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Abstract

We study price efficiency of analyst forecasts when competing analysts strategically

acquire and disclose information in forecasting contests. In acquiring information, an-

alysts face a tradeoff—while more precise information improves their forecast accuracy

and the likelihood of winning the contest, it also increases their conditional signal

correlation making differentiation to win the contest harder. In equilibrium, analysts

cannot make truthful forecasts if contest rewards are sufficiently high. Increasing con-

test competitiveness, by scaling up contest rewards: generally, encourages information

production, but can discourage information acquisition by the weaker analyst to the

point of not acquiring information at all; and reduces price efficiency at higher re-

ward levels. Two ex-ante identical analysts can become differently informed and use

opposing forecasting strategies.
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1 Introduction

Analysts play a key role in promoting price efficiency in financial markets and are known

to move market prices with their recommendation revisions and earnings forecasts (Givoly

and Lakonishok, 1979; Imhoff and Lobo, 1984; Womack, 1996; Kelly and Ljungqvist, 2012).

As information intermediaries, financial analysts privately learn about the firms they cover

and then communicate this information to markets. Analysts’ incentives to privately gather

information are in part driven by their relative forecasting performance, e.g., the annual rank-

ing of sell-side analysts for their relative value of research by portfolio managers organized

by the well-known Institutional Investor magazine (Brown et al., 2015). There is a small

but growing literature on analysts’ forecasting behaviors when analysts’ payoff are primarily

based on their relative forecasting accuracy (Aharoni et al., 2017; Banerjee, 2021; Lichten-

dahl Jr et al., 2013; Ottaviani and Sørensen, 2006). This literature assumes that analysts’

information endowment is exogenous and all analysts have the same quality of information.1

But financial analysts spend a large amount of resources on gathering information about the

companies they cover, and importantly, their information gathering exercise also impacts

their strategies to communicate this information to the market.

In this paper, we analyze the price efficiency of analyst forecasts when competing analysts

strategically gather and disclose information about the firms they cover. Price efficiency is

the extent to which analyst forecasts reduce the uncertainty about the future cash flows

(fundamental) of the firm they cover. We allow analysts to acquire information by paying a

cost, which can vary across analysts. Analysts can thus be heterogenous in their information

quality. Unlike previous models, analysts’ signal precisions and the conditional correlation

among their private signals are endogenous in our model.

We develop a model in which two strategic analysts cover a single firm and issue earnings

1Aharoni et al. (2017) is a notable exception for considering analysts with heterogenous information
quality.
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forecasts based on their noisy private signals about the firm performance. At the beginning,

analysts simultaneously, and privately, decide the quality of their signals which they receive

in the next period. Analysts have different information acquisition costs and thus their

signal qualities can be different in equilibrium. After receiving their signals with the quality

chosen at the earlier period, analysts simultaneously issue forecasts about the firm’s earnings.

Eventually, when the earnings is publicly disclosed, analysts are compensated based on their

absolute and relative forecast accuracy (e.g., Aharoni et al., 2017; Banerjee, 2021). For each

analyst, his private signal informs him about the distribution of the firm’s future earnings and

the competing analyst’s private signal, because in equilibrium, their signals are correlated

conditional on earnings. The extent to which the correlation is endogenously determined

in equilibrium via each analyst’s signal quality shapes their forecasting strategies and price

efficiency.

Prior literature suggests that steeper contest rewards lead to stronger biases or less precise

forecasts, since analysts compromise accuracy in order to increase the likelihood of winning

a forecasting contest (e.g., Banerjee, 2021; Lichtendahl Jr et al., 2013). Importantly, this

result has been shown to hold for exogenous precision levels of analysts’ signals. However,

when competing analysts can choose the precision of their signals—the case we consider

here—steeper contest rewards also affect analysts’ incentives to produce information.

To decide equilibrium information acquisition strategies, an analyst faces a tradeoff: on

the one hand, greater contest rewards induces an analyst to acquire more precise signal so

that he can accurately forecast the earnings and win the contest; on the other hand, more

precise signals make analysts’ conditional signal correlation higher making differentiation to

win the contest harder. We find that, in equilibrium, analysts respond to steeper rewards

by producing more information and issuing truthful forecasts only when contest rewards are

relatively low. When contest rewards are sufficiently high, the stronger analyst (with a low

information cost) acquires more precise information and issues a truthful forecast; the weaker
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analyst (with a high information cost) acquires less precise information and issues a forecast

counter to his signal—he ‘flips’, resulting in a flipping forecasting equilibrium. At sufficiently

high reward levels, we find equilibria in which analysts that are ex-ante identical—both have

the same information cost—acquire information of different precision levels, and the analyst

with more precise information issues a truthful forecast and the other analyst with less

precise information flips.

We find that equilibrium information production generally increases with contest rewards,

which is intuitive; however, higher reward levels decrease information production of the

weaker analyst at some interval of reward levels. In a truth telling equilibrium, the optimal

precision of the weaker analyst has an inverted U-shaped relationship with the reward level

and at sufficiently high level of reward, he acquires no information at all. The intuition is

that, for the weaker analyst, acquiring more precise information with the hope of winning

the contest is not worth the cost of information after a certain reward level, leading to a

decreasing relationship between his optimal precision and rewards.

The price efficiency of analyst forecasts increases with rewards at low reward levels,

decreases with rewards at high reward levels, and remains constant with rewards at substan-

tially high reward levels. At low reward levels, as rewards increase, both analysts acquire

more precise information improving the price efficiency. At substantially high reward levels,

the optimal precisions of the analysts are maximum (i.e., they know the state variable with

certainty) and analysts acquire no more information—the price efficiency remains constant

with rewards. The price efficiency decreases with rewards at high reward levels when, in

a flipping equilibrium, the stronger analyst’s optimal precision is maximum and thus the

analyst no longer acquires any information, whereas the weaker analyst’s optimal precision

increases with rewards. When the market does not know analysts’ information cost with

certainty—as we assume—it cannot perfectly distinguish between a weak and a strong ana-

lyst. This makes the interpretation of analyst forecasts—the mapping of forecasts to analysts’
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private signals—noisy. At high reward levels, as the optimal precision of the weaker analyst

increases, the price efficiency decreases because, given the market’s noisy interpretation of

the forecasts and the fixed precision of the stronger analyst, the higher the precision of the

weaker analyst, the lower the difference in weights the market price places on the information

of the stronger and the weaker analyst and the lesser the market’s learning.

We find both substitutability and complementarity in information acquisition at differ-

ent reward levels. The substitutability result is intuitive, because in a forecasting contest,

analysts’ key incentive is to differentiate, and it is well known that differentiation in ac-

tion requires substitutability in information acquisition (Colombo et al., 2014; Hellwig and

Veldkamp, 2009). The complementarity in information acquisition is a somewhat surprising

result in a forecasting contest. The intuition is that in a flipping equilibrium, in which the

complementarity effect occurs, has an endogenous mechanism of differentiation—the stronger

analyst issues a truthful forecast and the weaker analyst flips. What is required for this en-

dogenous differentiation to succeed is the coordination among analysts’ forecasts—analysts

coordinate their forecasts to differentiate. The complementarity of information acquisition

helps in the coordination process.

We also find that with endogenous information, there exists no mixed strategy forecast-

ing equilibrium as with exogenous information (Banerjee, 2021; Lichtendahl Jr et al., 2013).

With the exogenous information, an analyst’s equilibrium mixing strategy is such that the

analyst’s forecasting bias—the probability of forecasting counter to his signal—increases in

his signal precision. This is intuitive because higher signal precision implies greater con-

ditional correlation and thus stronger incentives to differentiate by forecasting counter to

the signal. This forecasting strategy, however, diminishes an analyst’s incentive to acquire

information. If an analyst does acquire information, by paying a cost, it will be of little use,

because the analyst will be induced to forecast counter to his signal voiding the effect of

more precise information.
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Our paper contributes to the literature on competitive analyst behavior in a forecasting

contest setting. To begin with, Ottaviani and Sørensen (2006) and Lichtendahl Jr and Win-

kler (2007) show that forecasters who compete to be the most accurate have an incentive

to report non-truthfully. For example, Lichtendahl Jr and Winkler (2007) shows that com-

petitive forecasters increase their expected contest scores by exaggerating their probabilistic

forecasts. In a continuous state setting, with similar contest incentives, Aharoni et al. (2017)

show that the opposite might occur. Namely, when two risk averse analysts compete, the in-

formed analyst might tilt his forecast away from his private signal and towards a commonly

observed public signal in order to increase the likelihood of leading the contest; knowing

that the uninformed analyst will rely more on this public signal. Lichtendahl Jr et al. (2013)

and Banerjee (2021) show that contrarian forecasting behavior might be optimal when the

correlation between analysts’ signals, conditional on the state variable, is sufficiently high.

We contribute to this literature by highlighting the important role of information production

in shaping analysts’ forecasting behavior. Specifically, by explicitly considering information

production, we are able to analyze the aggregate level of information in markets, as deter-

mined by both the amount of information produced by analysts and the manner in which

their private information is communicated to markets.

2 The model

A firm is covered by two competing analysts, A and B, i ∈ {A,B}. The firm’s earnings e

are stochastic and can be either high or low, e ∈ {1, 0}. The earnings depend on the firm’s

fundamental as captured by the random variable φ, which can be high or low, φ ∈ {H,L} ,

with equal probabilities,

Pr (φ = H) = Pr (φ = L) =
1

2
. (1)
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The fundamental φ depends on a whole gamut of information including macro economic,

geopolitical, and firm-specific information. Firm’s earnings represent the firm’s fundamental

with precision θ,

Pr(e = 1|H) = Pr(e = 0|L) = θ ∈
(

1

2
, 1

)
. (2)

Thus, for higher values of θ, firm’s earnings are more indicative of firm’s fundamental. Impor-

tantly, both analysts can exert effort to learn the firm’s fundamental. Formally, an analyst

can obtain a private signal si ∈ S = {h, l} with precision γi at t = 1,

Pr(si = h|H) = Pr(si = l|L) = γi ∈
(

1

2
, 1

)
(3)

by paying a private cost Ci(γi) at t = 0,

Ci (γi) =
βci
2

(
γi −

1

2

)2

where β, ci > 0 for i ∈ {A,B}. (4)

Conditional on φ, 〈e, sA, sB〉 are independently distributed. Note, however, that the corre-

lation between analysts’ signals, conditional on earnings, is positive for any θ ∈
(
1
2
, 1
)
.2

At time t = 1, after obtaining their private signals 〈sA, sB〉, analysts simultaneously issue

forecasts mi ∈ M = {1, 0} about the firm’s earnings e. An analyst’s forecasting strategy σi

is a probability distribution over all pure strategies mapping from S to M and is defined as

σhi = Pr(mi = 1|si = h) and σli = Pr(mi = 1|si = l).

Analysts are risk neutral. An analyst’s forecasting payoff is ui(mi,mj, e), which depends

on his own forecast, his competitor’s forecast and the publicly disclosed earnings at t = 2. We

consider a winner-takes-all forecasting contest in which an analyst wins a reward W when his

2Even though analysts’ signals are independent conditional on φ, they are positively correlated conditional
on e.When the earnings perfectly represent the fundamental, i.e., θ = 1, analysts’ signals are also independent
conditional on earnings, and thus, the conditional correlation is zero. We will show later that the correlation
is increasing in analysts’ precisions 〈γA, γB〉. When both analysts perfectly learn the fundamental φ, i.e.,
when γA = γB = 1, the conditional correlation becomes one.

6



forecast matches the earnings but his competitor’s forecast does not, that is, mi = e 6= mj.

There are no prizes for any other realizations of forecasts or earnings. Formally, an analyst’s

forecast payoff is

ui(mi,mj, e) =

 W

0

if mi = e 6= mj

otherwise.
(5)

Winner-takes-all forecasting contests represent a widely used forecasting tournament on Wall

Street and have been used in prior research (Banerjee, 2021; Lichtendahl Jr et al., 2013;

Ottaviani and Sørensen, 2006). Popular press and academic research suggests that one

of the top two components of (sell-side) analysts’ compensation is their annual “All-Star”

rankings by Institutional Investor (Brown et al., 2015). Top ranked “All-Star” analysts

receive substantially larger bonuses (Groysberg et al., 2011) and have superior career choices

in industry (Leone and Wu, 2007).3 Figure 1 shows the sequence of events of the game.

— Figure 1 here —

The solution concept we employ is Perfect Bayesian Nash Equilibrium, which is referred

to as equilibrium in this paper. For each analyst i ∈ {A,B}, we use the notation σi for

an analyst’s strategy profile
(
σhi , σ

l
i

)
in the forecasting stage. An equilibrium is a set of

precision choices
{
γ∗i , γ

∗
j

}
at t = 0 and a set of forecasting strategies

{
σ∗i , σ

∗
j

}
at t = 1 such

that (i) analysts choose their signal precisions optimally, correctly anticipating their equi-

librium strategies in the forecasting stage, (ii) analysts choose their forecasting strategies

optimally given their signal precisions, and (iii) given the information acquisition and fore-

3Our results naturally extend to a more general payoff structure in which other contestants can also
receive some rewards, albeit less than the winner. In such a payoff structure, each analyst receives a base
reward if both analysts’ forecasts match the earnings, but receives no reward when none of their forecasts
matches the earnings. An analyst receives the highest reward when his forecast matches the earnings but
his opponent’s does not. The analyst whose forecast does not match the earnings but his opponent’s does,
receives the lowest reward, often a penalty.
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casting strategies, all beliefs are consistent with the Bayes’ rule. Next, we define informative

and uninformative equilibria in the forecasting subgame.

Definition 1 An uninformative equilibrium is defined as an equilibrium in which equilibrium

strategies satisfy σhi = σli for each i ∈ {A,B}. An informative equilibrium is an equilibrium

that is not uninformative.

For all informative equilibria in the forecasting subgame, we focus on symmetric strategies

by assuming

σhi = 1− σli ≡ σi, (6)

that is, Pr (mi = 1|si = h) = Pr (mi = 0|si = l) , for each i ∈ {A,B}. This assumption is

without loss of generality, because, as we show in Lemma C.1 (see appendix), all informative

forecasting equilibria have strategies σli = 1− σhi and σlj = 1− σhj .

To derive the equilibrium outcome, we start by characterizing analysts’ forecasting equi-

libria 〈σ∗A, σ∗B〉 at t = 1, taking their signal precision choice 〈γ∗A, γ∗B〉 at t = 0 as given. Having

derived the forecasting equilibria at t = 1, we go back to t = 0 to obtain analysts’ optimal

precision choices.

3 Benchmark

To isolate the impact of forecasting competition, we first consider a payoff structure without

competition. Each analyst’s payoff is determined solely by his own forecast accuracy without

any concern for relative performance with respect to his opponent. Specifically, each analyst

receives a payoff w0 > 0 if his forecast matches the earnings and a zero payoff if it does not

match the earnings, regardless of whether his opponent’s forecast matches the earnings or

not.
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Given signal precision γi, the unique equilibrium in the forecasting stage is a pure strategy

truth telling equilibrium, in which each analyst’s forecast perfectly reveals his private signal

(i.e., σh∗i = 1). Working backward, for a truth telling forecasting equilibrium, an analyst’s

ex-ante expected benefit of acquiring a signal with precision γi is given by

Bi (γi) = Esi [Ee [ui (mi, e) |si]] =
w0

2
[1 + (2θ − 1) (2γi − 1)] . (7)

This leads to the net ex-ante expected payoff, taking into account the cost of information

production,

Vi (γi) =
w0

2
[1 + (2θ − 1) (2γi − 1)]− βci

2

(
γi −

1

2

)2

. (8)

As can be seen from the above expression of Vi (γi), an analyst’s incentive to produce more

information by improving his signal precision γi increases in his payoff from forecast accuracy

w0 and earnings quality θ (i.e., Pr (e = 1|φ = H) = Pr (e = 0|φ = L)), and decreases in the

cost of information production, given by the product βci. Proposition 1 summarizes the

unique equilibrium. All proofs are in Appendix C.

Proposition 1 Suppose each analyst receives a payoff of w0 > 0 if mi = e and a zero payoff

if mi 6= e, without any concern for relative ranking. Then, for each analyst i ∈ {A,B}, there

exists a unique information acquisition equilibrium with optimal precision γ∗i at t = 0 and a

unique truth telling forecasting equilibrium with strategy σ∗i = 1 at t = 1 such that,

γ∗i =


1
2

[
1 + 2w0(2θ−1)

βci

]
∈
(
1
2
, 1
)

1

for βci > 2w0 (2θ − 1)

otherwise
(9)

In this benchmark case, an analyst’s optimal information production is increasing in his

payoff from forecast accuracy w0 and earnings quality θ w0, and is decreasing in the cost of

information production βci.
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4 Winner-takes-all contest

In this section, we consider our main model in which analysts compete in a winner-takes-all

forecasting contest. We solve the model using backward induction. We start at t=1, taking

as given the signal precision choices made by the analysts at t=0. After characterizing the

equilibrium outcome at the forecasting subgame, we work backwards to t=0 to determine

the analysts’ optimal information choices.

4.1 Forecasting subgame

For any given set of signal precisions 〈γA, γB〉 and his private signal si ∈ {h, l}, each analyst

decides his optimal forecast. An analyst can either issue a forecast that is consistent with

his private signal (i.e., mi = 1 when si = h or mi = 0 when si = l ) or counter to his signal

(i.e., mi = 0 when si = h or mi = 1 when si = l ) or randomize between these forecasts (i.e.,

σi ∈ (0, 1)). Suppose an analyst’s receives a high signal, si = h. His likelihood of winning

the contest with a consistent forecast, mi = 1, is,

Pr (e = 1,mj = 0|si = h) =
Pr (e = 1,mj = 0, si = h)

Pr (si = h)
.

Analyst i’s winning likelihood depends not only on the likelihood that his forecast matches

the earnings but also on the likelihood that the competing analyst j’s forecast does not

match the earnings, which is (1 − γj)σj if analyst j obtains the wrong signal and issues a

consistent forecast or γj(1−σj) if analyst j obtains a correct signal and issues an inconsistent

forecast. We thus denote the latter likelihood as,

zj ≡ γj + σj − 2σjγj, for j = A,B.
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It follows then that an analyst’s likelihood of winning the contest by forecasting truthfully

is

Pr (e = 1,mj = 0|si = h) = θγi + (1− zj) (1− γi − θ).

Similarly, the likelihood of winning when issuing an inconsistent forecast is

Pr (e = 0,mj = 1|si = h) = (1− θ)γi − zj(γi − θ)

Comparing the two likelihoods implies that issuing a truthful forecast dominates (i.e., σi = 1)

when

θγi + (1− zj) (1− θ − γi) > (1− θ)γi − zj(γi − θ),

or zj > 1− θ, which further implies that

σj <
θ + γj − 1

2γj − 1
.

Lemma 1 summarizes analyst i’s best response strategy σi as a function of analyst j’s strategy

σj. Figure 2 shows plots of analysts’ best response functions for different intervals of θ.

— Figure 2 here —

Lemma 1 [Forecasting response functions] For each i, j ∈ {A,B} , i 6= j, analyst i’s

best response strategy σi to analyst j’s strategy σj is given by

σi =


1 for all σj <

θ+γj−1
2γj−1

(0, 1) for all σj =
θ+γj−1
2γj−1

0 for all σj >
θ+γj−1
2γj−1 .

(10)

Now, with the above response functions, we explore conditions for the existence of dif-
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ferent forecasting equilibria. But before we proceed, we discuss analysts’ signal correlation

conditional on earnings, because correlation will play an important role in our understand-

ing of analysts’ strategic behavior in forecasting as well as information acquisition. For any

i, j ∈ {A,B} , i 6= j, let ρ be analysts’ signal correlation conditional on earnings:

ρ ≡ Corr(si, sj|e) =
Cov(si, sj|e)√

V ar(si|e)V ar(sj|e)
. (11)

Replacing the values of conditional covariance and conditional variances in the definition

(see derivation in appendix B.1),

ρ =
θ (1− θ) (2γi − 1) (2γj − 1)√

[1− θ + γi (2θ − 1)] [θ − γi (2θ − 1)] [1− θ + γj (2θ − 1)] [θ − γj (2θ − 1)]
. (12)

Conditional signal correlation ρ in signal precisions γi, γj. With endogenous precisions,

the conditional correlation is determined by analysts’ equilibrium behavior in the information

production stage and in the forecasting subgame. At one extreme, when one or more analysts

have no information about the firm’s fundamental φ, their signals are not correlated at all,

i.e., if either γi → 1
2

or γj → 1
2
, ρ → 0. At another extreme, when analysts have perfect

information about the firm’s fundamental φ, signals are perfectly correlated, i.e., γi → 1,

γj → 1, ρ→ 1. Further, signal correlation ρ decreases in θ. As θ increases, the variance of the

common component of the signals, i.e., V ar (e|φ) = θ (1− θ) decreases and so does ρ. When

earnings perfectly represent the firm’s fundamental, signals are then independent conditional

on earnings (because they are conditional on fundamental), i.e., at θ → 1, ρ → 0. On

the other hand, when earnings are completely uninformative about the firm’s fundamental,

correlation naturally does not depend on θ, i.e., at θ → 1
2
, ρ→ (2γi − 1) (2γj − 1) .

Next we characterize conditions for the existence of forecasting equilibria, starting with

a truth telling equilibrium. Specifically, for both analysts to issue truthful forecasts, it is
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required that their precisions are sufficiently small,

σ∗A = σ∗B = 1⇔ max (γA, γB) < θ. (13)

Once the precision level of one of the analysts exceeds this threshold, e.g., γA > θ, where

γA > γB (w.l.o.g), his opponent’s best response to his truthful forecast is to issue a contrarian

forecast and thus, the truth telling forecasting equilibrium no longer exists. Instead, there

exists a second pure strategy equilibrium, in which the analyst with the higher signal precision

issues a truthful forecast while his opponent with the lower precision issues a contrarian

forecast. We refer to this equilibrium outcome as a flipping equilibrium,

σ∗A = 1, σ∗B = 0 ⇔ max (γA, γB) > θ. (14)

Besides the pure strategy equilibria there is also a mixed strategy equilibrium when

analysts are indifferent between reporting a truthful forecast and flipping. Specifically, it

follows from Lemma 1, for a given set of precisions 〈γA, γB〉, analyst A’s best response to σB

is σA ∈ (0, 1) when σB = θ+γB−1
2γB−1

, which precisely defines the equilibrium mixed strategy σB.

Similarly, analyst B’s best response to σA is σB ∈ (0, 1) when σA = θ+γA−1
2γA−1

, which defines

the equilibrium mixed strategy σA. Both conditions taken together leads to a unique mixed

strategy equilibrium. Proposition 2 characterizes the equilibria of the forecasting subgame

for a given set of signal precisions 〈γA, γB〉.4

Proposition 2 [Forecasting equilibria] For any set of signal precisions 〈γA, γB〉,5

4The forecasting subgame analyzed here is reminiscent of Banerjee (2021), but extends the analysis to
the case of heterogenous signal precisions.

5In addition, there are two trivial uninformative pure strategy equilibria with strategies(
σh∗
A = 1 = σl∗

A ;σh∗
B = 0 = σl∗

A

)
and

(
σh∗
A = 0 = σl∗

A ;σh∗
B = 1 = σl∗

A

)
for any θ ∈

(
1
2 , 1
)
. In these equilibria,

one analyst always forecasts high and his opponent always forecasts low, regardless of their private signals.
Furthermore, there also exists a flipping equilibrium in which it is the analyst with lower precision that issues
a truthful forecast whereas the analyst with a higher precision flips. For now, we disregard these inefficient
subgame outcomes.
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i) If max (γA, γB) 6 θ, the unique equilibrium is truth telling with strategies (σ∗A = 1 = σ∗B) ;

ii) If min (γA, γB) < θ < max (γA, γB), there exists a flipping equilibrium with strategies

(σ∗A = 1, σ∗B = 0) ;

iii) If min (γA, γB) > θ, there are multiple equilibria—a flipping equilibrium with strategies

(σ∗A = 1, σ∗B = 0) and a mixed-strategy equilibrium with strategies,

σ∗A =
θ + γA − 1

2γA − 1
, σ∗B =

θ + γB − 1

2γB − 1
. (15)

The intuition is that when analysts’ signal precisions are low, given a fixed θ, their signal

correlation, conditional on earnings, is also low. For a small signal correlation, analysts are

aware that their signals are not very likely to be same and thus they have enough room to

differentiate by truthfully reporting their signals, leading to the existence of a truth telling

equilibrium. However, when at least one of the signal precisions is high, correlation becomes

larger, leaving little room for the analysts to differentiate by truthful reporting. While

analysts cannot report their signals truthfully, they are able to differentiate in a way such

that the strong analyst (the one with a high signal precision) reports truthfully and the

weak analyst (the one with a low signal precision) ‘flips’ that is, issues a forecast counter

to his signal, resulting in a flipping equilibrium. The strong analyst has a higher cost of

deviating from his own signal and thus reports truthfully. The weak analyst has a lower cost

of deviating and thus he is the one that flips.

The intuition of the mixed strategy equilibrium is that when analysts’ signal precisions

are sufficiently high, given a fixed θ, their signal correlation is also very high, analysts’

best bet to differentiate is to mix their pure strategy reports, resulting in a mixed strategy

equilibrium. Naturally, analysts tend to bias their forecasts more as their signal precisions

increase. That is, for every i ∈ {A,B} , σ∗i decreases in γi, or the bias away from one’s
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own signal, 1 − σ∗i = Pr(mi = 0|si = h) = Pr(mi = 1|si = l), increases in γi. At very

high precisions, there are multiple equilibria: the flipping equilibrium as well as the mixed

strategy equilibrium.

4.2 Information production

Building on Proposition 2, here we analyze analysts’ optimal information production or

the choice of precisions 〈γA, γB〉 to yield the equilibrium level of information production.

Specifically, at t = 0, analysts simultaneously choose their signal precisions, each based on

their conjectured behavior of their opponent and assuming that each analyst acts optimally

in the forecasting subgame at t = 1.6 The best response of analyst i to the precision level

γj of analyst j, for each i, j ∈ {A,B}, i 6= j, is given by,

γi(γj) ∈ arg maxBi (γi, γj)− Ci (γi) , (16)

where analyst i’s ex-ante expected payoff (benefit) is given by

Bi (γi, γj) = Esi
[
Ee,mj

[ui(mi (σ
∗
i (γi, γj)) ,mj

(
σ∗j (γi, γj)

)
, e)|si]

]
, (17)

taking equilibrium forecasting strategies
〈
σ∗i (.) , σ∗j (.)

〉
given.

Without loss of generality we express our next set of results with the convention that

analyst A is the more efficient in information production than analyst B such that cA 6 cB.

We call analyst A interchangeably the efficient or the strong analyst, and analyst B the

inefficient or the weak analyst.

6Results do not change whether we assume that analysts choose their precisions privately or we allow
analysts’ signal precisions to be common knowledge among the analysts. This is because analysts’ equilibrium
forecasting strategies do not depend on their opponents’ signal precisions. As such, to save clutter, we use
γj (without a ‘hat’) and not γ̂j which is analyst i’s conjectured precision of analyst j’s chosen precision.
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4.2.1 Truth telling forecasting equilibrium

We begin by deriving the conditions for an equilibrium with truthful forecasts. From Propo-

sition 2 part (i), this requires that both analysts optimally choose information production

levels such that γA ≤ θ, γB ≤ θ. Specifically, in a truth telling equilibrium, the optimal level

of information production for analyst A is given by (see derivation in (B.15)),

γA(γB) = arg maxW [θγA + γB(1− θ − γA)]− βcA
2

(
γA −

1

2

)2

. (18)

Thus, analyst A’s best response precision level to analyst B’s precision level γB is

γA(γB) =
1

2
+

W

βcA
[θ − γB] for γB ≤ θ. (19)

Note that analysts respond to their opponents’ higher information production by lower in-

formation production. In other words, the incentive to produce information is decreasing in

the level of information production chosen by the opponent analyst—there is substitutability

in information production. This is intuitive, because in a winner-takes-all contest, analysts’

incentives to differentiate lead to substitutability of their forecasting behaviors (Colombo

et al., 2014; Hellwig and Veldkamp, 2009). Taking together the best response precision level

of analyst B, given analyst A’s precision, we obtain the unique equilibrium precisions for a

truth telling forecasting equilibrium summarized in Proposition 3. Furthermore, the feasi-

bility of the solution, i.e., precisions satisfy max(γ∗A, γ
∗
B) ≤ θ, implies that the incentive to

produce information is not too high, which requires that either the cost of information pro-

duction is sufficiently high or the contest reward is sufficiently low. Formally, the feasibility

condition is

W 6 βmin(cA, cB). (20)
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Proposition 3 characterizes optimal signal precisions for a truth telling forecasting equilib-

rium. Figure 3 shows different forecasting equilibria with endogenous information in the

W -θ space.

— Figure 3 here —

Proposition 3 [Optimal precisions in a truth telling forecasting equilibrium] For

costs cA 6 cB (w.l.o.g) and the reward level W 6 βcA, there exists a truth telling forecasting

equilibrium 〈σ∗A, σ∗B〉 = 〈1, 1〉 with the following optimal precision levels
〈
γ∗A,TT , γ

∗
B,TT

〉
:

γ∗A,TT =
1

2

[
1 +

W (βcB −W )

β2cAcB −W 2
(2θ − 1)

]
; γ∗B,TT =

1

2

[
1 +

W (βcA −W )

β2cAcB −W 2
(2θ − 1)

]
. (21)

Unlike in the benchmark case without competition, a truth telling forecasting equilibrium

exists only for relatively small reward levels, and optimal precisions need not be monotoni-

cally increasing in the reward. In equilibrium, at first both analysts produce information as

the reward level W increases, but after a certain threshold, the efficient (inefficient) analyst

responds by producing more (less) information. Eventually, when the reward level reaches

W = βcA, the inefficient analyst produces no information, i.e., γB = 1
2
, and the efficient

analyst produces γA = θ. We summarize these properties of optimal precisions in Lemma 2.

Figure 4(a) shows plots of optimal precisions as functions of reward levels for truth telling

forecasting equilibrium.

Lemma 2 For costs cA 6 cB (w.l.o.g.), and optimal precisions defined in (21),

i) The efficient analyst’s optimal precision γ∗A,TT increases in the reward level W for all

W ∈ (0, βcA) ;

ii) The inefficient analyst’s optimal precision γ∗B,TT has an inverted U-shaped relationship

with the reward level W . Formally, there exists a reward threshold WTT ∈ (0, βcA) such
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that
dγ∗B,TT

dW
> 0 for W ∈ (0,WTT ) and

dγ∗B,TT

dW
< 0 for W ∈ [WTT , βcA), where

WTT = β
[
cB −

√
cB (cB − cA)

]
(22)

4.2.2 Flipping forecasting equilibrium

We continue by deriving equilibrium information production at reward levels for which a

truth telling forecasting equilibrium no longer exists. This requires that at least one of the

analysts optimally chooses a sufficiently high signal precision, i.e., max(γA, γB) > θ. We

begin by deriving the conditions for analysts’ best response precision levels for the flipping

equilibrium (σ∗A = 1, σ∗B = 0) consistent with the above convention that cA ≤ cB. This

implies that zA = 1− γA and zB = γB and that the optimal levels of information production

are given by (see derivation in (B.16))

γA(γB) = arg maxW [γAγBθ + (1− γA) (1− γB) (1− θ)]− βcA
2

(
γA −

1

2

)2

.

γB(γA) = arg maxW [(1− γA) (1− γB) θ + γAγB (1− θ))]− βcB
2

(
γB −

1

2

)2

.

Thus, the best response precision levels of the analysts as a function of their competitors’

precision levels are:

γA(γB) = min

(
1

2
+

W

βcA
[θ + γB − 1] , 1

)
and γB(γA) = min

(
1

2
+

W

βcB
[γA − θ] , 1

)
. (23)

Unlike in the truth telling forecasting equilibrium, analysts respond to competitors’ high

information production by producing more information. Analysts’ incentive to produce in-

formation is increasing in their opponents’ information production—there is complementarity

in information production. The complementarity result is somewhat surprising given that in

a winner-takes-all contest, analysts’ objective is to differentiate themselves and substitutabil-
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ity in action generally leads to substitutability in information production (Colombo et al.,

2014; Hellwig and Veldkamp, 2009, e.g.,). The intuition here is that a flipping equilibrium

has an endogenous mechanism of differentiation—the stronger analyst with the higher signal

precision truthfully reveals his private signal, whereas the weaker analyst with a lower signal

precision flips. Paradoxically, what is required for this endogenous differentiation to succeed

is the coordination among analysts’ forecasts, for which the complementarity of information

acquisition is optimal.

Whether the consequent equilibrium precision levels are interior depends on the incentive

to produce information. Specifically, this is determined in part by the reward cutoff WFP

defined below (defined for cA 6 cB),

WFP =

[
βcB

4 (1− θ)

] [(
(2θ − 1)2 + 8 (1− θ) (cA/cB)

) 1
2 − (2θ − 1)

]
∈ (βcA, β

√
cAcB) . (24)

Proposition 4 [Optimal precisions in a flipping forecasting equilibrium] For costs

cA 6 cB (w.l.o.g.) and WFP as defined in (24), there exists a flipping forecasting equilibrium

〈σ∗A, σ∗B〉 = 〈1, 0〉 with the following optimal precision levels
〈
γ∗A,FP , γ

∗
B,FP

〉
:

i) For W ∈ (βcA,WFP ) , precision levels are given by (25a), which satisfy 1
2
< γ∗B,FP <

γ∗A,FP < 1 ;

γ∗A,FP =
1

2

[
1 +

W (βcB −W )

β2cAcB −W 2
(2θ − 1)

]
, γ∗B,FP =

1

2

[
1 +

W (W − βcA)

β2cAcB −W 2
(2θ − 1)

]
;

(25a)

ii) For W ∈
[
WFP ,

βcB
2(1−θ)

)
, precision levels are given by (25b), which satisfy 1

2
< γ∗B,FP <

γ∗A,FP = 1;

γ∗A,FP = 1, γ∗B,FP =
1

2

[
1 +

2 (1− θ)W
βcB

]
; (25b)

iii) For W > βcB
2(1−θ) , precision levels are γ∗B,FP = γ∗A,FP = 1.
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In the flipping forecasting equilibrium, both analysts produce more information as the

reward level increases, although the marginal rate of increase is higher for the efficient analyst,

that is,
∂γ∗A,FP

∂W
>

∂γ∗B,FP

∂W
at W ∈ (βcA,WFP ). Figure 4(b) shows plots of optimal precisions

as functions of reward levels for truth telling as well as flipping forecasting equilibria. Plots

at W ∈ (0, βcA) represent optimal precisions for the truth telling equilibrium and plots at

W > βcA represent optimal precisions for the flipping equilibrium.

— Figure 4 here —

4.2.3 Symmetric cost

Here we discuss forecasting equilibria with endogenous information when analysts have the

same information acquisition cost, i.e., cA = cB = c. Corollary 1 characterizes analysts’ equi-

librium forecasting behavior with endogenous information. While the equilibria types are

similar to those with asymmetric costs discussed in earlier sections, truth telling forecasting

equilibrium exists across all reward levels. Importantly, part (ii)(a) of the corollary shows

that at the intermediate levels of reward, there exists an equilibrium in which analysts with

the symmetric information acquisition cost acquire asymmetric levels of information, and

the analyst with higher signal precision reports truthfully while the other analyst with lower

precision flips. Figure 5 shows plots of analysts’ best response precision levels to their oppo-

nents’ precision level. There are multiple equilibria. While in the truth telling forecasting

equilibrium, optimal precisions are the same, in the flipping forecasting equilibrium, optimal

precisions are different.

— Figure 5 here —

Corollary 1 [Optimal precisions with symmetric cost] When analysts have the same

information acquisition cost c, then:
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i) For any W > 0, there exists a truth telling forecasting equilibrium 〈σ∗A, σ∗B〉 = 〈1, 1〉

with the following optimal precision levels
〈
γ∗A,TT , γ

∗
B,TT

〉
:

γ∗A,TT = γ∗B,TT =
1

2

[
1 +

W (2θ − 1)

W + βc

]
∈
(

1

2
, θ

)
; (26)

ii) For any W > βc, there exists a flipping forecasting equilibrium 〈σ∗A, σ∗B〉 = 〈1, 0〉 with

the following optimal precision levels
〈
γ∗A,TT , γ

∗
B,TT

〉
:

a) if W ∈
(
βc, βc

2(1−θ)

)
, precision levels are given by

γ∗A,FP = 1; γ∗B,FP =
1

2

[
1 +

2W (1− θ)
W + βc

]
∈
(

1

2
, 1

)
; (27)

b) if W > βc
2(1−θ) , precision levels are: γ∗A,FP = 1 = γ∗B,FP .

4.2.4 Noisy forecasting

Here we show that an information production equilibrium does not exist with mixed fore-

casting strategies. The mixed strategy equilibrium 〈σ∗A, σ∗B〉 =
〈
θ+γA−1
2γA−1

, θ+γB−1
2γB−1

〉
is derived

such that the expected payoffs from issuing a truthful forecast equals the expected payoffs

from issuing a false forecast, or zA = zB = 1− θ. It follows from the above that the ex-ante

expected payoff (benefit) from this strategy for analyst i ∈ {A,B} is,

Bi = W [θγi + θ(1− θ − γi)] = θ (1− θ)W,

which does not depend on analyst i’s signal precision γi. Thus, analyst i has no incentive

to produce information at level γi >
1
2

and the feasibility condition for the mixed strategy

equilibrium to exist, i.e., γi > θ, is not satisfied.
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Proposition 5 [Non-existence of noisy forecasting equilibrium] There exists no

mixed strategy forecasting equilibrium with endogenous information.

5 Price efficiency

In this section we study the price efficiency of analyst forecasts. To measure price effi-

ciency, we adopt the commonly used expected squared deviation between the market price

and the firm’s fundamental. We define price efficiency of analyst forecasts as the inverse

of the expected squared deviation between the market price and the fundamental, i.e.,[
Emi,mj ,e

[
(φ− P (mi,mj, e))

2]]−1, normalized by the inverse of the expected squared de-

viation between the market price without analyst forecasts and the fundamental, i.e.,[
Ee
[
(φ− P (e))2

]]−1
, that is,

Π ≡
Ee
[
(φ− P (e))2

]
Emi,mj ,e

[
(φ− P (mi,mj, e))

2] .
Assuming a risk neutral market, the price with and without analyst forecasts are P (mi,mj, e) =

Emi,mj ,e [φ|mi,mj, e] and P (e) = Ee [φ|e], the price efficiency of analyst forecasts can be ex-

pressed as7

Π =
Ee [V ar (φ|e)]

Emi,mj ,e [V ar (φ|mi,mj, e)]
. (28)

Higher values of Π correspond to lower variance ratios which mean that analyst forecasts are

more informative about the firm’s fundamental. At an extreme, when analyst forecasts are

completely uninformative of the fundamental, the price efficiency equals one.

Expanding (28), for any α, β, δ ∈ {1, 0}, the price efficiency can be expressed as (see

7Our results remain the same if we measure price (information) efficiency with respect to earnings e, i.e.,

Π =
V ar (e)

Emi,mj [V ar (e|mi,mj)]
.
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derivation is appendix B.4)

Π =

 ∑
α,β,δ∈{1,0}

[
2θ (1− θ)

1
Pr(mi=α,mj=β,e=δ|φ=H)

+ 1
Pr(mi=α,mj=β,e=δ|φ=L)

]−1 , (29)

where, Pr (mi = α,mj = β, e = δ|φ = ζ) = Pr (mi = α,mj = β|φ = ζ) Pr (e = δ|φ = ζ) for

any ζ ∈ {H,L} .

As we can see, to derive the value of price efficiency, we need the values of Pr (mi = α,mj = β|φ = ζ),

which requires the knowledge of how the market interprets analyst forecasts, i.e., how the

market maps forecasts to analysts’ signals: (mi,mj) 7−→ (si, sj) . The market’s interpretation

depends on its belief about whether an analyst is efficient or inefficient in acquiring infor-

mation. As discussed earlier, analysts can be of two types: “efficient” (E) with a low cost

of information acquisition cE or “inefficient” (I) with a high cost of information acquisition

cI such that cE < cI . The market does not know analysts’ information cost for certain—it

knows only the probability distribution of information acquisition costs. We assume that

while the market may not know perfectly identify an efficient (inefficient) analyst, analysts

themselves know each others’ information cost. Analysts work in the same industry and

have a better understanding of each other’s information cost than the market.8 We state

this assumption formally below.

Assumption 1 [Market’s interpretation of analyst forecasts] Analysts know each

other’s information acquisition cost, but the market does not know these costs. The market

believes that analyst A is an efficient analyst and analyst B is an inefficient analyst with a

probability p, that is,

Pr (cA = cE, cB = cI) = 1− Pr (cA = cI , cB = cE) = p ∈ [
1

2
, 1),

8Alternatively, we could have assumed that analysts know their opponents’ information cost only partially
or not at all. While that assumption is more general, it would complicate our analysis without contributing
additional insights.
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and Pr (cA = cE = cB) = Pr (cA = cI = cB) = 0.

At one extreme, when p = 1, the market perfectly knows analyst types (analyst A is

efficient and analyst B is inefficient, which we have assumed so far in our discussion until

this section. At the other extreme, when p = 1
2
, the market does not have any information

about analyst types, i.e., both analysts have equal likelihood of being an efficient analyst.

We denote the precision of an efficient analyst as γE and the precision of an inefficient analyst

as γI .

To see how the market’s interpretation of analyst forecasts affect price efficiency, consider

forecasts: (mA = 1,mB = 0). In a flipping forecasting equilibrium, the market maps forecasts

to analyst signals such that, for any φ ∈ {H,L},

Pr (mA = 1,mB = 0|φ) = pPr (sA=E = h, sB=I = h|φ) + (1− p) Pr (sA=I = l, sB=E = l|φ) .

The forecasts are interpreted as (sA = h, sB = h) with probability p (when analyst A is an

efficient type and analyst B is an inefficient type) or as (sA = l, sB = l) with probability

1 − p (when analyst A is an inefficient type and analyst B is an efficient type). This is

because in a flipping forecasting equilibrium, an efficient type makes a forecast that truth-

fully reveals his private signal, whereas the inefficient type makes a forecast counter to

his private signal. If, for example, φ = H, Pr (sA=E = h, sB=I = h|φ = H) = γEγI and

Pr (sA=I = l, sB=E = l|φ = H) = (1− γI) (1− γE), then

Pr (mA = 1,mB = 0|φ = H) = pγEγI + (1− p) (1− γE) (1− γI) . (30)

Similarly, for forecasts: (mA = 1,mB = 1), given φ = H,

Pr (mA = 1,mB = 1|φ = H) = γEγI ,
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which does not depend on p, because, in this case, the market is certain that the efficient

analyst received a high signal and the inefficient one a low signal regardless of whether

analyst A or B is the efficient one. For forecasts: (mA = 1,mB = 0), however, the market is

not certain whether the efficient or the inefficient analyst received a high signal, and hence

the expression (30) depends on p. In general, for both flipping and truth telling equilibria,

the market can perfectly infer the private signal of the efficient and the inefficient analysts

when their forecasts match, but cannot perfectly infer when their forecasts do not match

(see derivations in appendix B.5). This is important because the market’s learning from

analyst forecasts, and hence the price efficiency, depends on knowing the private signals of

the efficient and the inefficent analysts, regardless of whether analyst A or B is the efficient

analyst.

Proposition 6 summarizes the properties of price efficiency and the comparative statics of

the threshold WFP . Figure 6 shows Π as a function of the reward level W . Panel (a) shows

a plot for p = 0.5 and panel(b)shows plots for p = 0.5, p = 0.7 and p = 0.9, highlighting

that Π increases in p.

— Figure 6 here —

Proposition 6 [Price efficiency of analyst forecasts: Properties] Suppose analysts’

forecasts are interpreted as in Assumption 1. Then:

i) Price efficiency is nonmonotone in reward level—it first increases in W at W ∈

(0,WFP ), then it decreases in W at W ∈
(
WFP ,

βcI
2(1−θ)

)
, and finally it remains constant

in W at W > βcI
2(1−θ) , where WFP is defined in (24);

ii) WFP increases in β, cE and cI but decreases in θ.

At W ∈ (0,WFP ), as the reward level increases, analysts’ signal precisions increase and
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more information is impounded in the market leading to an increase in price efficiency.9

At W ∈
(
WFP ,

βcI
2(1−θ)

)
, the efficient analyst’s optimal precision is constant in W , and the

inefficient analyst’s precision increases in W . At γ∗E,FP = 1 and γ∗I,FP ∈
(
1
2
, 1
)
,

Π =
1

γ∗I,FP (2θ − 1)2 + 4θ (1− θ)
,

which decreases in γ∗I,FP , and since γ∗I,FP increases in W , Π decreases in W . To understand

the intuition, consider an extreme case, p = 1
2
. The market learns whether the efficient

(inefficient) analyst received a high (low) signal only when analysts’ forecasts match; it does

not learn anything when forecasts do not match. Even when analysts’ forecasts match, an

increase in γ∗I,FP decreases the market’s learning, because given the fixed γ∗E,FP = 1, the

higher the value of γ∗I,FP , the lower the difference in weights the market places on the private

signals of the two analysts, leading to a lower level of learning by the market. At the other

extreme case, p → 1, the market can perfectly identify an efficient analyst in matching

as well as non-matching forecasts. When γ∗E,FP = 1, the efficient analyst perfectly learns

the fundamental, which, in turn, is learnt by the market. Thus, price efficiency reaches its

maximum value at W = WFP and remains constant at W > WFP . This result shows that as

long as there is an uncertainty in the market, whatever small it may be, about the analysts’

information cost, i.e., p ∈ [1
2
, 1), the price efficiency decreases at W ∈

(
WFP ,

βcI
2(1−θ)

)
.

6 Conclusions

Security analysts play an important information intermediary role in financial markets. One

of the key objectives of (sell-side) analysts is to attain the much coveted “ All-Star” status

in the annual ranking based on their relative value of research assessed by the portfolio

9The effect of the decreasing optimal precision of the inefficient analyst at W ∈ [WTT , βcE) is dominated
by the increasing optimal precision of the efficient analyst, leading to the overall effect of an increasing price
efficiency in W .
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managers. In this paper, we analyze the price efficiency of analyst forecasts when competing

analysts strategically acquire and communicate information to win a forecasting contest.

One key distinguishing feature of our paper is to allow analysts to gather information by

paying an information cost and become differently informed.

We have shown that, analysts cannot truthfully reveal their private opinions about the

firm they cover if contest rewards are sufficiently high. While greater rewards can induce

more information production, more precise information increase the conditional correlation

among the signals of the competing analysts making differentiation to win the contest harder.

If rewards are above a certain threshold, there is no equilibrium in which analysts acquire

information and truthfully report their private information. At higher reward levels, there is

a flipping forecasting equilibrium in which analysts with lower information cost acquire more

precise information and truthfully reveal their private information, whereas analysts with

higher information cost acquire less precise information and forecast counter to their private

information (flip). Increasing contest competitiveness by boosting the rewards generally

encourages information production but can discourage information acquisition by weaker

analysts who have higher information cost. Increasing contest rewards can hurt the price

efficiency of analyst forecasts if reward levels are sufficiently high. We also find flipping

equilibria in which two analysts with exactly the same information cost become differently

informed and use different forecasting strategies.

While our paper is not about designing optimal forecasting contests, results from our

analysis caution against using very high rewards in a contest or tournament setting. High

rewards can deter truthful reporting, discourage information production by weaker analysts,

and reduce price efficiency of analyst forecasts.
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A Figures

t=0                                                       t=1                                                          t=2

Time t

Analysts choose precision 𝛾𝑖 Analysts receive signal 𝑠𝑖 Earnings 𝑒 publicly disclosed
by paying 𝐶𝑖(𝛾𝑖)                                      Analysts forecast 𝑚𝑖 Analysts receive payoffs 𝑢𝑖(𝑚𝑖,𝑚𝑗,e)

Figure 1: The sequence of events in the model.
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(b) γB < θ < γA
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2𝛾𝐵 − 1

(c) 0.5 < θ < γB

Figure 2: Plots of best response functions of analyst A and analyst B in the forecasting subgame. Blue
(solid) curve represents analyst A’s response function, σA, and orange (dashed) curve represents analyst B’s
response function, σB . Parameter values are: γA = 0.8, γB = 0.7.
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𝜃
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1

2
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1

2
,1)

F𝑃: 𝛾𝐴=1, 𝛾𝐵=1

(0, 0.5)

∞

Figure 3: Forecasting equilibria with endogenous information as functions of θ and W . The notation “TT”
implies truth telling forecasting equilibrium and “FP” implies flipping forecasting equilibrium.
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β𝑐𝐴𝑊𝑇𝑇

(a) Equilibrium TT

β𝑐𝐴 𝑊𝐹𝑃 β𝑐𝐵
2(1 − 𝜃)

(b) Equilibria TT and FP

Figure 4: Equilibrium γ’s as a function of W . Panel (a) shows γ’s for the truth telling forecasting equilibrium.
Panel (b) shows γs for both truth telling (TT) and flipping (FP) forecasting equilibria. In panel (b), plots at
W ∈ (0, βcA) represent precisions for truth telling equilibrium and plots at W > βcA represent precisions for
flipping equilibrium. In both panels, blue (solid) curve represents analyst i’s signal precision γi and orange
(dashed) curve represents analyst j’s signal precision γj . Parameters are set to θ = 0.6, β = 1, cA = 5, and
cB = 10.
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j

Figure 5: Plots of analysts’ best response precision levels at the information acquisition stage with symmetric
cost. Blue (solid) curves represent analyst i’s response function γi to analyst j’s choice of signal precision
γj , and orange (dashed) curves represent analyst j’s response function γj to analyst i’s choice of signal
precision γi. The thicker curves (solid and dashed) represent response functions in the truth telling forecasting
equilibrium; the finer curves (solid and dashed) represent response functions in the flipping equilibrium. For
the truth telling equilibrium, γ∗i = 0.62 = γ∗j ; for the flipping equilibrium, γ∗i = 1, γ∗j = 0.91. Other
parameters are set at θ = 0.7, β = 1, W = 1.5, and c = 1.1.
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β𝑐𝐼
2(1 − 𝜃)

𝑊𝐹𝑃β𝑐𝐸

(a) p = 0.5

p=0.9   

p=0.7   

p=0.5   

(b) p = 0.5, 0.7, 0.9

Figure 6: Equilibrium Π as a function of W . Panel (a) shows the plot of Π as a function of W for p = 0.5.
Panel (b) shows plots of Π vs. W for p = 0.5 (blue, solid), p = 0.7 (orange, large-dashed) and p = 0.9 (red,
dotted). Other parameters are set to θ = 0.6, β = 1, cE = 5, and cI = 10.
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B Derivations

B.1 Conditional correlation

We first derive the expression of ρ and then discuss the properties of ρ.

Fix e = 1. The expression for analysts’ signal correlation conditional on e = 1 is

ρ =
Cov(si, sj|e = 1)√

V ar(si|e = 1)V ar(sj|e = 1)
, (B.1)

where

V ar(si|e = 1) =E [si|e]− (E [si|e])2

= Pr (si = 1|e = 1)− [Pr (si = 1|e = 1)]2

= Pr (si = 1|e = 1) [1− Pr (si = 1|e = 1)]

= [1− θ + γi (2θ − 1)] [θ − γi (2θ − 1)] , (B.2)

because

Pr(si = 1|e = 1) =
Pr(si = 1, e = 1)

Pr(e = 1)

=
Pr(φ = H) Pr(si = 1, e = 1|φ = H) + Pr(φ = L) Pr(si = 1, e = 1|φ = L)

Pr(φ = H) Pr(e = 1|φ = H) + Pr(φ = L) Pr(e = 1|φ = L)

= θγi + (1− θ) (1− γi) ,

and

Cov(si, sj|e = 1) = E [si, sj|e = 1]− E [si|e = 1]E [sj|e = 1]

= Pr (si = 1, sj = 1|e = 1)− Pr(si = 1|e = 1) Pr(sj = 1|e = 1)

= θ (1− θ) (2γi − 1) (2γj − 1) ,
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Replacing the values of conditional covariance and conditional variances in (11), we have,

for e = 1,

ρ =
θ (1− θ) (2γi − 1) (2γj − 1)√

[1− θ + γi (2θ − 1)] [θ − γi (2θ − 1)] [1− θ + γj (2θ − 1)] [θ − γj (2θ − 1)]
,

which is (12). Using an analogous argument, we can see that the value of ρ at e = 0 is the

same as that at e = 1.

Properties of ρ.

(i) ρ increases in γi, because the numerator Cov(si, sj|e) increases in γi and the denomi-

nator V ar(si|e) decreases in γi. The same argument holds for γj.

(ii) Differentiating ρ with respect to θ,

∂ρ

∂θ
=
N1×N2

D
,

where

N1 = −

 γi
(
2 (γj)

2 (1− 2θ)2 − 2γj(1− 2θ)2 + (θ − 1)θ
)

+γi
(
−2 (γj)

2 (1− 2θ)2 + 2γj(1− 2θ)2 − θ2 + θ
)

+ (γj − 1)γj(θ − 1)θ

 , (B.3)

and

N2 = (2γi − 1)(2γj − 1)(2θ − 1) > 0,

and

D = 2

 (γi(2θ − 1)− θ)(γi(2θ − 1)− θ + 1)

×(γj(2θ − 1)− θ)(γj(2θ − 1)− θ + 1)


3/2

> 0,
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such that

sgn

(
∂ρ

∂θ

)
= sgn (N1) . (B.4)

Let

N1 = f (θ) = a0 + a1θ + a2θ
2, (B.5)

such that by (B.3),

a2 = γi (1− γi)
[
1− 8 (γj)

2 (1− γj)
]

+ γj (1− γj) = −a1 (B.6a)

a0 = −2γiγj (1− γi) (1− γj) < 0. (B.6b)

By tedious algebra, we can show that a2 > 0 for any γi ∈
(
1
2
, 1
)

and γj ∈
(
1
2
, 1
)
.

By (B.6a), a1 = −a2 < 0, and thus, from (B.3),

N1 = a0 + a1θ (1− θ) < 0, (B.7)

and, hence by (B.4),

∂ρ

∂θ
< 0. (B.8)

B.2 Analysts’ expected payoffs

Let the expected payoff of analyst i ∈ {A,B} with a signal si = κ ∈ {h, l} when he forecasts

mi = η ∈ {1, 0} and his opponent j ∈ {A,B} , j 6= i, forecasts mj, be

Ui (mi = η|si = κ) ≡ Ee,mj
[ui(mi = η,mj, e)|sτ = κ]. (B.9)
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The net expected of analyst i with a signal si = κ from issuing a forecast mi = 1 relative to

the forecast mi = 0 is

∆Ui,κ ≡ Ui (mi = 1|si = κ)− Ui (mi = 0|sτ = κ) . (B.10)

Substituting analysts’ payoffs for different values of signals, forecasts and earnings, we have,

for analyst i,

∆Ui,h = W
[
γiθ + (1− γi) (1− θ)− σhj [γiγj + (1− γi) (1− γj)]− σlj [γi (1− γj) + (1− γi) γj]

]
(B.11a)

∆Ui,l = W
[
(1− γi) θ + γi (1− θ)− σhj [γi (1− γj) + (1− γi) γj]− σlj [γiγj + (1− γi) (1− γj)]

]
,

(B.11b)

and, for analyst j,

∆Uj,h = W
[
γjθ + (1− γj) (1− θ)− σhi [γiγj + (1− γi) (1− γj)]− σli [γi (1− γj) + (1− γi) γj]

]
(B.11c)

∆Uj,l = W
[
(1− γj) θ + γj (1− θ)− σhi [γi (1− γj) + (1− γi) γj]− σli [γiγj + (1− γi) (1− γj)]

]
,

(B.11d)
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B.3 Analysts’ ex-ante benefits

We show here that the ex-ante expected payoffs (benefit) of analyst i of acquiring a signal

with precision γi when analyst j acquires a signal with precision γj is

Bi (γi, γj;σi, σj) =W (γiγjθ + (1− γi) (1− γj) (1− θ))σi(1− σj)

+W (γi (1− γj) θ + (1− γi) γj (1− θ))σiσj

+W ((1− γi) γjθ + γi (1− γj) (1− θ)) (1− σi)(1− σj)

+W ((1− γi) (1− γj) θ + γiγj (1− θ)) (1− σi)σj, (B.12)

where σi and σj are equilibrium forecasting strategies, which are functions of (γi, γj).

For any (σi, σj) in the forecasting subgame, an analyst’s ex-ante expected payoffs at t = 0

is

Bi (γi, γj) =
∑
si,sj ,e

Pr(si, sj, e)
∑
mi,mj

Pr(mi|si) Pr(mj|sj)ui (mi,mj, e) . (B.13)

Expanding (B.13) yields

Bi (γi, γj;σi, σj)

= Pr (si = 1, sj = 1, e = 1)



σiσjui (mi = 1,mj = 1, e = 1)

+σi(1− σj)ui (mi = 1,mj = 0, e = 1)

+(1− σi)σjui (mi = 0,mj = 1, e = 1)

+(1− σi)(1− σj)ui (mi = 0,mj = 0, e = 1)



+ ...+ Pr (si = 0, sj = 0, e = 0)



(1− σi)(1− σj)ui (mi = 1,mj = 1, e = 0)

+(1− σi)σj)ui (mi = 1,mj = 0, e = 0)

+σi(1− σj)ui (mi = 1,mj = 0, e = 0)

+σiσjui (mi = 1,mj = 0, e = 0)


. (B.14)
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Notice that (B.14) has a total of 23 = 8 terms of Pr (si, sj, e), and for each of these terms,

there are 22 = 4 terms of ui (mi,mj, e) in the square brackets with a total of 25 = 32 terms.

Substituting the payoff values ui (mi,mj, e) from (5) in (B.14),

Bi (γi, γj;σi, σj)

=
1

2
(γiγjθ + (1− γi) (1− γj) (1− θ))σi(1− σj)W + ...+

1

2
(γiγjθ + (1− γi) (1− γj) (1− θ))σi(1− σj)W,

which, after collecting similar terms, yields (B.12).

For the truth telling forecasting equilibrium, for each analyst i ∈ {A,B} ,

Bi (γi, γj;σi = 1, σj = 1) = W (γi (1− γj) θ + (1− γi) γj (1− θ)) . (B.15)

For the flipping forecasting equilibrium, for analysts i and j,

Bi (γi, γj;σi = 1, σj = 0) = W (γiγjθ + (1− γi) (1− γj) (1− θ)) , (B.16a)

Bj (γi, γj;σi = 1, σj = 0) = W ((1− γi) (1− γj) θ + γiγj (1− θ)) . (B.16b)

For the reverse flipping forecasting equilibrium, for analysts i and j,

Bi (γi, γj;σi = 0, σj = 1) = W ((1− γi) (1− γj) θ + γiγj (1− θ)) , (B.17a)

Bj (γi, γj;σi = 0, σj = 1) = W (γiγjθ + (1− γi) (1− γj) (1− θ)) . (B.17b)
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B.4 Expected conditional variance

For any α, β, δ ∈ {1, 0},

Emi,mj ,e [V ar (φ|mi,mj, e)]

=
∑

α,β,δ∈{1,0}

Pr (mi = α,mj = β, e = δ)V ar (φ|mi = α,mj = β, e = δ) , (B.18a)

where

V ar (φ|mi = α,mj = β, e = δ) = Pr (φ = H|mi = α,mj = β, e = δ) Pr (φ = L|mi = α,mj = β, e = δ) ,

(B.18b)

and

Pr (φ = H|mi = α,mj = β, e = δ) =
Pr (φ = H) Pr (mi = α,mj = β, e = δ|φ = H)

Pr (mi = α,mj = β, e = δ)
.

(B.18c)

Taken together (B.18a)-(B.18c) and , for any α, β, δ ∈ {1, 0},

Pr (mi = α,mj = β, e = δ)V ar (φ|mi = α,mj = β, e = δ)

= [Pr (φ = H) Pr (mi = α,mj = β, e = δ|φ = H)]

×
[

Pr (φ = L) Pr (mi = α,mj = β, e = δ|φ = L)

Pr (mi = α,mj = β, e = δ)

]
=

Pr (mi = α,mj = β, e = δ|φ = H) Pr (mi = α,mj = β, e = δ|φ = L)

2 [Pr (mi = α,mj = β, e = δ|φ = H) + Pr (mi = α,mj = β, e = δ|φ = L)]

=
1

2

[
1

1
Pr(mi=α,mj=β,e=δ|φ=H)

+ 1
Pr(mi=α,mj=β,e=δ|φ=L)

]
,
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because Pr (φ = H) = 1
2
, and

Pr (mi = α,mj = β, e = δ)

=
1

2
[Pr (mi = α,mj = β, e = δ|φ = H) + Pr (mi = α,mj = β, e = δ|φ = L)] .

Thus, for any α, β, δ ∈ {1, 0},

Emi,mj ,e [V ar (φ|mi,mj, e)]

=
1

2

∑
α,β,δ∈{1,0}

[
1

1
Pr(mi=α,mj=β,e=δ|φ=H)

+ 1
Pr(mi=α,mj=β,e=δ|φ=L)

]
,

and after replacing Ee [V ar (φ|e)] = θ (1− θ) , we have

Π =

 ∑
α,β,δ∈{1,0}

[
2θ (1− θ)

1
Pr(mi=α,mj=β,e=δ|φ=H)

+ 1
Pr(mi=α,mj=β,e=δ|φ=L)

]−1 ,
which is (29).

B.5 Interpretation of analyst forecasts

Truth telling equilibrium. Consider analyst forecasts: (mA = 1,mB = 0). In a truth

telling forecasting equilibrium, the market maps analyst forecasts to analyst signals as

(mA = 1,mB = 0) 7−→ (sA=E = h, sB=I = l) ∪ (sA=I = h, sB=E = l) ,

such that

Pr (mA = 1,mB = 0|φ)

= pPr (sA=E = h, sB=I = l|φ) + (1− p) Pr (sA=I = h, sB=E = l|φ) . (B.19)
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This is because in a truth telling forecasting equilibrium, both analyst types make forecasts

that truthfully reveal their private signals. For φ = H,

Pr (sA=E = h, sB=I = l|φ = H) = γE (1− γI) ,

Pr (sA=I = h, sB=E = l|φ = H) = γI (1− γE) .

Therefore, from (B.19),

Pr (mA = 1,mB = 0|φ = H) = pγE (1− γI) + (1− p) γI (1− γE) .

Using an analogous method, we derive the rest of the probabilities.

To summarize, in a truth telling forecasting equilibrium with endogenous information,

for any α, β ∈ {1, 0} and ζ ∈ {H,L} ,

Pr (mi = α,mj = β|φ = ζ)

=



γEγI if α = β = 1 (0) and ζ = H (L)

(1− γE) (1− γI) if α = β = 0 (1) and ζ = H (L)

pγE (1− γI) + (1− p) γI (1− γE) if α 6= β = 0 (1) and ζ = H (L)

p (1− γE) γI + (1− p) (1− γI) γE if α 6= β = 1 (0) and ζ = H (L) .

(B.20)

Flipping equilibrium. Using an analogous method used in the text, we derive the rest

of the probabilities. To summarize, in a flipping forecasting equilibrium with endogenous
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information, for any α, β ∈ {1, 0} and ζ ∈ {H,L} ,

Pr (mi = α,mj = β|φ = ζ)

=



γE (1− γI) if α = β = 1 (0) and ζ = H (L)

(1− γE) γI if α = β = 0 (1) and ζ = H (L)

pγEγI + (1− p) (1− γE) (1− γI) if α 6= β = 0 (1) and ζ = H (L)

p (1− γE) (1− γI) + (1− p) γEγI if α 6= β = 1 (0) and ζ = H (L) .

(B.21)

C Proofs

Proof of Proposition 1. Suppose analyst i receives signal si = h. He will report mi = 1

if and only if

Ee [ui (mi = 1, e) |si = h] > Ee [ui (mi = 0, e) |si = h] ,

that is,

Pr (e = 1|si = h)w0 > Pr (e = 0|si = h)w0,

which is always true, because

Pr (e = 1|si = h) = θγi + (1− θ) (1− γi) > (1− θ) γi + θ (1− γi) = Pr (e = 0|si = h) .

Similarly, an analyst with a signal si = l will always reports mi = l.

The first order condition for the optimality of an analyst’s endogenous signal precision is

d
dγi
Vi (γi) = 0, which, by (8), is

w0 (2θ − 1)− βci
(
γi −

1

2

)
= 0,
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and thus the optimal signal precision is

γi =
1

2

[
1 +

2w0 (2θ − 1)

βci

]
,

which is (9). The second order condition d2

dγ2i
Vi (γi) |γi=γi < 0 is always satisfied because of

the convexity of the cost function.

Lemma C.1 Any informative equilibrium, if it exists, will have strategies: σli = 1− σhi and

σlj = 1− σhj .

Proof. An informative equilibrium can be of three types: (i) σhi = σli and σhj 6= σlj, (ii)

σhi 6= σli and σhj = σlj, and (iii) σhi 6= σli and σhj 6= σlj. We start with showing that the first

two types of equilibria cannot exist. Then we show that in equilibrium type (iii), the only

equilibria that exist will have σhi = 1− σli and σhj = 1− σlj.

Consider equilibrium type (i). Let σhi = σli = σi. If σi = 1, then using the expressions of

∆Uj,h and ∆Uj,l from (??), ∆Uj,h < 0 and ∆Uj,l < 0 implying σhj = 0 = σlj, a contradiction

that σhj 6= σlj. Similarly, if σi = 0, then, B.11, ∆Uj,h > 0 and ∆Uj,l > 0 implying σhj = 1 = σlj,

again a contradiction. If σi ∈ (0, 1), then given σhj 6= σlj, the two necessary conditions for

equilibrium (i) to exist are: ∆Ui,h
(
σhj 6= σlj

)
= 0, and ∆Ui,l

(
σhj 6= σlj

)
= 0, for which the

unique solution is:

σhj =
θ + γj − 1

2γj − 1
= 1− σlj ∈ (0, 1) .

However, with the above solution, ∆Uj,h (σi) = 0 = ∆Uj,l (σi) , which cannot be true, because

if ∆Uj,h (σi) = 0, that is, ∆Uj,h
(
σhi
)

= γjθ+(1− γj) (1− θ)−σi = 0, then ∆Uj,l (σi) 6= 0 or if

∆Uj,l (σi) = 0 then ∆Uj,h (σi) 6= 0. Thus, an equilibrium with σi ∈ (0, 1) and σhj 6= σlj cannot

exist. Taken all together, equilibrium type (i) cannot exist. By an analogous argument,

equilibrium type (ii) cannot exist.
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We are now left to consider only equilibria (iii) with strategies: σhi 6= σli and σhj 6= σlj.

We prove in the following Claim C.2 that such equilibria will always have σli = 1 − σhi and

σlj = 1− σhj .

Claim C.2 The only equilibrium in a generic informative equilibrium
(
σhi 6= σli, σ

h
j 6= σlj

)
that exists will have strategies σli = 1− σhi and σlj = 1− σhj .

Proof. Suppose there exists an equilibrium such that σli > 1 − σhi (this is w.l.o.g; we

can assume σli < 1 − σhi ) and σlj = 1 − σhj . Then σhi + σli > 1 and thus there exist no

equilibria with
(
σhi = 1, σli = 0

)
or
(
σhi = 0, σli = 1

)
. The only equilibria are of the form with

strategies
(
σhj ∈ [0, 1] , σlj ∈ [0, 1]

)
and (a)

(
σhi ∈ (0, 1) , σli ∈ (0, 1)

)
, (b)

(
σhi = 1, σli ∈ (0, 1)

)
and (c)

(
σhi ∈ (0, 1) , σli = 1

)
such that σhi + σli > 1.

Equilibria (b) and (c) cannot exist. This is because, for equilibrium (b) to exist, the

necessary conditions that must be satisfied are ∆Ui,h
(
σhj , σ

l
j

)
> 0 and ∆Ui,l

(
σhj , σ

l
j

)
= 0.

However, both conditions cannot be simultaneously satisfied because with σlj = 1 − σhj ,

∆Ui,h
(
σhj , σ

l
j

)
= −∆Ui,l

(
σhj , σ

l
j

)
. Similarly, equilibrium (c) can be ruled out.

The only candidate equilibrium is equilibrium (a). There are three possible cases for equi-

librium (a):
(
σhi ∈ (0, 1) , σli ∈ (0, 1)

)
with (i)

(
σhj = 1, σlj = 0

)
, (ii)

(
σhj = 0, σlj = 1

)
, and (iii)(

σhj ∈ (0, 1) , σlj ∈ (0, 1)
)
. Cases (i) and (ii) are ruled out. For case (a), at σhj = 1, σlj = 0,

∆Ui,h
(
σhj , σ

l
j

)
= −∆Ui,l

(
σhj , σ

l
j

)
, which implies that there exists no interval on θ such that the

necessary conditions for the equilibrium to exist, that is, ∆Ui,h
(
σhj , σ

l
j

)
= 0 = ∆Ui,l

(
σhj , σ

l
j

)
,

are simultaneously satisfied. The case (ii) is ruled out using a similar argument. The

only candidate equilibrium is the third case with strategies
(
σhi ∈ (0, 1) , σli ∈ (0, 1)

)
and(

σhj ∈ (0, 1) , σlj ∈ (0, 1)
)
. For this equilibrium to exist, four conditions are to be simulta-

neously satisfied: ∆Ui,h
(
σhj , σ

l
j

)
= ∆Ui,l

(
σhj , σ

l
j

)
= ∆Uj,h

(
σhj , σ

l
j

)
= ∆Uj,l

(
σhi , σ

l
i

)
= 0, of
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which the unique solution is

σhi =
θ + γi − 1

2γi − 1
= 1− σli and σhj =

θ + γj − 1

2γj − 1
= 1− σlj,

which contradicts the assumption that σli > 1 − σhi . Taken together all cases, we conclude

that there exists no informtive equilibrium with strategies σli > 1− σhi and σlj = 1− σhj . The

symmetric case with strategies σli = 1 − σhi and σlj > 1 − σhj can be similarly ruled out.

This completes the proof of Lemma C.1.

Proof of Lemma 1. Results follow directly from the discussion before the Lemma.

Proof of Proposition 2.

Part (i). Truth telling is an equilibrium if σ∗A = 1 given σ∗B = 1 and σ∗B = 1 given σ∗A = 1.

By Lemma 1, σ∗A = 1 if σ∗B < θ+γB−1
2γB−1

, or equivalently, if σ∗B = 1 < θ+γB−1
2γB−1

, or θ > γB.

Similarly, σ∗B = 1 if σ∗A = 1 < θ+γA−1
2γA−1

, or equivalently, if θ > γA. Taken together, there exists

a truth telling equilibrium if θ > max (γA, γB) .

The uniqueness of the truth telling equilibrium is guaranteed by showing that there

exists no other informative equilibrium at θ > max (γA, γB). We show later that the equi-

librium (σ∗A = 1, σ∗B = 0) exists only if θ < max (γA, γB) in part (ii), and the equilibria

(σ∗A ∈ (0, 1) , σ∗B ∈ (0, 1)) exists only if θ < min (γA, γB) in part (iii).

Parts (ii) and (iii). Without loss of generality, let γA > γB. For the flipping equilibrium

to exist, two conditions must be satisfied simultaneously: σ∗A = 1 given σ∗B = 0, and σ∗B = 0

given σ∗A = 1. By Lemma 1, σ∗A = 1 if σ∗B < θ+γB−1
2γB−1

, or equivalently, if σ∗B = 0 < θ+γB−1
2γB−1

,

which is always true for any θ, γB > 1
2
. Similarly, σ∗B = 0 if σ∗A > θ+γA−1

2γA−1
, or equivalently,

if σ∗A = 1 > θ+γA−1
2γA−1

, or if θ < γA. Taken together, there exists a flipping equilibrium if

θ < max (γA, γB) .

For the mixed strategy equilibrium to exist, two conditions must be satisfied simulta-

neously: σ∗A ∈ (0, 1) given σ∗B ∈ (0, 1) , and σ∗A ∈ (0, 1) given σ∗A ∈ (0, 1). By Lemma 1,
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σ∗A ∈ (0, 1) if σ∗B = θ+γB−1
2γB−1

∈ (0, 1), because θ+γB−1
2γB−1

< 1 if θ < γB. Similarly, σ∗B ∈ (0, 1) if

σ∗A = θ+γA−1
2γA−1

∈ (0, 1), because θ+γA−1
2γA−1

< 1 if θ < γA. Taken together, there exists a mixed

strategy equilibrium if θ < min (γA, γB) .

Proof of Proposition 3.

Endogenous precisions are derived by solving best response functions for the analysts as

stated (19). The solution is given by (21). Next, we need to check whether these precisions

satisfy the feasibility condition for the existence of the truth telling forecasting equilibrium,

that is, θ > max
(
γ∗A,TT , γ

∗
B,TT

)
.

Note that γ∗A,TT > γ∗B,TT because cA 6 cB. Thus, the feasibility condition is equivalent to

θ > γ∗A,TT =
1

2

[
1 +

W (βcB −W )

β2cAcB −W 2
(2θ − 1)

]
,

which, after some algebra, yields (2θ − 1) βcB (βcA −W ) > 0, or 0 < W 6 βcA. It is easy

to check that given these bounds of W , γ∗A,TT ∈
(
1
2
, θ
)

for every i ∈ {A,B} .

Proof of Lemma 2.

Differentiating

∂γ∗A,TT
∂W

=
βcB(2θ − 1) (W 2 − 2βcAW + β2cAcB)

2 (W 2 − β2cAcB)2
> 0,

because, for cB > cA,

W 2 − 2βcAW + β2cAcB = (W − βcA)2 + β2cA (cB − cA) > 0.

Differentiating

∂γ∗B,TT
∂W

=
βcA(2θ − 1) (W 2 − 2βcBW + β2cAcB)

2 (W 2 − β2cAcB)2
,
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where W 2 − 2βcBW + β2cAcB ≡ f (W ) is a quadratic polynomial of W. f (W = 0) > 0 and

by Descartes’ rule of signs, f (W ) = 0 has two positive solutions: β
[
cB ±

√
c2B − cAcB

]
.

Since γ∗B,TT is defined only for W < βcA, there exists a unique

WTT = β

[
cB −

√
c2B − cAcB

]
,

such that f (W ) > 0 if W < WTT and f (W ) 6 0 if W > WTT . We can show WTT < βcA,

because cA > cB −
√
c2B − cAcB, or

√
c2B − cAcB > cB − cA, or cB > cA, which is true.

Proof of Proposition 4.

Solving the best response functions given in (23) yield the optimal precisions given in

(25a). Both γ∗A,FP > 1
2

and γ∗B,FP > 1
2

only if β2cAcB − W 2 > 0 or W < β
√
cAcB. For

the flipping forecasting equilibrium to exist, we must have θ < max
(
γ∗A,FP , γ

∗
B,FP

)
, that is,

W > βcA. Thus, we must have βcA < W < β
√
cAcB for the existence of a FP equilibrium

such that γ∗A,FP , γ
∗
B,FP >

1
2
.

Next, we need to check whether, and at what vlaues of W , γ∗A,FP 6 1, that is,

1

2

[
1 +

W (βcB −W )

β2cAcB −W 2
(2θ − 1)

]
6 1,

which can be simplified to

2 (1− θ)W 2 + (2θ − 1) βcB − β2cAcB 6 0. (C.1)

Let

f (W ) ≡ 2 (1− θ)W 2 + (2θ − 1) βcB − β2cAcB.

The polynomial f (W ) is a quadratic function of W ; also, f (W ) = 0 has one positive

root, by Descartes’ rule of signs; f (W = 0) < 0 and f
(
W = β

√
cAcB

)
> 0. Thus, by
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the Intermediate Value Theorem, there exists a unique WRF ∈
(
βcA, β

√
cAcB

)
such that

f (W = WRF ) = 0. Thus, γ∗A,FP ∈
(
1
2
, 1
)

at W ∈ (βcA,WRF ) and γ∗A,FP > 1 for any W ∈

[WRF , β
√
cAcB). The value of WRF is derived by solving f (WRF ) = 0 and choosing the root

with the positive sign:

WRF =

[
βcB

4 (1− θ)

] [(
(2θ − 1)2 + 8 (1− θ) (ci/cB)

) 1
2 − (2θ − 1)

]
, (C.2)

which is (24).

For part (ii), we take γ∗A,FP = 1 and derive γ∗B,FP by replacing γ∗A,FP = 1 in the response

functions given in (23). The values of
〈
γ∗A,FP , γ

∗
B,FP

〉
must satisfy the feasibility condition

for the existence of a flipping equilibrium, that is, θ < max
(
γ∗A,FP , γ

∗
B,FP

)
. The upper bound

of this equilibrium is derived by setting γ∗B,FP = 1, that is,

βcB
2 (1− θ)

=
{
W : γ∗B,FP = 1

}
.

For part (iii), we fix γ∗A,FP = γ∗B,FP = 1, which satisfy the existence condition of the

flipping equilibrium that θ < max
(
γ∗A,FP , γ

∗
B,FP

)
.

Proof of Corollary 1.

Part (i) follows from replacing cA = cB = c in (21), and noting that max
(
γ∗A,TT , γ

∗
B,TT

)
6

θ, the feasibility condition of the existence of the truth telling forecasting equilibrium, is

satisfied for any W > 0.

Part (ii) follows directly from Proposition 4 after replacing cA = cB = c and noting that

βc = WFP .

Proof of Proposition 5.

Shown in the main text.

Proof of Proposition 6.
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Part (i). At W ∈
(
WFP ,

βcI
2(1−θ)

)
,

Π (γE = 1, γI < 1) =
1/4

γI (2θ − 1)2 p (1− p) + θ (1− θ)
,

which decreases in γI and since γI = γ∗B,FP increases in W (see Proposition 4), Π decreases

in W . At W > βcI
2(1−θ) ,

Π (γE = 1, γI = 1) =
1/4

(2θ − 1)2 p (1− p) + θ (1− θ)
,

which does not depend on W .

Part (ii). Substituting cA = cE and cB = cI in (24), we have

WFP =

[
βcI

4 (1− θ)

] [(
(2θ − 1)2 + 8 (1− θ) (cE/cI)

) 1
2 − (2θ − 1)

]
. (C.3)

By inspection, WFP , increases in β and cE. For ∂WFP

∂cI
> 0, implies

β
(√

4(1−θ)(2cE−θcI)
cI

+ 1− (2θ − 1)
)

4(1− θ)
− βcE

cI

√
4(1−θ)(2cE−θcI)

cI
+ 1

> 0.

Denoting t ≡ 4(1−θ)(2cE−θcI)
cI

+ 1, the above inequality leads to
(
√
t−(2θ−1))
4(1−θ) > cE

cI
√
t

or tcI +

4(1− θ)cE > (2θ − 1) cI
√
t, which, after replacing the value of t, yields

4(1− θ)(2cE − θcI) + cI − 4(1− θ)cE > (2θ − 1) cI

√
4(1− θ)(2cE − θcI)

cI
+ 1,

that is,

4(1− θ)(cE − θcI) + cI > (2θ − 1)
√
cI [4(1− θ)(2cE − θcI ]) + c2I ,

which, after squaring both sides and some algebraic manipulation, is true.
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Differentiating, ∂WFP

∂θ
= −βN

D
, where

N = cI

√cI(2θ − 1)2 + 8cE(1− θ)
cI

− 2θ + 1

− 4cE(1− θ),

D = 4(θ − 1)2

√
cI(2θ − 1)2 − 8cE(θ − 1)

cI
.

It is enough to show that N > 0, which will be true if

cI

√
cI(2θ − 1)2 − 8cE(1− θ)

cI
> cI(2θ − 1) + 4cE(1− θ),

or equivalently, after squaring both sides and some algebraic manipulation, 16(1−θ)2cE (cI − cE) >

0, which is true because cI > cE.
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