered parameters are held in results, while the value is stored

in criterion. Here also we repeat the estimation procedure as long as the

best parameters combination (yield minimal value function) is recovered less

than MME_min_counter times provided that the number of estimations did

not reach max_starting_points (Footnote 47 is relevant here as well). If the

number of repetitions reaches max_starting_points then we report the best

estimations, even if recovered less than MME_min_counter times. We also

provide an option for time constraint in which the procedure ends when the

time limit expires as long as at least 3 estimations took place.

The Parameters Recovery Routine

Given an initial point the recovery is executed using fminsearchbnd (see details

above). When one of the parameters is �xed to zero, the optimization is uni-

dimensional and the objective function is implemented in

HPZ_MME_Helper_Extreme_Param. In case no parameter is �xed, the

optimization is two-dimensional and the objective function is implemented

in HPZ_MME_Helper. Given parameter(s), these functions calculate the

aggregate adjustments needed to remove all inconsistencies between ranking

induced by the utility function and the revealed preference information. Both

functions use HPZ_MME_Criterion that calculates the three aggregates50.

The optimal parameters can be calculated numerically or analytically.

Numeric Approach (HPZ_MME) The inputs for the numerical calcula-

tion are the observations and the relevant family of utility functions (parame-

ters and utility index). For every observation the level of utility is directly cal-

culated (by HPZ_Utility). If it is a corner choice, HPZ_Grid_Search_MME

50Maximum (maxi (1− v?i )) , mean (
∑n

i=1(1−v?i )
n ) and the sum of squares

(
∑n
i=1 (1− v?i )

2
).
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implements a bisection search (parallel movements of the budget line) to re-

cover the waste incurred by this choice (using the numeric HPZ_choices). If

the observation is an interior choice, the fmincon procedure with a nonlinear

constraint (HPZ_Utility_Constraint) minimizes the expenditure subject to

achieving at least the same utility level as calculated for the observation. We

perform fmincon twice using two di�erent starting points which are chosen on

two di�erent sides of the budget line close to the corners. If both instances of

fmincon were satisfactory (exit�ag=1) then the lower expenditure of the two

is reported. Otherwise, a grid search is invoked. Proposition 1 guarantees that

the optimization can be implemented observation-by-observation. Therefore,

our code implements parallel computing over observations.

Analytical Approach (HPZ_MME_Analytical) Let (x0, y0) be the

chosen bundle. For CRRA, denote

ũ0 = (2 + β) (1− ρ)u (x0, y0) = (max {x0, y0})1−ρ + (1 + β) (min {x0, y0})1−ρ

Then, by equating the MRS of the indi�erence curve ũ0 to the price ratio we

�nd the minimal expenditure required to achieve ũ0. The di�erent cases are

based on values of β and ρ (we refer only to identi�able cases):

1. ρ > 0, β ≥ 0 :e (px, py, (x0, y0)) =



px

[
ũ0

1+(1+β)
1
ρ p

1−ρ
ρ

] 1
1−ρ

+ py

[
ũ0

1+(1+β)
1
ρ p

1−ρ
ρ

] 1
1−ρ

((1 + β) p)
1
ρ p < 1

1+β

(px + py)
[
ũ0

2+β

] 1
1−ρ 1

1+β
≤ p ≤ 1 + β

px

[
ũ0

(1+β)+( p
1+β )

1−ρ
ρ

] 1
1−ρ

+ py

[
ũ0

(1+β)+( p
1+β )

1−ρ
ρ

] 1
1−ρ (

p
1+β

) 1
ρ

1 + β < p

2. ρ > 0,−1 < β < 0 :e (px, py, (x0, y0)) =



px

[
ũ0

1+(1+β)
1
ρ p

1−ρ
ρ

] 1
1−ρ

+ py

[
ũ0

1+(1+β)
1
ρ p

1−ρ
ρ

] 1
1−ρ

((1 + β) p)
1
ρ p < 1

px

[
ũ0

1+(1+β)
1
ρ

] 1
1−ρ

+ py

[
ũ0

1+(1+β)
1
ρ

] 1
1−ρ

(1 + β)
1
ρ p = 1

px

[
ũ0

(1+β)+( p
1+β )

1−ρ
ρ

] 1
1−ρ

+ py

[
ũ0

(1+β)+( p
1+β )

1−ρ
ρ

] 1
1−ρ (

p
1+β

) 1
ρ

p > 1
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3. ρ = 0, β ≥ 0 :

e (px, py, (x0, y0)) =


pxũ0 p ≤ 1

1+β
px+py
2+β

ũ0
1

1+β
≤ p ≤ 1 + β

pyũ0 1 + β ≤ p

For CARA, denote

ũ0 = (2 + β)u (x0, y0) = −e−amax{x0,y0} − (1 + β) e−amin{x0,y0}

The indi�erence curve ũ0 intersects with the axis if there exists a positive x

such that ũ0 = −e−ax − (1 + β). This is possible only if −ũ0 > 1 + β, or

alternatively, only if e−amax{x0,y0}

1−e−amin{x0,y0} > 1 + β. The di�erent cases are based on

values of β and ρ (we refer only to identi�able cases):

1. β ≥ 0 and −ũ0 > 1 + β :e (px, py, (x0, y0)) =



−px
a

ln (− (ũ0 + (1 + β))) p < − ũ0+(1+β)
1+β

px

[
1
a

ln
(
−p+1

pũ0

)]
+py

[
1
a

ln
(
− (1+p)(1+β)

ũ0

)]
− ũ0+(1+β)

1+β
≤ p < 1

1+β

(px + py)
[

1
a

ln
(
−2+β

ũ0

)]
1

1+β
≤ p ≤ 1 + β

px

[
1
a

ln
(
− (1+β)(1+p)

ũ0p

)]
+ py

[
1
a

ln
(
− (1+p)

ũ0

)]
1 + β < p ≤ − 1+β

ũ0+(1+β)

−py
a

ln (− (ũ0 + (1 + β))) − 1+β
ũ0+(1+β)

< p

2. β ≥ 0 and −ũ0 ≤ 1 + β: e (px, py, (x0, y0)) =


px

[
1
a

ln
(
−p+1

pũ0

)]
+py

[
1
a

ln
(
− (1+p)(1+β)

ũ0

)]
p < 1

1+β

(px + py)
[

1
a

ln
(
−2+β

ũ0

)]
1

1+β
≤ p ≤ 1 + β

px

[
1
a

ln
(
− (1+β)(1+p)

ũ0p

)]
+ py

[
1
a

ln
(
− (1+p)

ũ0

)]
1 + β < p

3. −1 < β < 0 and −ũ0 > 1 + β and − ũ0+(1+β)
1+β

< 1 e (px, py, (x0, y0)) =



−px
a

ln (− (ũ0 + (1 + β))) p < − ũ0+(1+β)
1+β

px

[
1
a

ln
(
−p+1

pũ0

)]
+py

[
1
a

ln
(
− (1+p)(1+β)

ũ0

)]
− ũ0+(1+β)

1+β
≤ p ≤ 1

px

[
1
a

ln
(
− (1+β)(1+p)

ũ0p

)]
+ py

[
1
a

ln
(
− (1+p)

ũ0

)]
1 < p ≤ − 1+β

ũ0+(1+β)

−py
a

ln (− (ũ0 + (1 + β))) − 1+β
ũ0+(1+β)

< p

4. −1 < β < 0 and −ũ0 > 1 + β and − ũ0+(1+β)
1+β

≥ 1

e (px, py, (x0, y0)) =

{
−px

a
ln (− (ũ0 + (1 + β))) p ≤ 1

−py
a

ln (− (ũ0 + (1 + β))) p > 1
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5. −1 < β < 0 and −ũ0 ≤ 1 + β :

e (px, py, (x0, y0)) =

 px

[
1
a

ln
(
−p+1

pũ0

)]
+py

[
1
a

ln
(
− (1+p)(1+β)

ũ0

)]
p ≤ 1

px

[
1
a

ln
(
− (1+β)(1+p)

ũ0p

)]
+ py

[
1
a

ln
(
− (1+p)

ũ0

)]
1 < p

6. β = −1

e (px, py, (x0, y0)) =

{
px max {x0, y0} p ≤ 1

py max {x0, y0} 1 < p

7. a = 0, β ≥ 0 (ũ0 = max {x0, y0}+ (1 + β) min {x0, y0}):

e (px, py, (x0, y0)) =


pxũ0 p ≤ 1

1+β
px+py
2+β

ũ0
1

1+β
≤ p ≤ 1 + β

pyũ0 1 + β ≤ p

User Interface (HPZ_Interface)

In order to use this Matlab package follow the following steps:

• Set the MATLAB path to the place that stores the HPZ_PRU_Software

folder (using the Set Path option with Add Folder with Subfolders).

• After the path is set, to run the code, the user should write HPZ_Interface

command on the MATLAB command window. The data set we currently

use as the input data is (Choi et al. (2007), Data_CFGK_2007.csv).

• The Action Selection window: The user is required to choose three ac-

tions - consistency analysis (Consistency Tests and Inconsistency In-

dices), the Nonlinear Least Squares recovery method or the Money Met-

ric recovery method.

• The Subjects Selection window: The user is required to select the ana-

lyzed subjects (one or multiple subjects can be chosen). If the Consis-

tency Analysis action was chosen in the Action Selection window, the

next window would be the result window (described below). Otherwise,

the following window would be the Functional Form Settings window.
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• The Functional Form Settings window: The user is required to decide on

four issue - the functional form of the utility indices (CRRA or CARA),

the computational approach (numerical or analytical), the disappoint-

ment aversion parameter boundary (β = 0, β ≥ 0 or β > −1) and the

adjustment for boundary solutions.

• The Optimization Settings window slightly di�ers between the Nonlin-

ear Least Squares method and the Money Metric method. For both

methods the user is �rst required to specify the number of times the re-

covered parameters should be recovered before the process is terminated

and the parameters are reported. Increasing the number of convergence

points improves reliability but reduces e�ciency. Note that when the

user selects the number of convergence point there is no time limit on

the recovery process. Then, the user is required to specify the allo-

cated time (in minutes). De�ning a time limit overrides the choice of

the number of convergence points. The parameter estimation process

(i.e., fminsearchbnd procedure) would stop when the time is over and

report the results that have been computed during the allocated time.

Third, the user can choose to use parallel processing (more important

for the numerical approach). If the parallel processing is selected then

the code would kill other processes running on the machine and use all

computing power to run the software. For the Money Metric method,

the aggregator of the wastes vector is required (either maximum, mean

or average sum of squares). For the Nonlinear Least Squares method,

the distance metric should be selected to be either the Euclidean metric

or the metric used in Choi et al. (2007).

• The Output File Format window: The user is required to customize

the information in the output �le. The basic format of the output �le

includes the recovered parameters and the value of the optimized ag-

gregated criterion. There are �ve di�erent options for evaluating the

resulting parameters including the one with which the optimization was

carried out. The �ve are the three possible Money Metric methods and
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the two possible Nonlinear Least Squares methods.

• The Output File Noti�cation window: When the routine is done, a win-

dow is prompted on the screen including the path to the output �le.

Bootstrapping package for Money Metric Method

The bootstrapping module has been developed to provide the parameter dis-

tribution for the underlying recovered parameters and compute con�dence in-

tervals for the recovered Disappointment Aversion parameter (β) using Money

Metric method, while β is bounded to -1. For bootstrapping we used 1000

draws with replacement on all observations of each individual subject. In or-

der to report con�dence intervals on recovered β, we sort all 1000 results for

all draws, and then report the 25th and 975th ones as the lower bound and

upper bound of 95% con�dence interval for β, and also report 50th and 950th

ones as the lower bound and upper bound of 90% con�dence interval for β (we

also report mean and standard deviation of the parameter).

User Interface (HPZ_Bootstrapping_Module)

In order to make this module work, the user has to follow the following steps:

• Set the MATLAB path to the place that stores the HPZ_PRU_Software

folder and the HPZ_Bootstrapping_Package folder (using the Set Path

option with Add Folder with Subfolders).

• After the path is set, to run the code, the user should write

HPZ_Bootstrapping_Module command on the MATLAB command win-

dow.

• The bootstrapping window includes the following choices: The func-

tional form of the vNM numbers (CRRA or CARA), the computational

approach (numerical is currently disabled), the MME aggregation func-

tional (either mean or average sum of squares).
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• The Subjects Selection window: The user is required to select the ana-

lyzed subjects (one or multiple subjects can be chosen).

• The Output File Noti�cation window: When the routine is done, a win-

dow is prompted on the screen including the path to the output �le.
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