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Abstract

Liquidity a¤ects various capital market outcomes such as expected returns and

capital structure. Prior research has shown that an important determinant of liquidity

is volatility, where higher stock return volatility is associated with higher illiquidity.

Using recent developments in the literature, we revisit this relation and decompose

total volatility into its jump and di¤usive components and argue that the two volatility

components are predicted to have opposite e¤ects on liquidity. This decomposition is

motivated by the fact that variation in the structure of volatility across �rms is driven

by variation in information environments. Therefore this decomposition gives rise to

a new unexplored channel, independent of information asymmetry and total volatility,

through which the information environment can shape liquidity. We �nd a positive

relation between the jump component of volatility and illiquidity that is independent

of any information asymmetry e¤ects. In contrast, we �nd a negative relation between

di¤usive volatility and illiquidity. Finally, we show that these �ndings translate to

di¤erential e¤ects on liquidity risk and premium for the jump and di¤usive volatility

components. Our �ndings have implications for the understanding of asset prices,

corporate �nance decisions and policy-makers.
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1 Introduction

Stock liquidity and its variation a¤ect a number of capital market outcomes such as expected

returns (e.g., Amihud and Mendelson, 1986 and 2015; Pastor and Stambaugh, 2003; Acharya

and Pedersen, 2005), capital structure (e.g., Lipson and Mortal, 2009), dividend policy

(Banerjee et al., 2007), and ownership structure (e.g., Bhide, 1993). Given these important

implications, numerous theoretical and empirical studies have investigated the determinants

of liquidity and demonstrated the role stock return volatility plays in driving illiquidity (e.g.,

Stoll, 1978a; Stoll 1978b; Stoll 2000; Amihud and Mendelson, 1989; Bao and Pan, 2013).

However, treating volatility as a uniform measure with a homogeneous impact on liquidity

overlooks the subtle, yet potentially important, structure of total volatility. More recent

developments in the asset pricing literature treat stock returns as a jump-di¤usion process,

that is, as a combination of a continuous Brownian motion component and a discontinuous

jump component. Consequently, this approach implies that the total return variance is an

aggregate outcome of two separate sources that have very di¤erent characteristics. While

volatility patterns generated by a discontinuous jump process arise from infrequent, large,

isolated price changes, the di¤usive volatility arises from smooth, continuous, small price

changes. The overall volatility is merely the integration of these two types of volatility.

Importantly, as discussed in more detail below, each volatility component is expected to

have an opposite relation with liquidity.

The decomposition of total volatility into its jump and di¤usive components is not a mere

"technical" exercise, but is motivated by an important economic reasoning. Each volatility

component is driven by di¤erent economic forces related to the rate of information arrival.

Stocks for which information �ows in a smoother and more continuous way are more likely to

be governed by a di¤usive process. On the other hand, stocks for which information arrives

in a bulky, discontinuous way are more likely to be subject to jumps (e.g., Maheu and Mc-

Curdy, 2004). Therefore, �rms with identical volatility can have very di¤erent composition

of volatility components depending on the rate of information arrival. The rate of informa-

tion arrival for each �rm is determined by its information environment which is governed by

various factors, such as the disclosure regulations that apply to it, its voluntary disclosure

policy, and its level of analysts coverage.1

1In a companion study we con�rm this intuition by showing that issuing management forecasts, increasing

their number, and having greater analyst coverage all reduce jump volatility. Moreover, following Kelly and

Ljungqvist (2012), we use drops in analyst coverage as a result of an exogenous brokerage house closures

to show that a reduction in analyst coverage causally increases jump volatility. We show that the e¤ects

of information environment on jump volatility that we document remain after controlling for information
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Relating the �rm�s information environment to capital market outcomes has been a central

theme in the literature that examines the role of information in capital markets. Numerous

studies in accounting and �nance emphasized its importance to liquidity and liquidity driven

outcomes (e.g., Kelly and Ljungqvist, 2012; Balakrishnan, Billings, Kelly, and Ljungqvist,

2014). However, the information environment can give rise to multiple channels that shape

liquidity, where the existing literature has so far focused on the channels of information

asymmetry and total volatility.

We emphasize a new unexplored channel through which the information environment can

shape liquidity and liquidity driven expected returns. We highlight that the information

environment also works through the structure of volatility to shape liquidity and liquidity

driven outcomes, independently of the already explored channels of information asymmetry

and total volatility. The information environment determines the pace at which information

arrives to the market and, consequently, a¤ects the relative dominance of the jump versus

the di¤usive component of volatility. Hence, as we argue in this paper, since each volatility

component impacts liquidity di¤erently, �rms with di¤erent information environments are

likely to have di¤erent levels of liquidity. That is, even in the absence of any di¤erences

in information asymmetry or total volatility across �rms, di¤erences in their information

environments can still a¤ect liquidity di¤erently through their e¤ect on the structure of

volatility.2 Moreover, this channel implies that di¤erences in information environments create

di¤erences in liquidity even in the absence of any information asymmetry at all.

The literature on jumps has highlighted two facts that lead to di¤erential predictions for each

volatility component on liquidity. These facts are directly linked to the theory of liquidity,

which emphasizes the risks market makers face in determining liquidity and particularly

inventory risk. The �rst fact is that jumps in prices are di¢ cult to hedge, unlike di¤usive

changes (e.g., Garleanu et al., 2009). Market-makers bear the risk of price changes to their

stock inventories, which they must maintain. Therefore, bid- ask spreads are set to compen-

sate them for bearing this inventory risk (e.g., Stoll 1978a; Amihud and Mendelson, 1980; Ho

and Stoll, 1981; Ho and Stoll, 1983). In a di¤usive environment market-makers can control

their potential losses, update their inventory portfolios, and �x "stop-loss" rules in a more

�exible and gradual manner compared to a trading environment that exhibits infrequent

asymmetry. The results of the companion study are replicated in the sample of the current study and

provided in Appendix A, Panels A and B.
2In this study we do not aim to empirically establish a causal link between information environment, jump

volatility, liquidity and liquidity risk. We take the more modest goal of being the �rst to document these

associations. Any use of causal terms throughout the paper is motivated only by the theoretical arguments

stated in the introduction and should not be related to in the strict econometric sense.
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dramatic price changes. That is, jumps impose a more restrictive set of risk management

tools and stopping rules compared to di¤usive price changes.3

Similarly, to reduce inventory risk, market-makers often hedge their inventories with cor-

related instruments, such as options and other correlated stocks or ETFs. Therefore, it is

mainly the non-hedgeable portion of their inventory that drives their compensation in the

form of bid-ask spreads (e.g., Benston and Hagerman 1974; Ho and Stoll, 1983; Froot and

Stein 1998; Naik and Yadav, 2003a; Naik and Yadav, 2003b). Jump risk, as a discontinuous

price change, cannot be easily hedged away, as dynamic replicating strategies become in-

feasible under incomplete markets (e.g., Garleanu et al., 2009; Jameson and Wilhelm, 1992;

Gromb and Vayanos, 2002; Chen et al., 2014). Therefore, as the non-hedgeable portion of

total volatility, it is the jump-driven component that market-makers are likely to demand

compensation for.

The second fact is that di¤usive volatility is associated with increased trading, while jump

volatility is not (e.g., Giot et al., 2010). Higher turnover rates reduce market-makers� in-

ventory costs as they can match the order �ow much more easily and consequently increase

liquidity (E.g., Tinic and West, 1972; Stoll, 1978a). This line of reasoning entails a negative

association between di¤usive volatility and illiquidity through turnover.

Taken together, these reasons suggest a positive relation between jump volatility and illiq-

uidity, while a negative one is expected between di¤usive volatility and illiquidity.4

To address these predictions, we follow standard methodologies implemented and validated

by Ait-Sahalia (2004) and others to �t a log-normal jump-di¤usion process to all stocks

listed on the NYSE and NASDAQ from 2002-2011. We estimate the parameters of the

jump and di¤usive processes, measure total return variance, and disentangle the respective

contribution of the jump and di¤usive volatility components to total variance. As Ait-

Sahalia (2004) points out, this methodology can perfectly disentangle the di¤usive and jump

components. Then, using Fama-MacBeth regressions we test for the potential impact each

class of volatility has on bid-ask spreads.5

3See Longsta¤ (1995, 2014), who models the implications of a similar aspect to illiquidity.
4Prior literature emphasized that crash risk and jump risk are inherently di¤erent theoretical constructs.

Our reasonings focus on additional di¤erences between jump risk and crash risk in a liquidity setting. Market

makers�inability to successfully hedge or risk-manage their inventory exposes them to risks of price changes

in both directions, as their inventory is long and short, and not just downside risk. Also, these risks exist for

price changes that are not extremely dramatic as in "crashes", yet are still discontinuous jumps. Nevertheless,

in Section 5.3 we validate empirically that crash risk has little e¤ect on our results.
5Inferences throughout this paper remained qualitatively the same when we used the Amihud (2004)

illiquidity measure instead of bid-ask spreads.
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We �nd that the positive relation between volatility and bid-ask spreads is exclusively driven

by the jump component, as we �nd a strong positive relation between the jump component

and bid-ask spreads. In contrast, we show that the di¤usive component is negatively associ-

ated with bid-ask spreads. Supporting our theory we also show that the negative association

between di¤usive volatility and illiquidity is driven by the relation between di¤usive volatility

and turnover. These results are independent of any information asymmetry e¤ects as they

are maintained in all levels of information asymmetry and remain robust to the inclusion of a

proxy for information asymmetry as a control variable. Gauging the economic magnitude of

their e¤ects, an increase of one standard deviation in the jump-driven volatility component

increases bid-ask spreads by approximately 30 basis points, whereas an equivalent increase

in the di¤usive volatility component decreases bid-ask spreads by approximately 10 basis

points. Finally, we show that our results are unlikely to be driven by reverse causality. Since

our �ndings are maintained at all levels of turnover, it is unlikely that merely thin trading

fully drives our �ndings.

One possible implication of the di¤erential results that each liquidity component has on

liquidity, is that it may also carry over to liquidity risk and liquidity risk premiums. A number

of studies (e.g., Pastor and Stambaugh, 2003; Sadka, 2006) have shown that liquidity risk

is priced. These studies show how stock liquidity is sensitive to aggregate market liquidity

and market performance. Therefore, investors demand higher risk premiums for stocks that

su¤er from greater illiquidity in times of stress, times in which they also exhibit large losses in

wealth. In the context of our analysis, since the jump-volatility component is the dominant

driver behind illiquidity, it is possible it would also be the main driver determining liquidity

risk and liquidity risk premiums.

We �nd that the jump volatility component has a positive and statistically signi�cant e¤ect

for various measures of liquidity risk. On the other hand, the di¤usive component has

a negative e¤ect on liquidity risk. That is, only jump volatility increases liquidity risk

while di¤usive volatility does not. Furthermore, following the methodology of Pastor and

Stambaugh (2003), we show that only the jump volatility component increases the priced

liquidity risk.

Our study contributes to several streams of literature. First, our study contributes to the

understanding of the economic forces behind illiquidity. Although prior literature emphasized

the importance of information environment to liquidity (e.g., Kelly and Ljungqvist, 2012;

Balakrishnan et al., 2014; Amir and Levi, 2016), we are the �rst to document its e¤ect

through the structure of volatility. Relatedly, our �ndings suggest that �rms can improve

their liquidity and cost of capital if they are able to enhance their information environment
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in a way that reduces jump volatility.6 Second, our study contributes to the literature that

studies the determinants of liquidity, particularly that which documents the relation between

volatility and liquidity (Stoll, 1978a; Stoll 1978b; Stoll 2000; Amihud and Mendelson, 1989).

Our study enhances this literature by being the �rst to document that the structure of

volatility matters for illiquidity in addition to raw levels of volatility. Third, our study

contributes to the literature that studies the consequences of jumps to a variety of �nancial

variables. This literature documented that jump and di¤usion processes have very di¤erent

e¤ects on credit risk (e.g., Zhou 2001; Cremers, Driessen and Maenhout 2008), on market

beta (e.g., Todorov and Bollerslev 2010; Cremers, Halling and Weinbaum 2015; Bollerslev,

Li, and Todorov 2016), and on stock option pricing (e.g., Du¢ e, Pan and Singleton 2000;

Pan 2002; Garleanu, Pederson and Poteshman 2009). Our study adds to this literature by

providing evidence that the jump and di¤usive components of volatility have very di¤erent

e¤ects on liquidity. Fourth, our study contributes to the literature on liquidity risk (e.g.,

Pastor and Stambaugh, 2003) by showing that the jump and di¤usive e¤ects on liquidity

also carry over to liquidity risk and premiums.

Moreover, our �ndings also have regulatory implications to security markets. Our results

show that implementing accounting policies that encourage more continuous information dis-

closure may help increase liquidity. These considerations are relevant to reforms currently

being implemented to the regulatory environment in the EU. The European Commission

recently removed the obligation to publish interim management statements and announced

its intention to abolish quarterly �nancial reports for publicly traded companies, steps that

might have important consequences to liquidity. More generally policies that increase the

continuous stream of information to the markets (e.g, enhanced media coverage, social me-

dia discussions) and price informativeness are likely to improve the di¤usion component of

volatility and improve liquidity.

The remainder of this paper is organized as follows. In the next section we describe our

methodology and empirical approach followed by our data sources and descriptive statistics.

Sections 5 describes our results and discusses additional robustness tests. Implications to

liquidity risk and premium are addressed in Section 6 and Section 7 concludes.

6This yields a change in equilibrium as there are likely signi�cant costs for enhancing the information

environment.
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2 Methodology

2.1 Model Description and Calibration

In our analysis, we follow a standard framework for modeling jump-di¤usion processes and

apply estimation procedures that were used, validated and empirically tested in numerous

studies (e.g., Ait-Sahalia, 2004; Yu, 2007).7 Following Merton (1976), we assume a contin-

uous trading market for a stock with price St at time t, in which there are three sources

of uncertainty: a standard Brownian motion Wt, an independent Poisson process of jump

events Nt with intensity �, and a random jump size Zt which is distributed lognormally

with mean � and variance 
2. The stock return dynamics are described by the following

stochastic di¤erential equation:

dSt
St

= (�� � � �) dt+ � � dWt + dJt (1)

where � and � are constants, � � E (Zt � 1) is the expected relative jump of St, and Jt �
(Zt � 1) � Nt denotes the compound Poisson process.8 Following Merton (1976) and Navas
(2003), the di¤usive and jump components of total return variance can be expressed in terms

of the respective process parameters as,

V d = �2t (2)

V j = �
�
�2 + 
2

�
t

which allow for easily calculating the values of the variance components. The total return

variance is just the summation of these two components,

V = V d + V j. (3)

Applying ML methodologies, we calibrate the model on historical data for stock returns and

obtain a vector of parameter estimates �ti =
�
�ti; �

t
i; �

t
i; �

t
i; 


t
i

�
for each stock i estimated over

7The estimation procedures for jump-di¤usion processes are standard and can be found, for example, in

Rama and Tankov (2003) and Rüschendorf and Woerner (2002). Furthermore, Ait-Sahalia (2004) validated

that such maximum likelihood methods can perfectly identify the di¤usive and jump components, particularly

in the context of the framework we follow here, Merton (1976).
8We follow vast prior literature and do not model volatility as a stochastic process as some studies

do. Although stochastic volatility makes the model more �realistic� it adds unnecessary complexity at the

expense of tractability in the context of the current study. Moreover, simulation analysis reveals that the

correlation between our estimated jump and di¤usion parameters in a model with stochastic volatility to

a model without stochastic volatility is 0.9 and therefore suggests that there is very little bene�t for the

additional complexity.
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period t. Based on �ti, we then calculate V
d
i;t and V

j
i;t, that is, the respective components

of the di¤usive and jump variance components out of total variance.9 For a more detailed

description of our framework, estimation procedure and their references see Appendix B.

2.2 Empirical Analysis

We estimate Fama-MacBeth regressions to formally test for di¤erent in�uences each type of

variance has on liquidity. We �rst con�rm that indeed total volatility has a positive e¤ect

on bid-ask spreads in our sample, as previous studies have shown. Therefore we run the

following cross-section regression year-by-year

Liqi;t+1 = �0 + �1Vi;t + �2 ln(size)i;t + "i;t (4)

where the dependent variable Liqi;t+1 denotes the relative bid-ask spread (in percent) for

stock i in the following year t+1.10 The explanatory variables on the right-hand side include

total variance Vi;t, the log of the market capitalization ln(size)i;t, and an error term "i;t, all

measured for stock i in year t (January 1 to December 31). This cross-section regression

is estimated year-by-year, and then time-series averages are calculated for all coe¢ cients,

following the Fama-MacBeth method. Therefore this procedure yields a vector of estimates

� =
�
�0; :::; �1+J

�
that characterizes the variables�e¤ect on liquidity.11

In the next step, we explicitly include in the model the decomposition of total variance into

its jump and di¤usion-driven components. Therefore the new speci�cation is

Liqi;t+1 = �0 + �1V
d
i;t + �2V

j
i;t + �2 ln(size)i;t + "i;t (5)

where the explanatory variables V d
i;t and V

j
i;t, the di¤usion- and jump-driven variance com-

ponents, respectively, replace the total variance Vi;t in Equation (4). Both V d
i;t and V j

i;t

9An alternative valid way to estimate jump parameters is to use option prices (e.g., Yan, 2011; Cremers,

Halling and Weinbaum, 2015). However, many stocks do not have available options for trade. Moreover,

trading and quotes are very "thin" and illiquid for other stock options. Therefore, to gain a better coverage

of the market, and particularly to study liquidity and liquidity risk implications, we chose our methodology.
10In our speci�cation we test for lagged e¤ects since for any decision made in year t+1 the only information

available is from year t. However, in unreported results we repeated all our regressions using contemporaneous

variables instead of lagged ones and �nd the same e¤ects.
11The fact that market-makers face high-frequency intra-day inventory risk should not be confused with

our use of annual variables. These variables represent �rm characteristics that represent jump and di¤usive

risks, not realized jumps or price changes. They represent the likelihood of jumps and di¤usive price changes

upon which market-makers base their approach to setting bid-ask spreads. As mentioned earlier, these

characteristics are indeed estimated using higher frequency data (daily).
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are obtained from the ML estimation. All other variables in the new speci�cation remain

unchanged.

3 Data

We obtain fromCRSP daily stock prices, volume, shares outstanding, and market-capitalization

for all stocks listed on the NYSE and NASDAQ between 2002�2011. We start our sample

in 2002, as this is the last year of the minimum tick rules, which imposed regulatory con-

straints on minimum bid-ask spreads and price changes. For these stocks and years, we also

obtain TAQ historical data for bid-ask quotes and calculate their average annual percentage

spreads. We calculate average annual turnover rates using volume and shares outstanding

data for each stock.

In our �nal sample, we eliminate all �rm-years with less than 245 observations per year,

and those with bid-ask spreads (percent) that were larger than 50% or negative. We also

eliminate securities that did not have data on market capitalization for year t in the CRSP

database; this excludes non-stock securities listed on exchanges. We end up with 9,088

di¤erent stocks between 2002�2011, and 61,299 stock-year observations.

We calibrate the return-process model speci�ed in Equation (1) for daily returns and obtain

for each stock i and year t a vector of parameters �ti =
�
�ti; �

t
i; �

t
i; �

t
i; 


t
i

�
that characterizes

the jump-di¤usion return process. To gauge the consistency of our calibration with the

realized historical data, we compare our model-implied daily-return variance (V t
i as speci�ed

in Equation (3)) with the realized daily return-variance, measured over the corresponding

year t. We denote the realized variance by eV t
i . For more than 90% of our sample, the ratio

eV ti
V ti

falls between 0.8 and 1.2, implying that there was a good �t between our predicted variance

and the actual variance, i.e., no more than 20% deviation.

Finalizing our sample, we eliminate all estimates with extreme values, that is, the highest

and lowest 1% for all parameters of the vector �ti. We also eliminate all observations that do

not satisfy the condition
eV ti
V ti
2 [0:8; 1:2].12 After applying these additional �lters, our �nal

sample contains 44,171 stock-years observations. The average jump size � in our sample

is 3% (in absolute values), and the average jump frequency � is 16%. These estimates

are comparable to estimates obtained by prior studies (e.g., Todorov and Bollerslev, 2010;

Tauchen and Zhou, 2011).

12This �nal elimination does not alter the inferences reported in this paper.
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4 Descriptive Statistics

Panel A of Table (1) reports overall average and quintile values for total volatility, jump

volatility, and di¤usive volatility. Average total return volatility across all years and stocks

is around 29%. Average values for the di¤usive and jump components are of the same order

of magnitude, 18% and 20%, respectively, and their medians are around 17%.13 Their similar

orders of magnitude are also maintained throughout their quintile distribution.

Panel B reports quintile breakdown of average bid-ask spreads across our sample. They are

around 1.8% on average with a standard deviation of 2.5%. The median bid-ask spread is

around 85 basis points.

5 Results

5.1 Univariate Analysis - Sorted Portfolios

As a �rst step we provide a univariate analysis in a portfolio framework. We explore the

impact each volatility component has on illiquidity while controlling for the levels of the other

volatility component. In Table (2) Panel A, we sort all stocks in our sample for each year

t on their di¤usion-driven variance portion V d and form �ve equally weighted portfolios.

The �rst quintile portfolio contains stocks with the lowest di¤usive volatility component

for a given year, and the �fth quintile contains stocks with the highest di¤usive volatility

component. We denote these portfolios by d = 1; :::; 5. Then, for each year t, we further

sort each of the �ve portfolios d = 1; :::; 5 on their jump-driven variance component V j to

form additional �ve equally weighted subportfolios per portfolio rank d. The �rst quintile

subportfolio contains stocks with the lowest V j and the �fth quintile subportfolio contains

stocks with the highest V j. This way, we create for each year t and di¤usive portfolio rank

d �ve subgroups of stocks ranked from 1-5 sorted on V j. We denote these subportfolios by

dj = 1; :::; 5. We then calculate average bid-ask spreads for each subport�lo in year t+ 1.

As seen in Panel A, going up the ranking in the jump volatility component while holding

di¤usive volatility levels �xed has a strong positive on bid-ask spreads. This holds true for

all levels of di¤usive volatility. The di¤erence in means for bid-ask spreads between high-

and low-jump volatility portfolios are all positive and range from 164 to 278 basis point, with

13The jump and di¤usive volatility components do not sum up to total volatility for two reasons. First, the

equality holds true for variances and not for standard deviations. Additionally, for total standard variations

of returns we use realized standard deviations, while for the di¤usive and jump components, we use model

implied volatilities. These values are close but not identical.
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t-statistics ranging from 18:94 to 27:57 indicating high statistical signi�cance. We provide a

graphic presentation of these results in Figure 1 Panel A.

In Panel B of Table (2) we repeat the same procedure the other way around. That is, we

sort all stocks on the jump variance component V j and then further sort each jump portfolio

j = 1; :::; 5 on the di¤usive variance component. This way, we create for each year t and

jump portfolio rank j �ve subportfolios ranked from 1�5 sorted on V d. We denote these

subportfolios by jd = 1; :::; 5. We then calculate the average bid-ask spread for each portfolio

(in year t+ 1).

A very di¤erent picture arises for this analysis. As seen in Panel B, this time bid-ask spreads

decrease when going up the ranking in the di¤usive volatility component while controlling

for jump volatility levels. Overall the di¤erence in average bid-ask spreads between high

di¤usive and low di¤usive volatility portfolios are all negative and around �65 basis points,
with t-statistics ranging from �7:76 to �13:10. The only exception is for the highest jump
portfolio that exhibits a very small and insigni�cant di¤erence in bid-ask spreads between

its high and low di¤usive volatility portfolios. We provide a graphic presentation of these

results in Figure 1 Panel B.

5.2 Fama-MacBeth Regressions: Total Volatility and Illiquidity

In the �rst step, we replicate the results from previous studies to con�rm that total volatil-

ity has a positive impact on illiquidity in our sample. The �rst column in Table (3) reports

Fama-MacBeth regression results based on the model speci�ed in Equation (4). Total vari-

ance indeed has a positive and signi�cant impact on bid-ask spreads, with a coe¢ cient

estimate of 2.19 and t-statistic of 5.52. Market capitalization also has a negative and sta-

tistically signi�cant e¤ect. These �ndings are consistent with prior studies that found a

positive relation between volatility and illiquidity costs (e.g., Stoll, 1978b, 2000; Pastor and

Stambaugh, 2003).

5.3 Fama-MacBeth Regressions: Volatility Components and Illiq-
uidity

In the next step, we decompose total volatility into its jump and di¤usive driven compo-

nents. The second column of Table (3) reports Fama-MacBeth regression results for the

regression speci�ed in Equation (5), which explicitly models separate e¤ects for each com-

ponent. The estimated e¤ects of jump and di¤usive volatilities are very di¤erent. The
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jump-driven variance coe¢ cient is 4:25 compared to �1:87 for the di¤usive one. Both co-
e¢ cients are statistically signi�cant with t-statistics of 7:84 and �4:14, respectively. This
implies that the two volatility components a¤ect illiquidity very di¤erently: the jump com-

ponent positively and the di¤usive negatively. These coe¢ cients imply that an increase of

one standard deviation in the jump-driven volatility component increases bid-ask spreads

by approximately 40 basis points, whereas an equivalent increase in the di¤usive volatility

component decreases bid-ask spreads by approximately 10 basis points. Firm size maintains

a very similar e¤ect compared to those obtained for total volatility. Finally, Fama-MacBeth

average R
2
is 48%, indicating a strong explanatory power for our model.

An alternative yet equivalent way to state our results is that controlling for total volatility,

the jump volatility component has a strong positive e¤ect on illiquidity whereas the di¤usive

component has a negative e¤ect. Although this analysis is exactly equivalent to the one

carried out thus far, for convenience and ease of presentation reasons, we report estimation

results for the e¤ects jump and di¤usive volatility have on illiquidity when controlling for

total volatility. These results are presented in the last two columns of Table (3), using Models

A and B respectively. The coe¢ cient estimates in Model A and B match their implied values

from the coe¢ cient estimates in the original speci�cation.14

In summary, our results indicate that the structure of volatility signi�cantly matters for

bid-ask spreads beyond raw levels of volatility. While the jump-driven volatility component

drives the positive relation between volatility and illiquidity, the di¤usive component drives

the relation in the opposite direction.

5.4 Information Asymmetry Prediction

In the previous sections we showed that the association between volatility and liquidity is

driven almost exclusively by the jump component. Alternatively stated, our results show

that the jump source of volatility is associated with liquidity, controlling for total volatil-

ity. As discussed in the introduction, because the structure of volatility is governed by the

information environment of the �rm, this result provides a link between the information en-

vironment and liquidity. Nevertheless, prior literature has already established a link between

the information environment of the �rm and liquidity through information asymmetry. Our

predictions suggest that the information environment is likely to create observable di¤erences

in liquidity even for �rms with identical information asymmetry (or even in the absence of

information asymmetry).

14To see this clearly, de�ne the bid-ask spread as y, jump volatility as x1, di¤usive volatility as x2, and

total volatility as x3, where x3 = x1+x2. If y = �x1+�x2 then y = (���)x1+�x3 and y = (���)x2+�x3.
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We test this predication in two di¤erent ways. In the �rst way, we simply add a control

variable to Equation (5) to account for levels information asymmetry. In the second way,

we sort our sample into �ve quintiles of information asymmetry and re-estimate Equation

(5) in each quintile. Our empirical proxy for information asymmetry is the probability of

informed trade (PIN). PIN is based on the imbalance between buy and sell orders among

investors and is therefore technically unrelated to bid-ask spread. The PIN measures are

obtained from Stephen Brown�s website and are based on Brown and Hillegeist (2007). In

their paper they compute PINs using the Venter and De Jong (2006) model to extend the

Easley et al. (1997) model.

The results from these tests are presented in Table (4). The �rst column presents estimation

results for Equation (5) when controlling for information asymmetry. The results reveal that

although PIN is, as expected, positively associated with bid-ask spreads, all our other results

remain qualitatively unchanged (as in Table 3). Columns 2-6 present estimation results for

Equation (5) for each information asymmetry quintile from low to high separately. The

coe¢ cient for jump volatility is positive with high t-statistics in all quintiles, while the

coe¢ cient for di¤usive volatility is mostly negative. Taken together, these results suggest

that the relation between each source of volatility and liquidity remains unaltered even for

�rms with similar levels of information asymmetry.15

5.5 Turnover Prediction

Higher turnover rates reduce market-makers�inventory costs as they can match the order

�ow much more easily and consequently increase liquidity (E.g., Tinic and West, 1972;

Stoll, 1978a). As discussed earlier in the introduction, di¤usive volatility is associated with

increased trading, while jump volatility is not (e.g., Giot et al., 2010). This fact entails

that the negative association between di¤usive volatility and illiquidity is mediated through

the e¤ect turnover has on illiquidity. This gives rise to a prediction that di¤usive volatility

should have no e¤ect on illiquidity after controlling for turnover e¤ects.

To test this prediction we repeat the regressions speci�ed in Equations (4)-(5) this time

explicitly accounting for turnover e¤ects by including a turnover variable in these regressions.

Table (5) reports estimation results for these regressions. The �rst column displays the results

15These tests do not suggest that the structure of volatility does not a¤ect liquidity through information

asymmetry as well. Nor do these tests suggest that the information environment does not a¤ect liquidity

through information asymmetry. These result simply suggest that the information environment can a¤ect

liquidity through its e¤ect on volatility structure independently of the e¤ects the information environment

has on liquidity through information asymmetry.
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for the e¤ect total variance has on bid-ask spreads. Under this speci�cation, the coe¢ cient

estimate for total variance increases to 3.44 with a t-statistic of 6.02 (compared to 2.19 and

5.52 in Table 3, respectively). The turnover coe¢ cient is negative, as expected, consistent

with prior studies that argue that higher trading activity decreases illiquidity. The coe¢ cient

for total volatility becomes more positive since here we explicitly account for the negative

impact turnover has on illiquidity, capturing only the pure relation between total volatility

and illiquidity and ignoring its indirect negative e¤ect through turnover.

The second column in Table (5) reports the results for separating between the two volatility

components. Under this speci�cation the jump-driven variance coe¢ cient increases to 5.15,

while the di¤usion-driven variance coe¢ cient dramatically drops to 0.02 (compared to 4:25

and �1:87 in Table 3, respectively). Moreover, the t-statistic for the jump-component co-
e¢ cient remains high (8.30) but for the di¤usive component it drops to 0.04 (compared to

7:84 and �4:14 in Table 3, respectively). The turnover coe¢ cient is negative, similar to that
obtained for total volatility. These results con�rm that the entire relation between di¤usive

volatility and illiquidity is indirect and it is completely driven by turnover, as predicted.

In contrast, the relation between jump volatility and illiquidity is direct and unrelated to

increased trading activity.

5.6 Robustness - Testing for Reverse Causality

By de�nition, illiquid assets are subject to greater jump risk as thin trading means infrequent

transactions where each transaction is more likely to generate large price impacts. Put

di¤erently, �technical jumps�can be generated through prices that bounce between bid and

ask quotes for wide bid-ask spreads.

To mitigate the concern that this reverse causality drives our results, we test for the e¤ect

of increasing the jump volatility component while controlling for turnover rates. By con-

struction, stocks with high turnover rates do not exhibit thin trading. Therefore, we �rst

sort all stocks in each year on turnover rates and form �ve di¤erent portfolios, from low to

high. Then, for each portfolio level, we repeat our second method of double sorting on total

variance and jump-driven variance and then averaging across all years and all total volatility

ranks k. This process is carried out for each of the �ve turnover portfolios. Therefore we

have a �ve-by-�ve portfolio ranking sorted on turnover level and jump-driven volatility level.

We report the results in Table (6).

Our results show that the dominance of the jump volatility component is maintained in all

portfolios: higher jump-driven portfolios always exhibit higher average bid-ask spreads, for
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all �ve turnover portfolios. Formal t-tests for the di¤erence between high and low jump-

portfolios all reject the null hypothesis that the corresponding average bid-ask spreads are

identical per turnover portfolio, with t-statistics ranging from 8.26�10.76. This suggests that

jump volatility plays an important role even for stocks that do not su¤er from thin trading.

5.7 Robustness - Crash Risk

We also veri�ed that the dominant e¤ect that the jump component has on illiquidity is not

driven by crash risk. In unreported results we �nd that the dominance of the jump compo-

nents is qualitatively the same for positive and negative average jump sizes (�). Similarly,

when including a dummy variable for negative jumps to control for crash risk, its coe¢ -

cient estimate is highly nonsigni�cant. This result is expected and consistent with the way

market-makers operate, as they hold non-zero stock inventories in both directions, long and

short, exposing them to risks of prices changes in both directions, positive or negative.

6 Volatility Components and Liquidity Risk

A number of studies have shown that liquidity levels are risky (e.g., Pastor and Stambaugh,

2003; Sadka, 2006).16 Given our �ndings about the di¤erential e¤ects jump and di¤usive

volatilities have on liquidity, to the extent that some of this relation is driven by systematic

factors, it is possible that these components would play di¤erent roles in determining liquidity

risk.

Acharya and Pedersen (2005) use a liquidity-adjusted CAPM model to provide a uni�ed

framework that accounts for the various e¤ects liquidity risk has on asset prices. In their

model, the CAPM �beta� is decomposed into the standard market beta and additional

three liquidity-related betas, representing three di¤erent channels through which liquidity

risk operates: (1) the sensitivity of the stock�s illiquidity to the market�s illiquidity; (2)

the sensitivity of the stock�s return to the market�s illiquidity; and (3) the sensitivity of

the stock�s illiquidity to the market�s return. Investors demand higher risk premiums for

stocks that su¤er more in times of stress, times in which they also exhibit large losses in

wealth. That is, investors should worry about a security�s performance and tradability both

in market downturns and when liquidity �dries up�.

While Acharya and Pedersen�s (2005) model gives clear predictions as to the e¤ects these

three sensitivities have on stocks�expected returns, they recognize that they do not explain

16Amihud and Mendelson (2015) review this literature, see additional references therein.
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why di¤erent stocks possess those di¤erent sensitivity characteristics. Rather, they merely

estimate the sensitivities and treat them as given. Our framework allows for a deeper insight

into the heterogeneity of these characteristics, which complements their analysis.

The relation between jump volatility and two of the liquidity risk channels described above

is straightforward. The �rst and third channels describe the comovement in individual stock

illiquidity with market illiquidity and market returns, respectively, over time. Since we

showed that the jump-volatility component is the dominant driver behind illiquidity, it is

possible that it would also be the main driver determining its commonality with the other

two variables.

The second channel, which describes the comovement between returns and market liquidity,

might also be driven by jump risk. Firms with higher jump risk are more likely to experience

large losses (i.e., a negative jump) when markets "dry up" for lack of funding, thus increasing

the commonality between returns and market liquidity. Furthermore, trading costs for indi-

vidual stocks might also increase in an illiquid environment and thus put downward pressure

on prices. Since liquidity costs are driven by jump risk, it is possible that these �rms with

higher jump risk that are more likely to experience price declines in illiquid markets.

To test these possibilities we follow Acharya and Pedersen (2005) and construct equivalent

measures for the three liquidity-related betas. If indeed jump-risk is the dominant driver

behind illiquidity, it is possible that higher values for all three liquidity-related betas are

correlated with higher measures for jump-risk. In contrast, di¤usive-risk should be less

correlated with these betas.

Speci�cally, let �1L; �2L and �3L denote the three liquidity related betas, respectively. Fol-

lowing Acharya and Pedersen (2005), we de�ne

�1Li;t = cov
�
Lit; L

M
t

�
�2Li;t = cov

�
rit; L

M
t

�
�3Li;t = cov

�
Lit; r

M
t

�
(6)

where Lit and L
M
t are liquidity measures for stock i and for the aggregate market M . Simi-

larly, rit and r
M
t are stock i returns and market returns, respectively.

To estimate these ��s we used the Sadka (2006) variable-permanent liquidity factor as our

measure for aggregate market liquidity, which is the one associated with information driven

price changes. For individual stock liquidity measures we used the (negative) value of

monthly average TAQ bid-ask spreads per stock.17 All monthly return data and aggre-

17We used the negative values of bid-ask spreads to convert them from a measures of illiquidity (costs) to

a measure of liquidity, to be consistent with the Sadka (2006) framework and liquidity factors.
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gate market return data were obtained from CRSP. As in Acharya and Pedersen (2005) we

expect all three betas to be positive, that is, the higher the beta the larger liquidity risk is.

For each month between 2002-2011 we used a 60-month rolling window to estimate the three

covariances (betas) per stock i as in Equations (6).18 Then, for each beta we ran a Fama-

MacBeth regression on our two measures of jump and di¤usive volatility, V d
i;t and V

j
i;t. That

is,

�ki;t = �+ 
1V
d
i;t + 
2V

j
i;t + 
3 ln(sizei;t) + "i;t (7)

where, k is 1L; 2L or 3L. We also included (the log of) the �rm�s market capitalization as

a control variable. We report our results in Table (7).

As seen in Table (7), the jump volatility component has a positive and statistically signi�cant

e¤ect for all three betas. On the other hand the di¤usive component has a (non-signi�cant)

negative e¤ect. That is, only jump volatility increases liquidity risk while di¤usive volatility

does not.

Furthermore, to enhance our analysis we followed Pastor and Stambaugh (2003) to take a

deeper look into the factors determining �2Li;t , which measures the relation between returns

and market liquidity. They �rst obtained �2L using a richer speci�cation based on a three

factor Fama-French (FF) model. Speci�cally,

ri;t = �0i + �Mi MKTt + �Si SMBt + �Hi HML+ �2LLMt + "i;t (8)

where MKTt, SMBt and HMLt are the regular FF factors (market, small minus big, and

high minus low, respectively) and LMt is the aggregate liquidity factor. Therefore, �2L is the

coe¢ cient for the aggregate liquidity factor. They also assumed that �2Li;t has the following

linear form,

�2Li;t =  1;i +  02;iZi;t�1 (9)

where Zi;t�1is a vector of characteristic variables that a¤ect �2Li;t . Therefore, Equation (8)
can be rephrased as,

ri;t = �0i + �Mi MKTt + �Si SMBt + �Hi HML+
�
 1;i +  02;iZi;t�1

�
LMt + "i;t ;

from which we can de�ne the following residual,

ei;t = ri;t � �Mi MKTt � �Si SMBt � �Hi HML

18In practice, instead of using simple covariances we used OLS regressions to estimate these three ��s,

where each � was obtained as the estimated coe¢ cient.
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that can be expressed as,

ei;t =  0 +  1L
M
t +  02Zi;t�1LMt + vi;t : (10)

Namely, ei;t is the share of returns that remains unexplained by all regular factors and is

a¤ected only by liquidity.

Estimating  02 allows for gauging the contribution each characteristic in Z has on liquidity
risk, �2L, as de�ned in Equation (9). In the context of our analysis, we used jump volatility

and di¤usive volatility as two characteristics in Z and our goal is to measure how each

characteristic a¤ects �2Li;t .

We report our regression results for Equation (10) in Table (8), where estimates for  1 and

 02 are reported separately. Focusing on the vector of coe¢ cients  
0
2 it can be seen that

jump and di¤usive volatilities have very di¤erent e¤ects. The interactions between the jump

component and both Sadka (2006) liquidity factors have positive and statistically signi�cant

coe¢ cients. On the other hand, the interactions between the di¤usive component and the

liquidity factors are non-signi�cant. That is, this richer framework for the liquidity measure

also supports the unique role jump volatility plays: given the structure of �2Li;t speci�ed in

Equation (9), only the jump volatility component increases liquidity risk.

In summary, these �ndings provide further support for the dominant role jump volatility

plays in the relation between volatility and liquidity. Not only liquidity levels are driven by

the jump component but liquidity risk as well. We do not �nd a similar signi�cant e¤ect

for the di¤usive component. Finally, this pattern exists in all three channels through which

liquidity risk operates.

7 Conclusions

In our analysis, we delve a deeper look into the di¤erent factors determining the relation

between total volatility and illiquidity. Disentangling total volatility into its di¤usive and

jump components reveals a more complex picture. We �nd that it is jump volatility that

drives the positive relationship, while di¤usive volatility has a negative contribution. These

results are maintained at any level of information asymmetry.

Finally, we also �nd that the di¤erential e¤ects each volatility component has on illiquidity

carry on in the same structural fashion into additional dimensions of illiquidity. That is,

each volatility component maintains its type of impact on liquidity risk and liquidity risk

premiums.
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These �ndings contribute to several di¤erent strands of the academic literature. They further

expand our understanding of the determinants of liquidity, particularly in relation to the

role volatility plays, and of the way �rms�information environment a¤ects capital markets.

Moreover, they enhance our understanding of the mechanisms that drive liquidity risk and

liquidity risk premiums. Finally, they shed light on a set of new consequences that jumps

create, in addition to a number of previously documented ones, such as their consequences

to credit risk, market beta, and stock option pricing.

At the regulatory level, our study provides evidence that implementing accounting policies

that encourage more continuous �ow of information and disclosure may make sense in order

to increase liquidity. Such policies are likely to improve the di¤usive component of volatility,

smooth potential surprises, and thus improve liquidity.

We note that causal terms we used to describe the mechanism through which the volatility

components a¤ect liquidity are purely inspired by the theoretical arguments that motivated

our empirical study. In this study we aimed towards the more modest goal, to be the �rst

documenting associations that are consistent with these theoretical predictions.

Last, we realize that we do not o¤er an explicit theoretical model to gauge the di¤erent e¤ects

that jump and di¤usive volatilities have on liquidity. Nevertheless, the theoretical paradigms

mentioned in the introduction provide the inspiration for our empirical investigation, which

is signi�cant in itself, particularly given the fact that so far no work has been done on the

topic. Therefore, our �ndings provide the motivation for further developments of an explicit

theoretical model, which is left for future research.
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Appendix A: Jumps and the Information Environment

Information proxy Coe¢ cient Info Asymmetry Firm & Year N

(B/A spread) �xed e¤ects

Panel A

Number of analysts -0.042 - Yes 55,558

(-20.23) -

Management forecast (Yes/No) �0.178 - Yes 55,558

(-9.50) -

Number of management forecasts -0.023 - Yes 55,558

(-8.98) -

Drop in analyst coverage due to 0.039 - Yes 55,558

closure of brokerage house (3.93) -

Panel B

Number of analysts -0.029 17.03 Yes 55,558

(-14.18) (51.48)

Management forecast (Yes/No) �0.181 17.62 Yes 55,558

(-9.94) (53.65)

Number of management forecasts -0.023 17.63 Yes 55,558

(-9.53) (53.67)

Drop in analyst coverage due to 0.063 17.68 Yes 55,558

closure of brokerage house (5.35) (53.75)

In this appendix we replicate in our sample period (2002-2011) the results obtained in our

companion study. Panel A of the table above presents regression results for jump volatility

on various proxies for information environment and time and �rm �xed e¤ects, without

controlling for information asymmetry. The number of analysts covering the �rm, the fact
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that management provides guidance, and the number of management guidance by the �rm,

are all negatively associated with the jump component of total volatility (coe¢ cients of

�0:042, �0:178 and �0:023 respectively). t-statistics are reported in parentheses. Similarly,
we use a drop in analyst coverage as a result of brokerage house closure as another proxy

for information environment. Based on a di¤erence-in-di¤erences design with time and �rm

�xed e¤ects we �nd that a drop in coverage casually increases jump volatility in the year of

the change compared to una¤ected years and �rms (coe¢ cient of 0:039).

In Panel B we repeat all our tests this time including another variable, bid-ask spreads, to

control for asymmetric information. All our results remain unaltered even after controlling

for information asymmetry e¤ects.

Taken together, and as suggested by our companion study, these results provide con�rmation

that the information environment determines the composition of volatility.
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Appendix B: Model and Estimation Method

Following Merton (1976), let St denote a stock price at time t on a �ltered probability space

(
; F; (Ft) ; P ), which is assumed to satisfy the following stochastic di¤erential equation:

dSt
St

= (�� � � E (Z � 1)) dt+ �dWt + (Z � 1) dNt,

where � and �2 denote the instantaneous mean and variance of the stock return in the

absence of jumps, and Wt is a Wiener process. Furthermore, Nt is a Poisson process with

intensity � > 0, and Z is the log-normal jump amplitude with lnZ v N(�; 
2) such that

E(Z � 1) = exp(�+ 
2

2
)� 1.

We postulate that Wt,Nt, and Zt are mutually independent. The parameter vector � is

� = (�; �2; �; �; 
2)
0, where � and 
2 represent the mean and variance of the jump size of

stock returns.

Since the Brownian motion and the Poisson process of jump events are independent, the

total return variance can be decomposed into

V � V ar

�
St
S0

�
= V ar (�Wt) + V ar (Jt) , (11)

which is the sum of the di¤usion-related variance and the jump-related variance. We denote

V d � V ar (�Wt)

V j � V ar (Jt)

as the respective variances. Furthermore, following Merton (1976) and Navas (2003), these

variances can be expressed in terms of the respective basic process parameters as

V d = �2t (12)

V j = �
�
�2 + 
2

�
t,

which allow for easily calculating these values based on the parameter vector �.

Following Ait-Sahalia (2004), under the assumptions speci�ed above, the transition density

f� lnS of lnSt can be expressed by

f� lnS(x; �) = (1� � ��t) � f�lnSj�Nt=0(xj�Nt = 0; �) + � ��t � f� lnSj�Nt=1(xj�Nt = 1; �),
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where f� lnSj�Nt=0 and f�lnSj�Nt=1 represent the transition densities of lnSt, conditioning

on �Nt = 0 and �Nt = 1 jumps between two sampling points, respectively, and �t > 0

denotes the time distance between sampling points. Since

P (�Nt = 0) = 1� � ��t+ o(�t)

P (�Nt = 1) = � ��t+ o(�t)

P (�Nt > 0) = o(�t),

additional jumps between two sampling points are neglected. Closed form expressions for

the conditional densities are given by

f� lnSj�N=k(xj�Nt = k; �) =
1p

2 � � � v(k)
� exp

�
�(x�m(k))2

2 � v(k)

�
,

where

m(k) =
�
�� �2=2� � � E(Z � 1)

�
��t+ k � a

v(k) = �2 ��t+ k � 
2,

with k 2 f0; 1g. Based on a sample of n stock returns � ln s1; :::;� ln sn, the resulting
likelihood estimate b� of � is computed numerically as

�̂ = argmax
�

 
nX
i=1

ln f� lnS(� ln si; �)

!
:
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Appendix C: Variable Description

1. � - Constant parameter of the di¤usion process representing the di¤usive drift.

2. � - Constant parameter of the di¤usion process representing the di¤usive volatility.

3. � - Constant parameter of the compound jump process representing the average number

of jumps per annum (year).

4. � - Constant parameter of the compound jump process representing the average jump

size.

5. 
 - Constant parameter of the compound jump process representing the standard

deviation of the jump size �.

6. Bid-Ask Spread (Liqi;t) - Annual average bid-ask spread for �rm i across all intraday

quotes based on available TAQ data.

7. Total Var - Annual total return variance for stock i in year t, Vi;t; see Equation (7).

8. Di¤usive Var - The di¤usive component of annual total return variance for stock i
in year t, V d

i;t; see Equation (8).

9. Jump Var - The jump component of annual total return variance for stock i in year
t, V j

i;t; see Equation (8).

10. Turnover - The average ratio of daily volume to shares-outstanding for �rm i in year

t .

11. ln(size) - The natural log of �rm i�s market capitalization in year t.
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Figure 1 
BID-ASK SPREADS AND VOLATILITY COMPONENTS: SORTED PORTFOLIOS 

This figure is a graphic presentation of Table (2). Panels A and B plot average bid-ask spreads per volatility 
level. Each graph in panel A controls for a jump volatility level, and each graph in Panel B controls for a 
diffusive volatility level. 
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Table 1: DESCRIPTIVE STATISTICS. This table reports descriptive statistics for our basic variables.
Panel A reports average estimates for total, jump, and di¤usive daily standard deviations as de�ned in

Equations (2) and (3). Panel B reports average annual bid-ask spreads. Averages are calculated across

all years and stocks in our sample. For total standard deviations of returns, we used realized standard

deviations, while for the di¤usive and jump components we used model implied volatilities. The number of

observations in our sample is 55,558. See Appendix B for variable description.

Mean S.D. Min :25 Mdn :75 Max

Panel A: Daily Return Volatility (Std)

Total .0292 .0168 .0050 .0169 .0255 .0376 .1129

Di¤usion .0186 .0100 0 .0111 .0170 .0243 .0591

Jump .0203 .0159 0 .0090 .0173 .0286 .1067

Panel B: Liquidity Costs

Bid-Ask Spread .0187 .0252 .0003 .0030 .0085 .0235 .2525
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Table 2: UNIVARIATE ANALYSIS: SORTED PORTFOLIOS. We sorted all stocks per year on
one volatility component and then sorted again on the other component. In Panel A, we �rst sorted on

di¤usive volatility and formed d = 1; :::; 5 portfolios. Then, each di¤usive portfolio d was sorted again

on the jump volatility component, to form additional �ve portfolios. This allows for testing the marginal

e¤ect of increasing total volatility by increasing the jump volatility alone, while controlling for the di¤usive

component. In Panel B, we �rst sorted on jump volatility and then on di¤usive volatility to test the marginal

e¤ect of di¤usive volatility while controlling for jump volatility. Averages in each prtfoilio represent average

bid-ask spreads in period t + 1. We also report the di¤erences in bid-ask spreads between the highest and

lowest portfolios and their t�statistics.

Portfolio Low 2 3 4 High

Panel A: Controlling for Di¤usion

Low Jump .0162 .0085 .0097 .0090 .0115

2 .0149 .0090 .0090 .0099 .0160

3 .0147 .0103 .0103 .0125 .0208

4 .0183 .0157 .0151 .0169 .0284

High Jump .0339 .0266 .0261 .0285 .0393

High-Low .0176 .0181 .0164 .0194 .0278

t-stat 18.94 22.90 20.86 24.80 27.57

Panel B: Controlling for Jumps

Low Di¤usive .0166 .0169 .0204 .0253 .0364

2 .0141 .0106 .0133 .0190 .0270

3 .0086 .0088 .0113 .0166 .0262

4 .0092 .0089 .0102 .0139 .0294

High Di¤usive .0093 .0102 .0139 .0184 .0361

High-Low -.0073 -.0067 -.0065 -.0068 -.0003

t-stat -13.10 -10.95 -8.42 -7.76 -0.20
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Table 3: FAMA MAC-BETH REGRESSION RESULTS: VOLATILITY AND ILLIQUIDITY.
This table reports Fama-MacBeth regression results for total volatility and for the marginal e¤ects each

volatility component have on bid-ask spreads, as speci�ed in Equations (4)-(5). The �rst column corresponds

to Equation (4): Liqi;t+1 = �0 + �1V1;t + �2ln(sizei;t) + �i:t and estimates the e¤ect total volatility has on

bid-ask spreads. The second column corresponds to Equationn (5): Liqi;t+1 = �0 + �1V
d
1;t + �2V

j
1;t +

�3ln(sizei;t)+�i:t and estimates the e¤ect each volatility component has on bid-ask spreads. Model A and B

are additional versions of Equation (5) as discussed in Section 5.3. t�statistics are reported in parentheses,
and *** denotes 1% statistical signi�cance. See Appendix C for variable description.

Variable Total Volatility Volatility Components Model A Model B

Di¤usive-var - -1.8707*** - -6.12***

- (-4.14) - (-9.25)

Jump-var - 4.2548*** 6.12*** -

- (7.84) (9.25) -

Total-var 2.1974*** - -1.87*** 4.25***

(5.52) - (-4.14) (7.84)

ln(size) -0.0082*** -0.0081*** -0.01*** -0.01***

(-10.09) (-9.86) (-9.86) (-9.86)

Constant 0.1209*** 0.1196*** 0.11*** 0.11***

(10.90) (10.70) (10.70) (10.70)

Average-R
2

48% 48% 48% 48%

Observations 44,171 44,171 44,171 44,171
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Table 4: INFORMATION ASYMMETRY PREDICTION. This table reports estimation results
for Equation (5) when controlling for asymmetric information. Our proxy for information asymmetry is

the probability of informed trade (PIN). PIN is based on the imbalance between buy and sell orders among

investors. These measures are obtained from Stephen Brown�s website and are based on Brown and Hillegeist

(2007). The results in the �rst column are based on Liqi;t+1 = �0 + �1V
d
1;t + �2V

j
1;t + �3ln(sizei;t) +

�4PINi;t + �i:t, when regressing this model on all �rm years in our data. Columns 2-6 report estimation

results for Liqi;t+1 = �0 + �1V
d
1;t + �2V

j
1;t + �3ln(sizei;t) + �i:t applied to each information asymmetry

quintile separately from low to high. t�statistics are reported in parentheses, and *** denotes 1% statistical

signi�cance. For further details see Section 5.4.

PIN Rank All Low 2 3 4 High

Jump var 4.367*** 6.646*** 3.386*** 2.323*** 3.044*** 6.303***

(5.91) (4.16) (4.42) (5.58) (7.11) (5.96)

Di¤usive var -0.748 0.593 -1.005 -0.635 -1.286*** 3.867

(-0.80) (0.58) (-1.22) (-0.69) (-2.42) (1.71)

ln(size) -0.007*** -0.007*** -0.005*** -0.004*** -0.004*** -0.010***

(-10.91) (-12.65) (-12.75) (-10.06) (-13.79) (-8.58)

PIN 0.023*** - - - - -

(10.35) - - - - -

Constant 0.092*** 0.112*** 0.075*** 0.071*** 0.070*** 0.149***

(10.65) (12.23) (12.73) (10.43) (14.41) (8.93)

Average-R
2

0.52 0.52 0.47 0.45 0.46 0.49

Observations 38,355 7,675 7,672 7,670 7,672 7,666
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Table 5: TURNOVER PREDICTION. This table reports Fama-MacBeth regression results for total
volatility and for the marginal e¤ects each volatility component have on bid-ask spreads, this time controlling

for turnover e¤ects. That is, the �rst column corresponds to Equation (4): Liqi;t+1 = �0 + �1V1;t +

�2ln(sizei;t) + �3turnoveri;t + �i:t and estimates the e¤ect total volatility has on bid-ask spreads after

controlling for turnover e¤ects. The second column corresponds to Equationn (5): Liqi;t+1 = �0 + �1V
d
1;t +

�2V
j
1;t+�3ln(sizei;t)+�4turnoveri;t+ �i:t and estimates the e¤ect each volatility component has on bid-ask

spreads after controlling for turnover. t�statistics are reported in parentheses, and *** denotes 1% statistical
signi�cance. See Appendix C for variable description.

Variable Total Volatility Volatility Components

Di¤usive-var - 0.0225

- (0.04)

Jump-var - 5.1547***

- (8.30)

Total-var 3.4452*** -

(6.02) -

ln(size) -0.0076*** -0.0075***

(-11.93) (-11.55)

Turnover -0.0015*** -0.0015***

(-5.50) (-5.44)

Constant 0.1145*** 0.1136***

(12.90) (12.57)

Average-R
2

50% 50%

Observations 44,171 44,171
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Table 6: BID-ASK SPREADS AND RELATIVE SHARE OF JUMP COMPONENT: BY
TURNOVER RATE. We �rst sorted all stocks in each year into �ve di¤erent portfolios, from low to

high. Then, for each portfolio level, we repeated our second method of double sorting on total variance and

jump-driven variance and then averaging across all years and all total volatility ranks k per jump rank. This

process was carried out for each of the �ve turnover portfolios separately. Then, for each jump portfolio level

and turnover level, we calculated average bid-ask spreads in period t + 1. We also report the di¤erences in

bid-ask spreads between the highest and lowest portfolios and their t�statistics.

Jump Low 2 3 4 High High-Low t-stat

Low Turnover .0354 .0384 .0389 .0424 .0479 .0125 10.73

2 .0174 .0201 .0213 .0227 .0248 .0074 10.08

3 .0083 .0103 .0107 .0126 .0151 .0068 13.19

4 .0050 .0058 .0059 .0071 .0088 .0038 10.76

High Turnover .0040 .0044 .0044 .0052 .0066 .0026 8.26
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Table 7: LIQUIDITY RISK ��1L, �2L AND �3L. This table reports regression results for Equation
(8): �ki;t = �+ 
1V

d
i;t+ 
2V

j
i;t+ 
3ln(sizei;t)+ �i;t, where k = 1L; 2L; 3L. This equation measures the e¤ects

jump and di¤usive volatility have on �1L, �2L and �3L, when they are all obtained from a simple covariances

measure as speci�ed in Equation 6. t�statistics are reported in parentheses, and *** denotes 1% statistical

signi�cance.

�1L = Cov
�
Li; LM

�
�2L = Cov

�
Ri; LM

�
�3L = Cov

�
Li; RM

�
Du¤usive Var -26.546*** -537.760*** -0.262

(-4.65) (-5.11) (-0.22)

Jump Var 61.460*** 93.824*** 5.914***

(9.13) (2.27) (7.74)

ln(size) -0.090*** -0.063*** -0.005***

(-14.32) (-7.11) (-6.18)

Constant 1.564*** 1.305*** 0.080***

(14.05) (10.81) (6.60)
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Table 8: CHARACTERISTICS OF �2L. This table reports regression results for  02 in Equation (10):
ei;t =  0+ 1L

M
t + 

0
2Zi;t�1LMt +vi;t, which in return determines �

2L in Equation (9): �2Li;t =  1+ 
0
2Zi;t�1.

Following Pastor and Stambaugh (2003) this speci�cation determines the e¤ect di¤erent chracteristics in

Zi;t�1 have on the sensitivity of stock returns to market liquidity, �2Li;t . For market liquidity factors we use
the Sadka (2006) Variable-Permanent and Fixed-Transitory factors. t�statistics are reported in parentheses,
and 1% and 10% statistical signi�cance levels are denoted by *** and *, respectively. For more details see

Equation (10).

Characteristic Coe¢ cient

V ector  1 :

Variable-Permanent Liquidity Factor 0.14***

(4.24)

Fixed-Transitory Liquidity Factor 5.12***

(9.84)

V ector  02 :

Jump�Variable Factor 81.61***

(3.26)

Jump�Fixed Factor 9348.29***

(29.47)

Di¤usion�Variable Factor -112.06*

(-1.84)

Di¤usion�Fixed Factor 1229.87

(1.57)

Constant 0.00***

(2.09)
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