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1 Introduction

Recent empirical studies find that idiosyncratic stock return volatilities (IVOL) strongly co-

move in the cross-section, and there is a common factor structure in IVOL (we denote this

common factor as CIV ). Duarte, Kamara, Siegel, and Sun (2014) and Herskovic, Kelly, Lustig,

and Van Nieuwerburgh (2016) both conclude that this common factor is priced, with Herskovic

et al. (2016) arguing that this factor is driven by fundamental cash flow idiosyncratic volatility.1

Our research investigates an alternative reason why IVOL co-move. We show theoretically and

quantitatively that time-varying financial leverage generates co-movement in IVOL under very

mild conditions, in which the residual stock returns can be uncorrelated and the fundamental

cash flow idiosyncratic volatility can be a constant. We also show that financial leverage explains

the negative cross-sectional pricing effect of the exposure to CIV shocks as documented in

Herskovic et al. (2016).

We propose an equilibrium model in which firms’ asset return processes satisfy a single factor

CAPM. Each firm issues debt to maximize the equity value. The firms endogenously decide the

capital structure choices by balancing the tax shield benefit against default cost. The firms can

also restructure the capital structure as in Goldstein, Ju, and Leland (2001).

We show that financial leverage can generate a strong common factor structure in firm-level

IVOL in a variant of the Goldstein et al. (2001) capital structure model where the firm’s cash

flow has a single factor structure. The Goldstein et al. (2001) upward refinancing framework

permits closed-form expressions for equity values, and it also keeps financial leverage in a relative

stable range (rather than vanishing) over a long simulation horizon. Under reasonable initial

parameter settings, the cross-sectional average IVOL as a proxy for CIV explains more than

25% of the time variation in firm-level IVOL on average. The factor structure pattern in

IVOL totally disappears if we use a purely equity-financed sample (no financial leverage). We

conduct two further tests which show that financial leverage generates the co-movement in

IVOL. First, we find that the average IVOL of the portfolios sorted by financial leverage are

strongly correlated with each other except for the portfolio with lowest leverage. Second, in

the market-level time-series regression, we find that the innovation in market average financial

1We use the term “IVOL” to specifically represent the equity return idiosyncratic volatility (as opposed to
the fundamental cash flow idiosyncratic volatility).
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leverage significantly determines the innovations in CIV .

Our findings are unaffected when we estimate IVOL from the simulation data using either the

CAPM or five principal components of equity returns. The IVOL of the two models are highly

correlated. The full panel correlation between the two IVOL estimates is 99%. Since principal

component analysis (PCA) removes almost all the possible correlations in equity returns in the

cross-section, we reach the same conclusion as Herskovic et al. (2016) to the extent that the

IVOL co-movement does not arise from omitted factors in a linear factor model, where a factor

is defined as a variable that drives covariance between returns. However, we show that the

IVOL co-movement can arise from time-varying financial leverage, even when there is no factor

structure in idiosyncratic volatilities at the asset level.

The above intuitions are not limited by the specific capital structure models we use in the paper.

As argued in the main text, the appearance of common factor in the IVOL is a general result

as long as the debt level is not proportional to the firm value. The essence of this intuition is

that the equity value is not proportional to the firm value. Then the IVOL of the equity returns

include firm asset value, and thus include the common factor of asset return process.

We also examine the cross-sectional pricing of CIV . Herskovic et al. (2016) find that the

exposure to CIV shocks is negatively priced in the cross-section of stocks. We confirm this

relation in the Goldstein et al. (2001) capital structure model. Firms in the lowest exposure to

CIV quintile earn a value-weighted return that is 0.25% higher per month than firms in the top

quintile. Furthermore, we propose a rationale to relate the negative pricing of CIV to financial

leverage. Firms with higher financial leverage tend to suffer larger losses in equity value when

there is a negative shock in the economy (i.e., a positive shock in CIV ), so the firm’s estimated

exposure to CIV shocks will be negative. In addition, the loss in equity value further increases

the leverage of such firms, and hence their expected return will increase. An analogous logic

holds when there is a positive shock in the economy. As a result, the exposure to CIV shocks

exhibits a negative relation with expected stock returns. We find supporting evidence from

Fama-MacBeth regressions on simulated data in which financial leverage captures the negative

pricing effect of exposure to CIV shocks.

We find a significant positive relation between lagged IVOL and the cross-section of stock

returns. Stocks in the top IVOL quintile at the end of a month earn a value-weighted return
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that is 1.27% per month higher than stocks in the bottom quintile. In our analysis, IVOL is

a positive monotonic transformation of the firm’s leverage ratio. Provided the expected return

on the firm’s assets is positive, it is increasing in the firm’s IVOL, with the leverage as a

scale factor. Existing studies using empirical data to examine the relation between IVOL and

expected returns find mixed results. On the one hand, Ang, Hodrick, Xing, and Zhang (2006)

and a large number of follow-up studies find that stocks with high lagged IVOL exhibit low

future returns (the so-called IVOL puzzle). On the other hand, the finding in our numerical

analysis is more in line with Fu (2009) and Eiling (2013) who find a positive relation between

conditional IVOL and expected returns.

We also identify a negative link between IVOL and the exposure to CIV shocks through financial

leverage. This negative relation reconciles the positive pricing of IVOL and the negative pricing

of the exposure to CIV shocks. For example, highly levered firms tend to have high IVOL

but low (usually negative) exposure to CIV shocks, and both characteristics predict a high

expected return in our study. Using empirical data, Herskovic et al. (2016) find a negative

relation between IVOL and the exposure to CIV shocks, and are unable to reconcile the IVOL

puzzle and the negative pricing of exposure to CIV shocks. Hence Herskovic et al. conclude

that both anomalies co-exist.

Our study is related to the existing empirical literature that directly or indirectly studies how

financial leverage affects the cross-sectional spread in expected stock returns. For example,

Fama and French (1992) argue that size, book-to-market ratio and leverage are essentially

different proxies that reflect information on risk and expected returns. Ang et al. (2006) find

that leverage cannot explain the negative pricing effect of IVOL at the firm level. Choi and

Richardson (2016) propose a method to compute the asset volatility and find that the presence

of financial leverage creates a significant difference between the properties of equity and asset

volatilities. Doshi, Jacobs, Kumar, and Rabinovitch (2016) de-lever equity returns based on

the Merton (1974) and Leland and Toft (1996) capital structure models. Using the unlevered

returns they find that the negative relation between stock returns and IVOL disappears. Doshi

et al. (2016) focus on the role of financial leverage in explaining the cross-sectional equity returns

anomalies, including size, value and IVOL. In contrast, our focus is the implication of financial

leverage for the common factor structure in IVOL in the cross-section. We also use financial

leverage to explain the pricing effects of IVOL and the exposure to CIV shocks.
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Our study is also related to the literature on optimal capital structure models and its application

to the study of IVOL. To the best of our knowledge, we are the first to apply capital structure

models to study, in a cross-sectional setting, the role that financial leverage plays in the common

factor structure of IVOL.

The paper is organized as follows. Section 2 proposes a simple model to illustrate how time-

varying financial leverage generates the common factor structure in IVOL. Section 3 discusses

the capital structure model, the setup of the simulation and the summary statistics. Section 4

analyses the behaviour of IVOL including its common factor structure, the pricing effect of the

exposure to CIV shocks and lagged IVOL. Section 5 summarizes our conclusions and Section 6

discusses some possible extensions to our study.

2 A Theory of Leverage and Idiosyncratic Volatility

2.1 Model Setup: One-Factor APT (CAPM) Setup for Asset Return Pro-

cesses

We consider a one-factor APT type model for firm assets. We assume that there are N firms,

indexed by i = 1, . . . , N , whose cum-dividend value processes follow

dVi(t) + δi(t)dt

Vi(t)
= (µi + δi)dt+ σi(ρidW (t) +

√
1− ρ2

i dZi(t)), i = 1, . . . , N, (1)

where δi(t) = δiVi(t) is the payout-value ratio, µi, δi, σi, ρi are all positive constants, and

W (t), Zi(t) are standard Brownian motions that are uncorrelated with each other, for all

i = 1, . . . , N . And there exists a risk-free bond with constant risk-free rate r > 0.

To make the model more concrete, we assume this factor is the market return. Define

Vm(t) ≡
∑
i

Vi(t), δm(t) ≡
∑
i

δi(t), ω
A
i (t) ≡ Vi(t)

Vm(t)
. (2)

We assume APT holds such that the market return is only a function of the common shocks
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dW (t),

dVm(t) + δm(t)dt

Vm(t)
= rAm(t)dt+ σAm(t)dW (t),

where we assume Law of Large Number (LLN) holds so the idiosyncratic volatility is diversified

away in the market portfolio, and

rAm(t) ≡
∑
i

ωAi (t)(µi + δi), σ
A
m(t) ≡

∑
i

ωAi (t)σiρi. (3)

To make sure that the expected market return equals the risk-free rate under the risk-neutral

measure defined below, we define the (time-varying) market price of risk as

θAm(t) ≡ rAm(t)− r
σAm(t)

. (4)

Thus one can define a new risk-neutral measure generated by the Brownian motion

dW̃ (t) ≡ dW (t) + θAm(t)dt, (5)

so that the market return is of the form

dVm(t) + δm(t)dt

Vm(t)
= rdt+ σAm(t)dW̃ (t). (6)

For firm i, we define the price of the idiosyncratic risk of firm Zi as θAi . The Brownian motion

under the risk-neutral measure for individual firm can then be written as

dZ̃i(t) ≡ dZi(t) + θAi dt. (7)

As we will work on the risk neutral measure later on, we want to make sure that the expected

return of each individual firm equals r under this new risk-neutral measure as well,

dVi(t) + δi(t)dt

Vi(t)
= rdt+ σiρidW̃ (t) + σi

√
1− ρ2

i dZ̃i(t). (8)
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It follows that

dVi(t) + δi(t)dt

Vi(t)
=

(
r + σiρiθ

A
m + σi

√
1− ρ2

i θ
A
i

)
dt+ σi

(
ρidW (t) +

√
1− ρ2

i dZi(t)

)
.

In other words, θi must satisfy

µi + δi = r + σiρiθ
A
m + σi

√
1− ρ2

i θ
A
i . (9)

As pointed out in Cochrane (2005), individual θAi can be anything for any finite set of securities.

In other words, idiosyncratic risk can be priced under a pure APT model. For our purpose. we

will assume that at the firm level, the APT holds exactly in a single factor (CAPM) model, i.e.,

θAi = 0 ∀i. (10)

Hence, idiosyncratic risk is not priced at asset level, (but idiosyncratic volatility can still be

priced). Under this assumption, expected asset returns are given by

µi + δi = r + σiρiθ
A
m.

Define the asset return beta as

βAi ≡
Cov(dVi(t)+δi(t)dtVi(t)

, dVm(t)+δm(t)dt
Vm(t) )

(σAm)2
, (11)

then the asset returns follow a CAPM where

µi + δi = r + βAi (rAm − r). (12)

And the Brownian motions under the risk-neutral and objective probability measure satisfy

dW̃ (t) = dW (t) + θAmdt,

dZ̃i(t) = dZi(t).
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2.2 Optimal Capital Structure for A Single Firm: Static Capital Structure

With the above setup, we now proceed to derive the optimal capital structure of a single firm.

The model mainly follows Goldstein et al. (2001), so we will skip most of the proofs for the

results in this section. Given the setup in the previous section, the cum-dividend expected

return of any firm should be the risk-free rate r under the risk-neutral measure.,

dVi(t) + δi(t)dt

Vi(t)
= rdt+ σi

(
ρidW̃ (t) +

√
1− ρ2

i dZ̃i(t)

)
. (13)

To simplify the notation, we define for the firm i from now on in this section we will ignore the

subscript i):

dz̃(t) ≡ ρidW̃ (t) +
√

1− ρ2
i dZ̃i(t),

ν ≡ r − δi,

σ ≡ σi.

It follows that the asset process under the risk-neutral measure follows,

dV

V
= νdt+ σdz̃(t), (14)

with a total payout process that is proportional to the current asset value, δ(t) = δV (t).

We start by considering the case in which the firm decides the optimal capital structure only

once in the beginning, and will study the dynamic capital structure later. As shown in Goldstein

et al. (2001), the optimal capital structure (coupon C) is given by:

C∗ =
rV0

λ

[(
1

1 + x

)(
A

A+B

)] 1
x

, (15)
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where

x =
1

σ2

(ν − σ2

2

)
+

√(
ν − σ2

2

)2

+ 2rσ2

 > 0,

λ =
x

1 + x
,

A = (1− q)(1− τi)− (1− τeff ),

B = λ(1− τeff ) (1− (1− q)(1− α)) .

For a given coupon C, the equity value at any point after the debt issuance and before any

default is given by:

E(C, V ;VB) = Esolv = (1− τeff )

[
V − VB

(
V

VB

)−x
− C

r

(
1−

(
V

VB

)−x)]
,

where

VB =
x

1 + x

C

r
≡ λC

r
. (16)

2.3 Equity Returns Under Static Capital Structure

We now discuss the cross-sectional equity returns under the above static capital structure model.

Using the value for VB, we can write all the equity values in terms of optimal coupons

E(V,C∗) = (1− τeff )

[
V +G

(
V

V0

)−x
− C∗

r

]
, (17)

where

G =
V0

x

[(
1

1 + x

)(
A

A+B

)]1+ 1
x

.

Here the three terms between brackets in Equation (17) have clear economic meaning. The first

term is the total value of the assets. The last term is the deduction of a risk-free debt. The

second term is from the option value of the defaulting for the equity holder. In the following

we use the above result to examine the properties of IVOL.
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2.3.1 A simplified version

We start by only considering the first and the third terms. Namely we assume the debt is

risk-free and ignore the option value for now. We consider this case to illustrate the intuition

and will study the full case in the next subsection. Denote this equity value as Es (superscript

“s” means simple),

Es(V ) ≡ (1− τeff )(V − C/r) ≡ (1− τeff )(V −Ds), (18)

where

Ds ≡ C/r, (19)

is the face value of the consol bond.

The after-tax instantaneous dividend payoffs to the equity holders, denoted as ∆(t), equal

(1− τeff )(δ(t)− C)dt. So the return on the equity value is given by

(1− τeff )(dV + (δ(t)− C)dt) = (1− τeff ) ([V (µ+ δ)−Dsr] dt+ V σdz) ,

where (we recover the subscript here)

dzi(t) ≡ ρidW (t) +
√

1− ρ2
i dZi(t). (20)

The equity return process is given by

dEsi (t) + ∆i(t)dt

Esi (t)
≡rsi dt+ σsi

(
ρidW (t) +

√
1− ρ2

i dZi(t)

)

where

rsi =
Vi(t)

Vi(t)−Ds
i

(µi + δi)−
Ds
i

Vi(t)−Ds
i

r,

σsi =
Vi(t)

Vi(t)−Ds
i

σi.

There are two sources of shocks to the equity returns; a systematic one associated with W (t)
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and an idiosyncratic one associated with Zi(t). The IVOL of the firm is given by:

IV OLsi (t) = σsi

√
1− ρ2

i =
Vi(t)

Vi(t)−Ds
i

σi

√
1− ρ2

i .

From here we can see the potential appearance of common factors in the IVOL because of

the term Vi(t)
Vi(t)−Ds

i
. Recall that Vi(t) contains the history of common shocks W (t) and it is a

function of V (t) by our setup. Ds
i is fixed under the static capital structure setting we use in

this section, and will not change between two consecutive restructuring epochs. We can contrast

this with the situation that Ds
i is proportional to Vi(t), then the coefficient of the idiosyncratic

risk becomes a constant, which would result in a constant idiosyncratic volatility. The key

insight of our model is that as long as the leverage is not proportional to the value of the firm,

the idiosyncratic volatility of the equity returns exhibit common variations.

Another insight from the above representation is that the common variation does not stem

from omitted risk factors. All assets are driven by a single common factor which is correctly

accounted for when computing idiosyncratic volatilities. The idiosyncratic shocks to firm asset

values are completely independent across firms. The common movement in IVOL shows up

as a multiplicative factor for the firm-level asset idiosyncratic volatility. Thus using additive

econometric techniques such as principal component analysis (PCA) will not allow to completely

capture this common variation.

We can calculate directly the common factor defined in the empirical literature in this simple

case. If all firms have the same parameters, then the common idiosyncratic volatility factor

CIV as defined in Herskovic et al. (2016) equals a constant times the average leverage in the

economy,

CIV =
1

N

∑
i

σsi

√
1− ρ2

i = σ
√

1− ρ2
1

N

∑
i

Vi(t)

Vi(t)−Ds
i

.

If in addition ρ = 0, i.e., there is no systematic risk, then the following holds.

Proposition 1. If all firms have identical parameters and there is no systematic risk, then the
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correlation between firm-level IVOL and the CIV factor equals

Cov

(
Vi(t)

Vi(t)−Ds
i

σ, σ
1

N

∑
i

Vi(t)

Vi(t)−Ds
i

)
= σ2 1

N

(
Vi(t)

Vi(t)−Ds
i

)2

.

Note that if ρ 6= 0, then Vi(t) and Vj(t) for i 6= j are not independent as they both depend on

the cumulative common shock W (t).

We can show that CAPM still holds for equity returns in this simple case. Furthermore, the

IVOL is closely related to the equity beta. Define the market portfolio of equity as

Esm(t) ≡
∑
i

Esi (t) = (1− τeff )
∑
i

(Vi(t)−Ds
i ),

specify the relative weight of firm i as

wsi (t) ≡
Esi (t)

Esm(t)
=

Vi(t)−Ds
i∑

i(Vi(t)−Ds
i )
,

and define the market payout ratio as

∆m(t) ≡ (1− τeff )
∑
i

(δi(t)−Ds
i r).

Then the market portfolio evolves as:

dEsm(t) + ∆m(t)dt

Esm(t)
= rsm(t)dt+ σsm(t)dW (t),

where

rsm(t) ≡
∑
i

wsi

(
Vi(t)

Vi(t)−Ds
i

(µi + δi)−
Ds
i

Vi(t)−Ds
i

r

)
,

= r +
Vm(t)

Esm(t)
(rAm − r),

σsm(t) ≡
∑
i

wsi
Vi(t)

Vi(t)−Ds
i

σiρi,

=
Vm(t)

Esm(t)
σAm.
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The covariance between individual equity returns and the market equity returns is given by

Cov

(
dEsi (t) + ∆i(t)dt

Esi (t)
,
dEsm(t) + ∆m(t)dt

Esm(t)

)
=

Vi(t)

Vi(t)−Ds
i

σiρiσ
s
m(t),

Then the individual firm’s equity beta is given by:

βsi (t) =
Cov

(
dEs

i (t)+∆i(t)dt
Es

i (t) , dE
s
m(t)+∆m(t)dt
Es

m(t)

)
(σsm(t))2

=
Vi(t)

Vi(t)−Ds
i

σiρi
σsm(t)

As a result, the expected stock return for firm i is:

rsi (t) = r + βsi (t)(r
s
m(t)− r).

Note the appearance of Vi(t)
Vi(t)−Ds

i
in both IVOL and the equity beta of the firm. The following

cross-sectional result is immediate.

Proposition 2. If all the firms have identical parameters, then the cross-sectional correlation

between IVOL and the equity beta is positive.

If the economy does poorly (well), then all firms will tend to become more (less) levered. Hence,

if the economy does poorly (well), then IVOL will tend to increase (decrease) for all firms, and

equity betas of relatively more-levered firms will tend to increase (decrease), while the equity

betas of relatively less-levered firms will tend to decrease (increase). These effects are stronger

the more the firm’s leverage differs from the market average leverage.

2.3.2 Full Version

We now study the full equity value in (17), including the nonlinear term V −x. The basic

intuition on the common variation in the IVOL still holds. Nevertheless the relation between

IVOL and equity beta is not as clear-cut. The main steps are the same as above, so we simply

state the results without proof.

Note that the value process Vi(t) and the constants Gi and Ci are all linear functions of the

initial firm value Vi(0). So to simplify the notation, in the following we scale them by the initial
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firm value Vi(0). In other words, the equity value is given by

Ei(Vi, C
∗
i , Vi(0)) = (1− τeff )Vi(0)(Vi(t) +GiVi(t)

−xi −Ds
i ),

where Ds
i is defined as above. So the equity value process follows

dEi(t) = (1− τeff )Vi(0)[dVi(t) +Gi(−xi)Vi(t)−xi−1dVi(t) +
1

2
Gi(−xi)(−xi − 1)Vi(t)

−xi−2d[Vi(t), Vi(t)]].

The return process of the equity is then given by

dEi(t) + ∆i(t)dt

Ei(t)
≡ rEi (t)dt+ σEi (t)(ρidW (t) +

√
1− ρ2

i dZi(t)),

where

∆i(t) = δiVi(t)−Di(t)r.

The expected return and volatility are then given by

rEi (t) = r +
Vi(t)

Vi(t) +GiVi(t)−xi −Ds
i

(µi + δi(t)− r) +
GiVi(t)

−xi

Vi(t) +GiVi(t)−xi −Ds
i

(
−xiµi +

1

2
xi(xi + 1)σ2

i − r
)
,

σEi =
Vi(t)(1− xiGiVi(t)−xi−1)σi
Vi(t) +GiVi(t)−xi −Ds

i

.

IVOL is then given by

IV OLEi (t) = σEi

√
1− ρ2

i =
Vi(t)(1− xiGiVi(t)−xi−1)σi
Vi(t) +GiVi(t)−xi −Ds

i

√
1− ρ2

i . (21)

Just as in the simple model, when all firms have identical parameters the common idiosyncratic

volatility factor CIV equals a constant times the average leverage in the economy,

CIV (t) =
1

N

∑
i

σEi (t)
√

1− ρ2
i = σ

√
1− ρ2

1

N

∑
i

Vi(t)(1− xGVi(t)−x−1)

Vi(t) +GVi(t)−x −Ds
i

.

In this case, the constants x and G will be identical across firms as they only depend on the

parameters. If in addition ρ = 0, i.e., there is no systematic risk, then the following holds.

Proposition 3. If all firms have identical parameters and there is no systematic risk, then the
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correlation between firm-level IVOL and the CIV factor equals

Cov

(
Vi(t)(1− xGVi(t)−x−1)

Vi(t) +GVi(t)−x −Ds
i

σ, σ
1

N

∑
i

Vi(t)(1− xGVi(t)−x−1)

Vi(t) +GVi(t)−x −Ds
i

)
= σ2 1

N

(
Vi(t)(1− xGVi(t)−x−1)

Vi(t) +GVi(t)−x −Ds
i

)2

.

To see the relation between IVOL and equity beta, we define the market portfolio of equity as

Em(t) ≡
∑
i

Ei(t) = (1− τeff )
∑
i

Vi(0)(Vi(t)−Ds
i +GiVi(t)

−xi),

wEi (t) ≡ Ei(t)

Em(t)
=

Vi(0)(Vi(t)−Ds
i +GiVi(t)

−xi)∑
i Vi(0)(Vi(t)−Ds

i +GiVi(t)−xi)
,

∆m(t) ≡ (1− τeff )
∑
i

(δi(t)−Ds
i r).

The market return evolves according to

dEm + ∆mdt

Em
= rEmdt+ σEmdW (t),

where

rEm =
∑
i

ωEi r
E
i ,

≡ r +
Vm
Em

(rAm − r) +
Vm
Em

(−Hm1 +Hm2 − rHm3),

σEm =
∑
i

ωEi σ
E
i ρi,

≡ Vm
Em

(σAm − σm4),

where

Hm1 ≡
∑
i

ωAi GiV
−xi−1
i xiµi,

Hm2 ≡
∑
i

ωAi GiV
−xi−1
i

[
1

2
xi(xi + 1)σ2

i

]
,

Hm3 ≡
∑
i

ωAi GiV
−xi−1
i ,

σm4 ≡
∑
i

ωAi xiGiVi(t)
−xi−1ρiσi.
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As we can see, the nonlinear term affects both the market expected returns as well as the market

volatility. The covariance between firm-level equity returns and market equity returns is given

by

Cov

(
dEi(t) + ∆i(t)dt

Ei(t)
,
dEm(t) + δm(t)dt

Em(t)

)
=
Vi(1− xiGiV −xi−1

i )

Vi +GiV
−xi
i −Ds

i

σiρiσ
E
m.

And

βEi =
Cov

(
dEi(t)+∆i(t)dt

Ei(t)
, dEm(t)+∆m(t)dt

Em(t)

)
(σEm)2

=
Vi(1− xiGiV −xi−1

i )

Vi +GiV
−xi
i −Ds

i

σAm
σEm

βAi .

Hence, the equity beta of firm i is again a product of the asset beta, the average leverage in

the market and the leverage of the firm in question. The relation between IVOL and the equity

beta still holds.

Proposition 4. If all the firms have identical parameters, then the cross-sectional correlation

between IVOL and the equity beta is positive.

2.4 Dynamic Capital Structure

The results from the previous section allow us to study both the common IVOL factor and the

alpha-IVOL relation. However, without a second refinancing boundary where the firm issues

additional debt to increase leverage after firm value has increased sufficiently, the average firm

will become less and less leveraged over time, making quantitative assessment of the effects

much harder to do. Introducing the second boundary VU gets around this problem. The result

is a stationary process for a firm: the return process for the firm will be identical during the

intervals between the firm hits any two successive VU before hitting VB. Again we follow the

analysis in Goldstein et al. (2001).

Let us start at time t = 0. Again it is convenient to define a series of contingent claims. Since

there are two boundaries now, we will have two contingent claims. Let pU (V ) denote the present

value of the contingent claim that pays $1 when V hits VU before hitting VB, and pB(V ) denote

the present value of the contingent value that pays $1 when V hits VB before hitting VU .
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The value of the contingent claim pU (V ) can be shown to equal

pU (V ) = −
V −xB

Σ
V −y +

V −yB

Σ
V −x,

where

Σ ≡ V −yB V −xU − V −xB V −yU .

Similarly, the value of the contingent claim pB(V ) is given by

pB(V ) =
V −xU

Σ
V −y −

V −yU

Σ
V −x.

Note that the values of these two claims are intensity variables. In other words, if all the V ,

VB and VU are scaled up by a constant factor γ, the values do not change. This is the property

that we will use in the following.

Using the two contingent claim values, we can write the PV of other claims very easily. For

example, for a claim that pays δ(t) as long as V does not hit VU or VB and zero when hit, the

value is given by

V 0
solv = V − pB(V )VB − pU (V )VU .

Here the superscript 0 refers to the period starting at t = 0 before hitting either VU or VB.

The total PV of the claims paying upon hitting one of the boundaries are given by

V 0
def = pB(V )VB,

V 0
res = pU (V )VU .

Note that the sum of the total claims is equal to the total value V of the firm

V 0
solv + V 0

def + V 0
res = V.

The value of a claim that pays a constant interest C0 before hitting either boundary and zero
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when any boundary is hit is given by

V 0
int =

C0

r
(1− pU (V )− pB(V )).

Similar to the default boundary situation, different claim holders receive different claims when

either boundary is hit. As before, let α and q denote the default and restructuring cost,

respectively. Let us first consider the allocation of defaulting after the initial restructuring,

which is similar to the previous model after the debt issuance. In other words, we first allocate

the value V − pU (V )VU to different claim holders

d0(V ) = (1− τi)V 0
int(V ) + (1− α)(1− τeff )V 0

def (V ),

e0(V ) = (1− τeff )(V 0
solv(V )− V 0

int(V )),

g0(V ) = τeff (V 0
solv(V )− V 0

int(V )) + τiV
0
int + (1− α)τeffV

0
def (V ),

bc0(V ) = αV 0
def (V ).

Now we consider the restructuring branch. The discussion above is about the process after the

initial restructuring at V (0), which we denote as V 0
U . When the firm hits the next restructuring

boundary V 1
U , we define the constant:

γ ≡
V 1
U

V 0
U

.

Goldstein et al. (2001) show that V 1
B also scales up by γ, and also p1

B(V 1
U ) = p0

B(V 0
U ) and

p1
U (V 1

U ) = p0
U (V 0

U ). Since the optimal C∗ also scales up by γ, the above split among different

claims are identical in the next interval.

To summarize, initially the firm starts with V (0) = V 0
U . The firm then decides the capital

structure choice C0, and passes on the net proceeds of the debt issuance to to the initial equity

holder. Then the firm value process follows (1) until either (1) it hits the default boundary V 0
B,

or (2) it hits the restructuring boundary V 1
U = γV 0

U , which starts a new period.
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Denote by e(V0) the present value of all claims e0, e1, e2, . . .:

e(V0) ≡ e0(V0)(1 + γpU (V0) + [γ2pU (V0)]2 + . . .

=
e0(V0)

1− γpU (V0)
.

During a restructuring, the current debt is called back and a larger amount of new debt is

issued. We assume that the debt is issued and called at par. Then the current value of the

debt is equal to the PV of the cash flow before hitting VU , d0(V0) plus the PV of the call value,

which is par

D0(V0) = d0(V0) + pU (V0)D0(V0).

It follows that

D0(V0) =
d0(V0)

1− pU (V0)
.

This debt issuance will be distributed to the equity holder, adjusting for the restructuring cost

q. So the present value of all future adjustment costs is given by

RC(V0−) = qD0(V0)(1 + γpU (V0) + [γpU (V0)]2 + . . .

=
qD0(V0)

1− γpU (V0)
.

Putting everything together, the total value of the equity is given by

E(V0−) =
e0(V0) + d0(V0)− qD0(V0)

1− γpU (V0)
.

This is the sum of the present value of all future equity and debt claims net of the adjustment

cost.

After the issuance of the debt, the equity value at any time during the first period is given by

E(V ) = e0(V ) + γpU (V )E(V0−)− pUD0(V0). (22)
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The last term is the debt value that the firm needs to pay to the current debt holder to call

back the debt.

Therefore, the following no-arbitrage condition holds, stating that the after issuance equity

value equals the before issuance equity value minus the (after restructuring cost) debt issuance

E(V0+) = E(V0−)− (1− q)D0(V0).

Also around the time of the second restructuring, the following condition should hold

E(VU−) = γE(V0−)−D0(V0).

The final step is to find the optimal capital structure. Namely we need to find three values,

C∗, VU , and VB, or, equivalently, C∗, γ = VU/V0, ψ = VB/V0. First we find the the optimal VB

or ψ as a function of C and VU (or γ), and then solve for C and γ. We illustrate the idea of

upward-refinancing and the typical path of a firm’s asset value in Figure 1.

[Insert Figure 1 here]

3 Simulations

3.1 Simulation parameter choice

We conduct simulations based on the Goldstein et al. (2001) capital structure model. We choose

the same values for the main parameters as in the base case of Goldstein et al. (2001).2

The initial payout ratio is δ/V0 = 0.035+0.65C/V0, so the drift of the payout flow rate µ equals

r − δ/V0 = 0.01 − 0.65(C/V0).3 In the simulation, we start with 5000 identical firms. Each

2We set the bankruptcy cost α at 5% as in Goldstein et al. (2001). We note that the bankruptcy cost used in
Leland (1994) is 50%. Given the other parameter values, such a high bankruptcy cost yields C∗ = 0 for all firms,
suggesting that the bankruptcy cost is so high that the tax shield benefit is insufficiently large to make up for it.

3At any given point in time in our simulations, prices are computed under the risk-neutral measure in which
any traded asset has an expected return equal to the risk-free rate. The dynamics of the firm asset value process
are generated from the objective distribution, imposing a risk premium on the process of the common asset return
factor W . This instantaneous drift of dV/V equals rf − (δ/V0) + θρσ where θ is the Sharpe ratio of the common
shock dW . We assume θ = 0.2 in our simulations.
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simulation run lasts for a time horizon of 50 years. We consider one time step as one day, one

month is 21 days, and one year is 252 days. The initial asset value is $100. We assume ρ = 0.5

for all firms. This value of ρ implies that the proportion of the total asset variance contributed

by the common shock Z equals 25%. The details of the optimization and simulation algorithm

are provided in Appendix D. Table 1 provides an overview of the parameter values.

3.2 Summary statistics of the simulations

To reduce the influence of a single history on our overall conclusions, we run repeated simulations

with the same initial setups 100 times and report the distributions of outcomes. We report the

summary statistics of the simulation results in Table 2.

[Insert Table 2]

The initial values in the first column reproduce the numbers reported in Table 3 of Goldstein

et al. (2001). For example, γ is 1.7, suggesting that the firm will wait until its value rises to

1.7 times its initial value and only then is it optimal to increase the firm’s leverage. The initial

leverage is 0.37 which is identical for all firms at the beginning of the simulation.

The across-runs mean of the average asset value is $347.13, and the 5th and the 95th percentile

values are $139.83 and $871.46, respectively. The coupon payment grows from an initial value

of $1.85 to $7.53 on average, given the refinancing scaling factor γ is 1.7. The average monthly

return on equity is 1.06%. Whenever a firm goes bankrupt (Vt ≤ VB), we introduce a new

firm with the same initial values into the sample in the next month, so the sample size is very

stable.4

In Figure 2, we plot the time series of the main variables in the repeated simulations. The cross-

sectional average debt value increases gradually because of the upward refinancing strategy.

The equity value also increases over time. The initial leverage is 37%, which is identical for

all firms, and leverage grows in approximately the first 10 years of simulation. After that, the

distribution of leverage becomes stable at around 48%. In this paper, we report our main results

using the samples with full simulation period. In unreported results, we repeat our tests using

4The average number of stocks is slightly smaller than the starting number of 5000. This gap is due to the
sample filters imposed during the estimation of IVOL.
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the sample which excludes the first 10 years and retains the remaining 40 years’ data, and the

main conclusions reached in our paper are unchanged.

[Insert Figure 2 here]

4 IVOL and CIV in the simulations

In this section, we analyze firm-level IVOL and the common factor in IVOL, CIV.

4.1 Estimating IVOL

We follow the approach in Herskovic et al. (2016) to estimate IVOL as the annualized variance

of daily residual returns from an asset pricing model.5 The asset pricing models we examine to

determine residual returns are the CAPM and a five-factor principal component model (PCA),

where we re-estimate the principal components each calendar year.6 In both models, we exclude

observations with equity value below $1 or with a daily equity return greater than 300% to avoid

extreme estimates of IVOL. We then construct firm-year estimates of IVOL over 50 years. We

exclude stocks with fewer than 100 trading days in a year. We also winsorize the top 0.5%

of IVOL estimates in each year. When computing IVOL on a monthly horizon, we require a

minimum of 12 trading days in the month for a stock to be included.

[Insert Table 3 here]

Consistent with Herskovic et al. (2016), the estimates from both models are very close. In Panel

A of Table 3, we show that the full panel correlations between the annual IVOL estimated from

the CAPM and PCA are highly correlated (99% on average across the simulation runs), and

the main summary statistics such as means and standard deviations are also very close. In

Panel B, we use monthly IVOL and find that the full panel correlations between the monthly

IVOL estimated from CAPM and PCA are still highly correlated (96% on average). In the

5Many existing studies (e.g., Ang et al., 2006) compute the IVOL as the standard deviation of the residual
returns. We follow the approach in Herskovic et al. (2016) and use the variance. We find either measure of IVOL
does not change the results in our paper.

6We include only the stocks with full observations (252 days) within a year to avoid an unbalanced panel issue
in the principal component analysis.

22



following sections of the paper, we use the CAPM-estimated IVOL in the main analysis and

the PCA-estimated IVOL in robustness tests.

4.2 Common IVOL factor structure

Herskovic et al. (2016) find a strong co-movement pattern in equity IVOL in the empirical

data, suggesting a common factor structure in IVOL. In this section, we find that the common

factor structure in IVOL also exists in our simulation results. Within the dynamic capital

structure model, the only possible channel to generate co-movement is financial leverage. We

follow Herskovic et al. (2016) and Duarte et al. (2014) and conduct three analyses to examine

the common factor structure in IVOL and its relation with financial leverage.

4.2.1 Average IVOL in the time-series and pairwise correlations

In our first analysis, we visually show the strong co-movement in IVOL by plotting the time-

series of average IVOL of stock portfolios. In each simulation run, we sort the stocks into

quintiles by different firm characteristics, such as market capitalization and financial leverage;

then we compute the equally-weighted average IVOL for each quintile. In Figure 3, we plot the

time-series of average IVOL for the portfolios sorted by size (Figure 3a) and by leverage (Figure

3b) in one simulation run. The average IVOL of all size quintiles shows a clear co-movement

pattern. The average IVOL of leverage-sorted portfolios shows a very similar co-movement

pattern, except for the lowest leverage quintile whose average IVOL appears to be flat over the

full sample period.

[Insert Figure 3 here]

Next, we investigate the IVOL co-movement in a more formal test by examining the average

pairwise correlations between the average IVOL of the portfolios sorted by size or leverage. In

Table 4, we report the results based on repeated simulation runs. We follow the procedure used

to construct Figure 3. In each simulation run, we sort the firms by size (or by leverage) into

quintiles and compute the average IVOL for each quintile in each year, then we compute the

pairwise correlations of the average IVOL between the quintiles. We repeat this procedure in
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repeated simulation runs. Next, we compute the mean, 5th and 95th percentile values of the

correlations for each quintile pair over the repeated simulation runs. For example, the number

in column 4 and row 1 in Panel A1 (size) of Table 4 shows that the mean correlation of the

average IVOL between the largest and second-largest size quintile is 0.93; the two numbers in

brackets report that the 5th and 95th percentile values of the correlation are 0.84 and 0.98.

[Insert Table 4 here]

In Panel A1 (size), the average pairwise correlations among average IVOL of the five size

quintiles range from 0.81 to 0.96, suggesting that the co-movement in IVOL is very strong. In

Panel A2 (leverage), the average pairwise correlations are also very high among the leverage

quintiles 2 to 5. However, the pairwise correlation between the lowest leverage quintile with the

other quintiles is close to zero on average and is insignificantly different from zero. This finding

suggests that for the lowest leverage quintile, the average IVOL is essentially constant and

remains unchanged in the time series. It also suggests that the leverage in the lowest leverage

quintiles does not change over time. This result supports our hypothesis that time-varying

financial leverage drives the co-movement in IVOL. In Panel B, we repeat the same analysis

using monthly IVOL and the conclusion is unchanged.

In Equation (21), we show how IVOL is determined by the firm’s financial leverage at the

beginning of the period, assuming a constant asset return volatility. Similarly, the equally-

weighted average IVOL of a portfolio formed in this section reflects the average leverage of

stocks in a portfolio. Therefore the co-movement in average IVOL is a result of market-wide

time-varying leverage.

4.2.2 Common IVOL factor in explaining individual IVOL

In our second test, we follow Herskovic et al. (2016), and run firm-by-firm time-series regressions

regressing a firm’s IVOL on the common factor in IVOL (CIV ). CIV is measured as the equally-

weighted IVOL in each cross-section. Hence CIV directly reflects the market equally-weighted

average leverage in our setup.

In each simulation run, we run the time-series regression on each firm and compute the R2,
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which indicates how much of the time variation in the firm’s IVOL can be explained by the

single common factor CIV .7 We average the IVOL in the cross-section in each simulation run

and then compute the mean, 5th and 95th percentile values of average across the simulation

runs. In Table 5 we report results for this levered sample for both annual and monthly IVOL.

To examine the relation between the common factor structure in IVOL and financial leverage,

we redo this analysis for an unlevered sample. In the unlevered sample, we use the same initial

parameter values and the same dynamics of V , but we force C and VB equal to zero for all

stocks throughout the simulation horizon, so the equity value E of a firm equals its asset value

V .8

[Insert Table 5 here]

In Table 5, Panel A row Levered, we show that when firms are levered, the common factor

in IVOL explains 25% of the time variation in individual IVOL on average, and the 5th and

95th percentile values of average R2 in repeated simulations are 18% and 31% respectively.9

This result suggests that a substantial proportion of the variations in individual IVOL can be

explained by a single common factor. In Figure 4, we plot the distribution of average R2 in the

repeated simulations and confirm that a common factor structure of IVOL exists in our levered

sample.

[Insert Figure 4 here]

As shown in Table 5, when we use the unlevered sample the average R2 reduces substantially

to only 2%, suggesting that the time variation in individual IVOL is unable to be explained

by a single factor, and also suggesting there is no common factor structure in IVOL when the

firms are unlevered. In Panel B, we confirm our finding using monthly IVOL (not examined in

Herskovic et al., 2016). The magnitude of average R2 for the levered sample is smaller (13%)

than the value in annual data, while the average R2 for the unlevered sample drops to zero.

7Note that in our illustration model, e.g., Equation (21), IVOL is the product of leverage and asset return
volatility. If the asset return volatility is assumed to be constant and identical across firms, then CIV is the
equally-weighted average leverage across all firms multiplied by the constant asset return volatility.

8In the unlevered sample, we force the debt equal to zero to study the effect of financial leverage in determining
the common factor structure in IVOL. The firm does not achieve an optimal capital structure in this setup.

9The average R2 from our simulation data is smaller than the figure of 35% reported in Herskovic et al. (2016)
using empirical data. The magnitude of R2 depends on the initial parameter values used in our simulation. In
general, higher leverage would lead to a higher average R2. In this paper it is not our focus to match the empirical
results.
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4.2.3 Determinants of the common IVOL factor

In the third test, we examine the determinants of the common factor in IVOL directly. Following

the methodology in Duarte et al. (2014), we run a time-series regression at the market level.

The left-hand-side variable is the innovation in the common factor in IVOL (∆CIVt), the

right-hand-side variables are the innovations in market average financial leverage (∆Levm,t),

the innovations in market value-weighted equity return variance (∆σ2
m,t) and the innovations

in market average credit spread (∆CSm,t). ∆σ2
m,t and ∆CSm,t are two variables identified in

Duarte et al. (2014) that explain the innovations in CIV . The innovations are measured as the

monthly or annual changes in each variable, depending on the frequency of data we use in the

analysis.

∆CIVt = α+ β1∆σ2
m,t + β2∆Levm,t + β3∆CSm,t + εt. (23)

In the Goldstein et al. (2001) model, the credit spread is a direct translation of financial leverage.

In our simulation data, the correlations between the market average leverage and the market

average credit spread are more than 99% both in levels and in first differences (see Table 12). To

avoid the issue of multicollinearity, we run regressions with leverage and credit spread separately.

In Table 6, we report the mean, 5th and 95th percentile values of the estimated regression

coefficients. In addition, we report the percentage of simulation runs in which the estimated

coefficient is significantly different from zero at the 5% level of significance for each variable.

[Insert Table 6 here]

Panel A of Table 6 shows the result with annual data. Consistent with the finding in Duarte

et al. (2014), we find that the innovations in market equity return variance and credit spread are

positively related to ∆CIV . The innovations in financial leverage, which are our main focus,

also show a clear positive relation with ∆CIV . The mean of the coefficient of ∆Levm,t is 0.43,

while the 5th percentile value is 0.19. In Panel B, we use monthly data and find an even stronger

effect of financial leverage and credit spread in determining the CIV . For example, in 100% of all

simulation runs, the estimated coefficient on ∆Levm,t is significant at 5%, and the magnitude of

the coefficient is very similar to Panel A. Conversely, the magnitude of the coefficient on market

return variance is much smaller. This result suggests that time-varying financial leverage better

captures the changes in CIV when we use higher-frequency data. This result is to be expected
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as over longer horizons the refinancing boundary limits the cross-sectional variability in the

leverage ratios.

In summary, we conduct three analyses which show that the common factor structure in IVOL

exists in a standard capital structure model and the common factor structure in IVOL is driven

by financial leverage. Time-varying financial leverage determines the measure of IVOL and

drives the comovement in IVOL in the cross-section. The common factor structure in IVOL

totally disappears if all firms are purely equity-financed (zero leverage).

4.3 Common IVOL factor, lagged IVOL and expected stock returns

We also explore two IVOL-related cross-sectional pricing effects. Herskovic et al. (2016) find

that the exposure to CIV shocks is negatively priced in the cross-section of stocks. Ang et al.

(2006) find that the stocks with high lagged IVOL earn puzzlingly low future returns — this

finding is documented as the IVOL puzzle. Herskovic et al. (2016) find that both anomalies

co-exist. We examine jointly the pricing effect of exposure to CIV shocks and lagged IVOL

in our numerical analysis. We start by exploring the average returns on the portfolios sorted

by firms’ exposure to CIV shocks or lagged IVOL. We then conduct formal firm-level Fama-

MacBeth regressions in which exposure to CIV shocks and lagged IVOL are the key independent

variables. Following Herskovic et al. (2016) and Ang et al. (2006), we conduct our analysis in

this section using monthly IVOL. As before, IVOL is estimated as the idiosyncratic variance of

residual returns from CAPM regressions using daily returns within a given month, while CIV

is measured as the equally-weighted average of IVOL in the cross-section within a given month.

4.3.1 CIV as a pricing factor

We follow Herskovic et al. (2016) to estimate the exposure to CIV shocks. The shocks to CIV

are measured as the monthly changes.

ri,t − rf,t = αi,t + βCIV,i∆CIVt + εi,t. (24)
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where t denotes a month. rf,t is the monthly risk-free rate. We estimate the regression (24) on

a 60-month rolling window.10

We then sort stocks into quintiles based on their exposures to CIV shocks (βCIV ) each month

and form a portfolio of the stocks in each quintile and hold that portfolio in the following month.

Table 7 reports the average raw returns on each portfolio, as well as the return on a strategy

that goes long on the highest βCIV quintile and short on the lowest βCIV quintile. Consistent

with the finding in Herskovic et al. (2016), the stocks with highest βCIV earn a significantly

lower average return in the holding month than the stocks with lowest βCIV . On average, the

equally-weighted and value-weighted returns of the long-short portfolio are -0.84% and -0.25%

respectively, across repeated simulation runs.

[Insert Table 7 here]

We also find that the portfolio with highest βCIV have lower CAPM beta, lower IVOL, higher

equity value and lower leverage than the portfolio with lowest βCIV . There is a negative

correlation between βCIV and IVOL, suggesting that higher-IVOL stocks have lower βCIV on

average. This negative correlation is consistent with the observation in Herskovic et al. (2016)

that the correlation between the two is -6%.11

We relate the negative pricing effect of βCIV to the cross-sectional difference in firms’ financial

leverage. As we discussed in our illustrative model, if the economy does poorly (well), then all

firms will tend to become more (less) levered, but this effect is not uniform. Following this idea,

we use the table below to illustrate our explanation.

A negative shock in the market asset portfolio causes a positive shock in market leverage and

hence a positive shock in CIV . The high-leverage firms suffer large losses in equity value when

the market does poorly; hence, when we regress the equity returns on ∆CIVt, the estimate of

βCIV is negative and large in magnitude. An example is the lowest βCIV quintile in Table 7.

In turn, the leverage of such firms will further increase because of the large loss in equity value

in the current period t. High leverage implies a high expected return in the next period t+1.

The upshot is a negative relation between βCIV and expected stock returns. In Section 4.3.3,

10We require a minimum of 36 months of observations for a stock to be included in any given 60-month period.
11The correlation in Herskovic et al. (2016) is likely to be a noisier measure of the true correlation than ours,

so we expect its magnitude to be smaller.
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Financial leverage, exposure to CIV shocks, and expected stock returns

This table illustrates how financial leverage is related to the negative relation between the exposure to
CIV shocks and expected stock returns. rAm,t is the market asset return in period t. CIV is the common
IVOL factor measured as the equally-weighted average of IVOL in the cross-section. ∆CIV is the shock
to CIV . rEi,t is the individual equity return in period t. E(rt+1) is the expected equity return. βCIV,i,t

is the exposure to CIV shocks.

t t+ 1

Market negative rAm,t

Leveraget ↑
CIVt ↑ (+∆CIVt)

Higher-levered firms more negative rEi,t high E(rt+1)

more negative βCIV,i,t

Lower-levered firms less negative rEi,t low E(rt+1)

less negative βCIV,i,t

we report the results of Fama-MacBeth regressions to examine further the relation between

financial leverage and the negative pricing effect of the exposure to CIV shocks.

4.3.2 The IVOL puzzle effect

In this section we examine the cross-sectional relation between lagged IVOL and equity returns.

Each month, we sort the stocks into quintiles by IVOL and hold the portfolios in the following

month. In Table 8, we report the average raw returns on each portfolio, as well as the return on

a strategy that goes long on the highest-IVOL quintile and short on the lowest-IVOL quintile.

Ang et al. (2006) find that the stocks with high IVOL receive puzzlingly low future returns.

Inconsistent with Ang et al.’s result, we find a positive relation between IVOL and cross-sectional

equity returns in our numerical analysis based on the Goldstein et al. (2001) capital structure

model. This is to be expected since both expected return and IVOL are closely and positively

related to a firm’s leverage, as also argued in Bhandari (1988). As reported in Table 8, the

leverage of the high-IVOL quintile is 0.68 compared to 0.36 for the low-IVOL quintile. The

equally-weighted and value-weighted returns of the long-short portfolio are 2.98% and 1.27%,

respectively, averaged over repeated simulation runs. All intervals between the 5th and 95th

percentile values of the long-short portfolio returns (both equally-weighted and value-weighted)

consist of positive values; hence they do not include zero. We also find that the portfolios with

highest IVOL have more negative βCIV , higher CAPM beta, lower equity value, higher leverage

and a higher credit spread than the portfolios with lowest IVOL.
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[Insert Table 8 here]

The positive relation between IVOL and cross-sectional returns is persistent and is not driven

by short-term return reversal effects. Fu (2009) and Huang, Liu, Rhee, and Zhang (2010) relate

the observed cross-sectional pricing effect of IVOL in the empirical data to short-term return

reversals. By examining the longer-term performance of the IVOL-sorted portfolios, we show

that the positive IVOL-return relation in our result is not driven by short-term return reversals.

In Table 9, we show that the portfolio with highest IVOL earns significantly higher average

returns in the portfolio formation month, the holding month, as well as in a longer holding

horizon up to at least a quarter.12 All the long-short portfolio monthly returns are positive,

ranging from 2.81% to 2.98% during the holding months t+ 1 to t+ 3. The intervals between

the 5th and 95th percentile values of the long-short portfolio returns over repeated simulations

consist of values that are substantially larger than zero.

[Insert Table 9 here]

As discussed in Section 4.4.3.1, the highly levered firms tend to have the most negative βCIV .

Given that IVOL is positively related to leverage, which is negatively related to βCIV , it follows

that there should be a negative correlation between IVOL and βCIV . In addition, the negative

correlation between the two also reconciles the fact that both high IVOL and low βCIV predict

a high expected return because of high leverage. On the other hand, this negative relation

between IVOL and βCIV does not help to explain the IVOL puzzle in the empirical data. Hence

our analysis agrees with the conclusion in Herskovic et al. (2016) that the negative pricing effect

of both and IVOL co-exist.

4.3.3 Fama-MacBeth regressions

In the previous two subsections, we showed that the exposure to common IVOL factor shocks

(βCIV ) is negatively priced, and lagged IVOL is positively priced in the cross-section within

12In Appendix B and Table 13, we also test the persistence of the IVOL rankings. We focus on the high-IVOL
stocks, and report the subsample returns in the future depending on whether the stocks persistently stay in the
top IVOL quintile or not. We find that around 50% of the high-IVOL stocks persistently stay in the top IVOL
quintile for at least 3 months after portfolio formation. The fact that these stocks earn the highest returns in each
of the holding months suggests that the positive relation between future returns and IVOL is highly persistent.

30



the model. We also discussed the relation between financial leverage and the pricing effects

of βCIV and IVOL. In this section, we conduct more formal tests. In Table 10, we report the

correlations between the main variables. We find that expected equity returns are negatively

related to βCIV and size, but positively related to IVOL, leverage, credit spread and βCAPM .

The full panel correlation between βCIV and IVOL is -0.18 on average in repeated simulation

runs. The average correlation between leverage and βCIV is -0.21. In our illustrative model, we

showed that financial leverage determines both the measure of IVOL and βCAPM . Consistent

with this result, we find that financial leverage is strongly positively related to the measure of

IVOL and βCAPM ; the correlations are 0.73 and 0.56, respectively. Empirical studies such as

Bartram, Brown, and Stulz (2016) find no significant correlations between financial leverage and

IVOL. The difference between the empirical finding and the theoretical implication, as Choi and

Richardson (2016) point out, is due to failing to control for asset volatility. Doshi et al. (2016)

also note that the empirical studies use levered equity returns whereas theoretical implications

are valid for unlevered returns.

[Insert Table 10 here]

Next we conduct Fama-MacBeth type cross-sectional regressions to examine formally the ability

of βCIV and IVOL to explain the cross-sectional stock returns. Table 11 shows the risk premia

estimates from the Fama-MacBeth regressions with different independent variables. The first

column reports the univariate test result with βCIV . The estimated coefficient of βCIV is -0.32

on average, with all values between the 5th and 95th percentile values below zero. In 99%

of the repeated simulation runs, the coefficient is significant at the 5% level. In Column (2),

we include IVOL which is significantly priced in the cross-section with a positive sign. The

magnitude of the βCIV coefficient is reduced, and its sign even turns positive. In Column (3),

we find that financial leverage is significantly priced with a positive sign, and financial leverage

largely captures the negative pricing effect of βCIV . The average of the βCIV coefficient is

reduced to -0.01, with zero being included in the interval between the 5th and 95th percentile

values. In only 14% of repeated simulation runs is the βCIV coefficient significantly different

from zero at the 5% level.

[Insert Table 11 here]
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The negative pricing effect of βCIV in the cross-section can be explained by financial leverage.

This finding supports our analysis that low βCIV stocks tend to be highly levered. On the other

hand, IVOL is positively priced, because by construction in the Goldstein et al. (2001) capital

structure model, IVOL is directly determined by financial leverage. In this context, it is not

surprising to find that IVOL also captures the negative pricing effect of βCIV through the link

with financial leverage.

5 Conclusions

We provide an explanation of the common factor structure in IVOL through time-varying

financial leverage. The only requirement is that firms cannot completely and immediately

adjust their leverage to remove the natural correlation between leverage and the return on the

economy. In a simple model that assumes a single factor structure in firms’ asset returns, we

show that IVOL reflects the time variation in leverage, even when the residual equity returns are

uncorrelated and there is no common factor structure in the fundamental cash flow idiosyncratic

volatility. When the economy performs poorly (well), all firms tend to become more (less)

levered and firm-level IVOL will tend to increase (decrease) together.

We quantitatively examine the relation between financial leverage and the common factor in

IVOL using a variant of the Goldstein et al. (2001) capital structure model. Under reasonable

initial parameter settings, we show that a single common factor in IVOL explains a substantial

portion of the time variation in firm-level IVOL. Additionally, we find that for portfolios sorted

by financial leverage the average IVOL are strongly correlated with each other except for the

portfolio with lowest leverage. In the market-level time-series regression, we find that the

innovation in market average financial leverage significantly determines the innovations in the

cross-sectional average IVOL (CIV ). Importantly, when we use a sample of unlevered firms in

the same set up, IVOL does not display a common factor structure at all.

We also show in our numerical analysis that the exposure to CIV shocks is negatively priced

in the cross-section but IVOL is positively priced. Financial leverage explains these two pricing

effects jointly. IVOL is a positive monotonic transformation of the firm’s leverage; while the

firm’s exposure to CIV shocks has a negative relation with leverage. Hence firms with high

32



leverage tend to have high IVOL but low exposure to CIV shocks and have high expected

returns, and vice versa.
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Appendix A Proofs

A.1 Proofs of results in Section 2.2

The detailed proofs can be found in Goldstein et al. (2001). Here we mainly sketch the process

of the derivation.

For any claim on the asset value with intermediate payoff rate C, the value of the claim, F (V, t)

satisfies the following PDE

1

2
σ2V 2FV V + νV FV − rF + Ft + C = 0. (25)

Consider that the firm only issues a consol debt, thus the value function is time-invariant. The

resulting ODE becomes then

1

2
σ2V 2FV V + νV FV − rF + C = 0. (26)

For a homogeneous ODE with the term C, the solutions are of the form F (V ) = A1V
−y+A2V

−x,

where

x =
1

σ2

(ν − σ2

2

)
+

√(
ν − σ2

2

)2

+ 2rσ2

 > 0,

y =
1

σ2

(ν − σ2

2

)
−

√(
ν − σ2

2

)2

+ 2rσ2

 < 0.

The only boundary in this set up is the default boundary, VB. For convenience, define the price

of a claim that pays $1 when the firm defaults as pB. Since there is no intermediate payment

for this claim, the general solution, as above, is given by

pB(V ) = A1V
−y +A2V

−x. (27)

Consider the boundary conditions, limV→∞ pB(V ) = 0, limV→VB pB(V ) = 1, the price is then
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given by

pB(V ) =

(
V

VB

)−x
. (28)

Given this result, we now study the values of equity, debt and government claims, respectively.

We start by considering the holder receiving all the payouts as long as the firm does not default,

and zero in case of default. The value of the claim for this holder, denoted as Vsolv, should be

equal to the difference between the total value V and the value in case of default,

Vsolv = V − VBpB(V ). (29)

Next we consider the holder receiving all the coupons, constant C, if the firm does not default,

and zero if so. The value of a console bond with constant coupon C is given by C/r (recall we

are in the risk-neutral world). So the value of the holder, denoted as Vint, is given by:

Vint =
C

r
[1− pB(V )]. (30)

As such, we can easily write out the values accruing to the different claim holders who receive

payments when there is no default, and zero otherwise

Esolv(V ) = (1− τeff )(Vsolv − Vint),

Gsolv(V ) = τeff (Vsolv − Vint) + τiVint,

Dsolv = (1− τi)Vint,

where

τeff = (1− τc)(1− τd), (31)

and τi, τd, τc are the tax rates for interest, dividends and corporate profits, respectively.

We next study the value of different claim holders when there is a default. Recall that the PV

of contingent claim paying $1 in case of default is given by pB(V ). Given that the firm value

equals VB at default, the total PV of the claim to default is given by

Vdef (V ) = VBpB(V ). (32)
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The default value VB will be distributed to three parties: debt holders, government and

bankruptcy cost. Denote the proportional bankruptcy cost by α > 0, so that the PV of the

bankruptcy cost, BCdef (V ), equals

BCdef (V ) = αVdef (V ). (33)

The remaining value, (1 − α)VB, is distributed between the debt holder and the government

through tax. Here we assume that the tax rate is charged as a dividend payment. Then the

PVs of the default claims for the debt holder and government, respectively, equal

Ddef (V ) = (1− α)(1− τeff )Vdef (V ),

Gdef (V ) = (1− α)τeffVdef (V ).

The equity holder, of course, receives nothing in bankruptcy. So the total value of equity after

debt issuance is given by

E(C, V ;VB) = Esolv = (1− τeff )

[
V − VB

(
V

VB

)−x
− C

r

(
1−

(
V

VB

)−x)]
.

To obtain the optimal default value VB, we impose smooth-pasting condition as usual,

0 =
∂E

∂V

∣∣∣∣
V=VB

.

Then the optimal V ∗B is given by

V ∗B =
x

1 + x

C

r
≡ λC

r
, with λ =

x

1 + x
. (34)

Note that the optimal default boundary is a function of the coupon payment C.

Given this, we can rewrite the value of the equity as

E(V,C, VB(C)) = (1− τeff )

[
V +

1

1 + x
λx
(
C

r

)x+1

V −x − C

r

]
.

The debt holder receives C as long as the firm does not default, and (1− α)(1− τeff )VB upon
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default. So the value of the debt at any time is given by

D = Dsolv +Ddef ,

Let’s consider the optimal coupon. Before the issuance of the debt, the equity holder, owning

the whole firm, decides to issue the debt at the market value D(V0, C, VB(C)). There is also a

restructuring cost q, so the net value to the equity holder at time t = 0 is given by

(1− q)D(V0, C, VB(C)) + E(V0, C, VB(C)). (35)

The equity holder chooses the optimal capital structure (i.e., coupon C) by maximizing the

above value. It follows that:

C∗ =
rV0

λ

[(
1

1 + x

)(
A

A+B

)] 1
x

, (36)

where

A = (1− q)(1− τi)− (1− τeff ),

B = λ(1− τeff )(1− (1− q)(1− α)).

Appendix B Correlations and IVOL persistency

In the capital structure model in Goldstein et al. (2001), the credit spread is a direct positive

transformation of financial leverage. In Table 6, we examine the determinants of CIV at the

market level using the market average credit spread and the market average financial leverage

as dependent variables. In Table 12, we examine the correlations between the market average

credit spread and the market average financial leverage both in levels and in differences. We

do not include the two variables in our regressions simultaneously because they are very highly

correlated.

In our numerical analysis based on the capital structure model in Goldstein et al. (2001), we

find a significant positive relation between IVOL and expected stock returns. In Table 13, we

further examine the persistence of the IVOL ranking and returns for the high-IVOL stocks over
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longer holding horizons. We show that more than 50% (507.9 out of 985.4) of the stocks sorted

into the top IVOL quintile in the current month remain in the top quintile in each of the next

three months, and that this group of stocks earns higher average returns than the other stocks

which initially were also part of the top quintile.

Appendix C Symbols

Symbol Description
Superscripts
A Assets (of a firm or the market portfolio)
E Equity (of a firm or the market portfolio)
Subscripts
i A firm
m The market portfolio
t One period
f Risk-free
Symbols in Section 4.2
A
i Asset beta of firm i
rAm,t Period t return on the market portfolio of all assets

rAi,t Period t return on firm i’s assets

rEi,t Period t return on firm i’s equity

rf Risk free rate
eAi,t The idiosyncratic return of the period t return on the assets of

firm i measured relative to the return on the market portfolio of
all assets

A
i The idiosyncratic volatility of return on the assets of firm i
ErAm,t Expected asset returns

V A
i,t−1 The value of firm is assets at the start of period t

DA
i,t−1 The value of the debt of firm i at the start of period t

λ The weight put on the desired firm-specific asset-to-equity ratio
Symbols in Section 4.3
dZ Brownian motions common factor Z under the risk-neutral prob-

ability measure

dZ̃ Brownian motions common factor Z under the objective probabil-
ity measure

dWi Brownian motions firm-specific factor Z under the risk-neutral
probability measure

d(W̃i) Brownian motions firm-specific factor Z under the objective prob-
ability measure
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Symbol Description
δi Asset payout flow of firm i
ρi the proportion of the total asset variance contributed by the common shock Z
rf Risk-free rate
θ Sharpe ratio of the exposure to the common shock dZ
σ Asset return volatility
α Bankruptcy cost
ε Tax shield effective rate when bankruptcy
q Restructuring (refinancing) cost rate
µ Drift of the payout flow rate
γ Upward refinancing scaling factor
n The number of refinancing rounds that have taken place
τi Personal interest income tax rate
τd Personal dividend income tax rate
τc Corporate tax rate
C Coupon payment
C0 Initial coupon payment
C1 The coupon payment after the first refinancing when the firm remains solvent
Cn The coupon payment after the nth refinancing when the firm remains solvent
Vi,0 Initial asset value of firm i
V0 Initial asset value of a firm
Vt Asset value at time t
VZ Asset value at the beginning of each period after the previous refinancing
VB Bankruptcy threshold
VB.0 Bankruptcy threshold before bankruptcy or the first refinancing
VB.n Bankruptcy threshold after the nth refinancing and before bankruptcy or the next

refinancing
VU Upward refinancing threshold
VU,0 Upward refinancing threshold before bankruptcy or the first refinancing
VU,n Upward refinancing threshold after the nth refinancing and before bankruptcy or

the next refinancing
PU (V ) The present value of a claim that pays $1 contingent on firm value reaching VU
PB(V ) The present value of a claim that pays $1 contingent on firm value reaching VB
e0(V0) The period 0 present values to the dividends after the initial debt issuance, but

before bankruptcy or next refinancing
d0(V0) The period 0 present values to the coupon payments after the initial debt issuance,

but before bankruptcy or next refinancing
g0(V0) The period 0 present values to the taxes after the initial debt issuance, but before

bankruptcy or next refinancing
e0(V0) The period 0 present values to the dividends after the initial debt issuance, but

before bankruptcy or next refinancing
d0(V0) The period 0 present values to the coupon payments after the initial debt issuance,

but before bankruptcy or next refinancing
g0(V0) The period 0 present values to the taxes after the initial debt issuance, but before

bankruptcy or next refinancing
D0(V0) Initial debt value
E(V0) Initial equity value
E(V0−) Initial equity value before issuing any debt
D(Vt) Debt value at time point t
E(Vt) Equity value at time point t
E(VZ−) Equity value immediate before the next refinancing

40



Appendix D Setups and Simulation Algorithm

We study a cross-section of firms whose capital structure decisions follow the Goldstein et al.

(2001) upward refinancing capital structure model. In this section, we follow their notation.

Given the input parameters, the first step is to numerically solve for the initial optimal C∗, γ∗

and V ∗B endogenously. The second step is to simulate the firm’s asset value over a long horizon

(daily data over 50 years) and repeat this for a cross-section of firms. If a firm defaults, a new

firm is introduced with the same characteristics. The (unbalanced) panel of daily firm asset

returns that results is then used to compute equity returns, IVOL and other metrics analyzed

in this paper. The details of the two steps are as follows.

Step 1 Numerical solution

At time t = 0 (beginning), management maximizes the equity value before issuing the initial

debt,

E(V0−) =
e0(V0) + d0(V0)− qD0(V0)

1− γpU (V0)
.

Then, firm management chooses the initial coupon payment C, upward refinancing multiplica-

tion factor γ and bankruptcy boundary VB such that the total equity value E(V0) for arbitrary

V during any time after the initial debt issuance and before the first upward refinancing is

maximized. d0
V0

and e0
V0

are the period 0 present values to the coupon payment and dividends,

respectively, after the initial debt issuance, but before bankruptcy or next refinancing. The

symbols are listed in Appendix C. The first-order-condition (FOC) is

∂E(V )

∂V
|V=VB = 0,

= [γE(V0−)−D0(V0)] ·

(
V −XB

M
yV −y−1 −

V −yB

M
xV −x−1

)

−B1yV
−y−1 −B2xV

−x−1 +K,

= [γE(V0−)−D0(V0)] · y − x
M

V −x−y−1
B −B1yV

−y−1
B −B2xV

−x−1
B +K,
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where x and y are defined as

x =
1

σ2

[
(µ− σ2

2
) +

√
(µ− σ2

2
)2 + 2rσ2

]
,

y =
1

σ2

[
(µ− σ2

2
)−

√
(µ− σ2

2
)2 + 2rσ2

]
.

Furthermore, the upward refinancing threshold equals

VU = γV0,

the market value of debt

D0(V0) =
d0(V0)

1− pU (V0)
.

pB(V ) is the present value of a claim that pays $1 contingent on firm value reaching VB; pU (V )

is the present value of a claim that pays $1 contingent on firm value reaching VU (before reaching

VB),

pU (V ) = −
V −xB

M
V −y +

V −yB

M
V −x,

pB(V ) =
V −xU

M
V −y −

V −yU

M
V −x,

M = V −yB V −xU − V −yU V −xB .

The total value of the firm can then be written in terms of its components as

Vsolv,0(V ) = V − pU (V )VU − pB(V )VB,

Vint,0(V ) =
C0

r
[1− pU (V )− pB(V )],

Vdef,0(V ) = pB(V )VB.

Vsolv,0(V ) is the total present value of claims of equity holders, debt holders and government to

the firm while the firm is solvent. Vint,0(V ) is the present value of the claim to interest payment

while the firm is solvent. Vdef,0(V ) is the present value of the default claim.
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The value of debt and equity at any point between two consecutive restructuring epochs equals

d0(V ) = (1− τi)Vint,0(V ) + (1− α)(1− τeff )Vdef,0(V )

e0(V ) =

[
B1V

−y +B2V
−x + (KV −HC

r
)

]
∗ (V < V∗)

+

[
A1V

−y +A2V
−x +K(V − C

r
)

]
∗ (V > V∗)

Following Goldstein et al. (2001), the value of equity loses some of the tax shield when V drops

below a specified level V∗, to reflect the fact that a firm that is not profitable loses part of its tax

shelter. As in Goldstein et al, we assume the threshold for the tax shield not be fully captured

to be V∗ = 17C.

We define the following helper variables.

K = 1− τeff ,

H = 1− ετeff ,

B1 = (HC/r −KVB)c4/M +K(VU − C/r)c2/M

+ (K −H)(C/r)c2(xc3/c5 − yc4/c6)/[(x− y)M ],

B2 = (HC/r −KVB)/c2 −B1c1/c2,

A1 = B1 − x(K −H)(C/r)/[(y − x)c5],

A2 = B2 − y(K −H)(C/r)/[(x− y)c6],

c1 = V −yB , c2 = V −xB ; c3 = V −yU , c4 = V −xU ; c5 = V −y∗ , c6 = V −x∗ .

Finally, we also impose boundary conditions on the decision variables,

0 < VB < V0,

VB < V∗,

γ > 1,

C ≥ 0.

We numerically solve for the initial optimal C∗, γ∗ and V ∗B and then we can also compute the
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main variables as follows.

The initial total equity value of a levered firm

E(V0) = γpU (V0)E(V0−) + e0(V0)− pU (V0)D0(V0).

The value of debt equals

D0(V0) =
d0(V0)

1− pU (V0)
.

The initial (optimal) leverage ratio is given by

Lev0 =
D0(V0)

D0(V0) + E(V0)
.

Tinally, the credit spread is given by

CS0 = (C/D0)− [τ/(1− τi)].

Step 2 Simulation of the dynamic model

We start with a cross-section of 5000 identical firms. We simulate daily returns assuming 252

trading days per year over a 50 year period. If V ∗B < Vt < VU , then the firm moves to next

instant without any action. Each time the firm’s asset value reaches the upward refinancing

threshold Vt ≥ VU , the firm buys back the current debt and issues more debt, and scales up C,

VB, and VU by γ, where γ is a constant throughout time. If the firm asset value reaches the

bankruptcy boundary Vt ≤ V ∗B, then the firm goes bankrupt.

We generate a time-series of asset values Vt for each firm, and then compute the daily equity

value E(Vt). The equity return is measured as a simple return, rEi,t = E(Vt)/E(Vt−1)−1. Finally,

we compute monthly and annual IVOL from the daily equity returns.
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Figure 1: Example of refinancing

In this figure we show a typical sample path of firm asset value in our simulations, based on the optimal
upward-refinancing capital structure strategy in Goldstein et al. (2001). A firm’s asset value follows a Ge-
ometric Brownian motion. The initial asset value of the firm is V0= $100. The asset value (short-dashed
green line) follows Geometric Brownian Motion. The long-dashed red line is the upward refinancing
threshold of asset value VU . The solid blue line is the bankruptcy boundary VB . Period 0 ends either
by firm value reaching the bankruptcy boundary V ∗

B,0, at which point the firm declares bankruptcy, or
by firm value reaching the upward refinancing threshold VU,0 = γV0, at which point the debt is recalled
and the firm issues a new, larger amount of debt. γ is the endogenously determined, constant scaling
factor. The model is tractable since at the start of each new period the current firm value, the updated
bankruptcy and refinancing boundaries and the optimal debt level and coupon are all scaled by γ com-
pared to the start of the previous period. That is, VU,n = γnVU,0, VB,n = γnVB,0, Cn = γnV0, where n
indicates the number of refinancing rounds that have taken place. The simulation runs for 50 years with
12600 days in total.
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Figure 2: Time-series plots of the main variables

In this figure, we plot the time-series of the main variables. We construct the samples from repeated
simulations on the optimal upward refinancing capital structure model in Goldstein et al. (2001). Each
simulation run includes 5000 initial firms over 50 years. We compute the market value of debt and equity
for each firm in each month. Leverage = D/(D + E). We then compute the cross-sectional average
debt, equity, and leverage in each month. In each figure, the solid blue line represents the mean of the
corresponding variable in repeated simulations; the two dashed lines represent the 5th and 95th percentile
values.
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Figure 3: Comovement in portfolios’ average IVOL from one simulation run

We compute the annual IVOL as the residual return volatility from the CAPM using daily equity returns.
We construct the samples from repeated simulations on the optimal upward refinancing capital structure
model in Goldstein et al. (2001). In each simulation run, we sort the stocks by their size (measured as
equity value) or by financial leverage into quintiles, and then compute the average annual IVOL for each
quintile. Figures (a) and (b) plot the average annual IVOL of the quintiles sorted by size and leverage,
respectively, from a typical simulation run.
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Figure 4: Distribution of average R2

This figure plots the distribution of average R2 of firm-by-firm single-factor regressions on individual
IVOL, in repeated simulations. We construct the samples from repeated simulations on the optimal
upward refinancing capital structure model in Goldstein et al. (2001). In each simulation run, we run a
time-series regression IV OLi,t = ai + biCIVt + εi,t at the firm level, and compute the average R2 of the
regressions on all firms. Annual IVOL for each firm is the volatility of the residual returns from CAPM
regressions using daily equity returns. CIVt is the cross-sectional equally-weighted average IVOL in each
year.
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Table 1: Simulation parameter values

This table reports the parameter values used in the simulations.

V0 = $100 Initial asset value

τc = 35% Corporate tax rate

τi = 35% Personal interest income tax rate

τd = 20% Personal dividend income tax rate

rf = 4.5% After tax risk free rate

σ = 0.25 Asset return volatility

α = 0.05 Bankruptcy cost

ε = 0.5 Tax shield effective rate when bankruptcy

q = 0.01 Restructuring (refinancing) cost rate

θ = 0.2 Sharpe ratio of the common shock dZ

P/E = 20 Price-to-earning ratio

Table 2: Summary statistics for the main variables

This table reports the initial value and the means of the main variables. We construct the sample
from repeated simulations on the optimal upward refinancing capital structure model in Goldstein et al.
(2001). Each simulation run includes 5000 initial firms over 50 years. In the column headed Initial
Value, we report the optimal initial value of coupon payment (C), bankruptcy boundary (VB) and
refinancing scaling factor (γ). γ is endogenously determined and remains constant. V is the asset value
of the firm. D and E are the market values of debt and equity, respectively. Leverage = D/(D + E).
Creditspread = [C/D−rf (1−τi)]×104. rE is the monthly equity return. Nstock is the average number
of stocks in the cross-section. In each simulation run, we compute the cross-sectional average for each
variable and average over the full time-series. Column Mean reports the mean, as well as the 5th and
95th percentile values (in brackets) for each variable in repeated simulation runs.

Variables Initial Value Mean

γ 1.70 1.70

V 100.00 347.13
[139.83, 871.46]

C 1.85 7.53
[3.36, 18.6]

D 20.92 80.43
[34.93, 199.05]

E 35.61 115.23
[43.69, 296.63]

Leverage 0.37 0.48
[0.44, 0.51]

Creditspread 193.57 260.89
[237.74, 282.97]

rE 1.06
[0.8, 1.29]

N stock 5000 4928
[4860.84, 4978.03]
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Table 3: IVOL estimated from CAPM and PCA

In this table, we compare the IVOL estimated from CAPM and the IVOL estimated from Principal
Component Analysis (PCA). IVOL is estimated as the idiosyncratic variance of the equity returns from
CAPM or PCA using daily data. We report the mean of the average IVOL for both measures in
repeated simulations. The numbers in brackets are the 5th and 95th percentile values. Row CORR
shows the full panel correlations between the two measures of IVOL. Panels A and B use the annual and
monthly IVOL, respectively. We construct the sample from repeated simulations on the optimal upward
refinancing capital structure model in Goldstein et al. (2001).

Panel A Annual

IV OLCAPM IV OLPCA
MEAN 0.26 0.25

[0.21, 0.31] [0.20, 0.30]
STD 0.51 0.48

[0.38, 0.70] [0.36, 0.65]
CORR 0.99

[0.98, 0.99]

Panel B Monthly

IV OLCAPM IV OLPCA
MEAN 0.24 0.18

[0.19, 0.28] [0.15, 0.22]
STD 0.64 0.46

[0.43, 0.93] [0.32, 0.66]
CORR 0.96

[0.94, 0.97]
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Table 4: Pairwise correlations

This table reports the average pairwise correlations between the average IVOL of the portfolios sorted
by size or leverage. In each simulation run, we sort the firms by size (or by leverage) into quintiles and
compute the average IVOL for each quintile in each year, then we compute the pairwise correlations
of the average IVOL between the quintiles. We repeat this procedure across repeated simulation runs.
Next, we compute the mean, 5th and 95th percentile values (numbers in brackets) of the correlations
for each quintile pair over the repeated simulation runs. Panels A and B use annual and monthly data,
respectively. We construct the sample from repeated simulations on the optimal upward refinancing
capital structure model in Goldstein et al. (2001).

Panel A Annual

A1 Size rank 1 2 3 4 5

1 1.00
2 0.95 1.00

[0.92, 0.97]
3 0.91 0.96 1.00

[0.84, 0.96] [0.92, 0.99]
4 0.87 0.91 0.94 1.00

[0.75, 0.95] [0.78, 0.97] [0.88, 0.98]
5 0.81 0.86 0.89 0.93 1.00

[0.62, 0.94] [0.65, 0.97] [0.75, 0.97] [0.84, 0.98]

A2 Leverage rank 1 2 3 4 5

1 1.00
2 0.13 1.00

[-0.36, 0.73]
3 0.06 0.97 1.00

[-0.53, 0.73] [0.95, 0.99]
4 0.10 0.94 0.98 1.00

[-0.51, 0.75] [0.9, 0.97] [0.97, 0.99]
5 0.01 0.85 0.91 0.94 1.00

[-0.50, 0.59] [0.71, 0.94] [0.79, 0.97] [0.86, 0.98]
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Panel B Monthly

B1 Size rank 1 2 3 4 5

1 1.00
2 0.96 1.00

[0.94, 0.98]
3 0.95 0.96 1.00

[0.9, 0.97] [0.92, 0.99]
4 0.90 0.89 0.93 1.00

[0.79, 0.95] [0.75, 0.96] [0.85, 0.97]
5 0.73 0.72 0.75 0.81 1.00

[0.39, 0.91] [0.34, 0.91] [0.42, 0.91] [0.57, 0.93]

B2 Leverage rank 1 2 3 4 5

1 1.00
2 -0.17 1.00

[-0.42, 0.15]
3 -0.14 0.98 1.00

[-0.38, 0.17] [0.96, 0.99]
4 -0.11 0.94 0.99 1.00

[-0.34, 0.19] [0.91, 0.97] [0.97, 0.99]
5 -0.11 0.87 0.92 0.95 1.00

[-0.31, 0.17] [0.79, 0.94] [0.86, 0.97] [0.89, 0.98]
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Table 5: Explaining firm-level IVOL using CIV

This table reports the results of using the common IVOL factor (CIV ) to explain the time-series varia-
tions in firm-level IVOL. In each simulation run, we run time-series regressions IV OLi,t = ai+biCIVt+εi,t
for each individual stock over the full sample period and then compute the average R2 in the cross-section.
CIV is measured as the equally-weighted average IVOL. We report the mean of the average R2 in the
repeated simulation runs. The numbers in brackets are the 5th and 95th percentile values of R2. To
compare the relation between the common factor structure in IVOL and financial leverage, we refer to
our simulation sample as the levered sample. In the corresponding unlevered sample, we use the same
initial parameter values and the same dynamics of asset value V, but we force the coupon payment C
and the bankruptcy boundary VB equal to zero for all stocks throughout the simulation horizon. Panels
A and B use annual and monthly data, respectively. We construct the sample from repeated simulations
on the optimal upward refinancing capital structure model in Goldstein et al. (2001).

Panel A Annual

R2 â b̂

Levered 0.25 -0.14 1.87
[0.18, 0.31] [-0.25, -0.01] [1.35, 2.39]

Unlevered 0.02 -0.05 1.22

Panel B Monthly

R2 â b̂

Levered 0.13 -0.13 1.88
[0.09, 0.16] [-0.21, -0.04] [1.43, 2.28]

Unlevered 0.00 -0.05 1
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Table 6: Determinants of CIV

This table reports the results for linear regressions of the first difference of the common IVOL factor
(∆CIV ) on the first differences of market equity return variance (∆σ2

m), average financial leverage
(∆CSm), and average credit spread (∆CSm). ∆CIVt = α + β1∆σ2

m,t + β2∆Levm,t + β3∆CSm,t + εt.
We run this time-series regression at the market level in each simulation run, and report the mean,
5th and 95th percentile values (numbers in brackets) for the estimated coefficients. The percentages
are the percentage of simulation runs in which the estimated coefficient is significant at the 5% level.
We construct the sample from repeated simulations on the optimal upward refinancing capital structure
model in Goldstein et al. (2001).

Panel A Annual Panel B Monthly
(1) (2) (1) (2)

∆σ2
m 2.45 2.36 ∆σ2

m 0.10 0.10
[1.44, 3.63] [1.37, 3.55] [0.03, 0.22] [0.03, 0.22]
99% 99% 84% 85%

∆Levm 0.43 ∆Levm 0.38
[0.19, 0.70] [0.22, 0.56]
78% 100%

∆CSm 8.02 ∆CSm 6.39
[3.72, 12.39] [3.83, 9.66]
89% 100%

adj.R2 0.58 0.61 adj.R2 0.06 0.07
[0.38, 0.73] [0.41, 0.75] [0.03, 0.11] [0.04, 0.12]

Nyear 49 49 Nmonth 598 598
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Table 7: Returns on portfolios sorted by exposure to CIV

This table reports the cross-sectional return difference of the portfolios sorted by exposure to the common
IVOL factor (CIV ). We run firm-by-firm time-series regressions ri,t−rf = αi,t +βCIV,i∆CIVt + εi,t in a
60-month rolling window to estimate βCIV,i, the exposure to the innovations in CIV . We sort the stocks
by βCIV into quintiles in the current month and hold the portfolios in the next month. We construct the
sample from repeated simulations on the optimal upward refinancing capital structure model in Goldstein
et al. (2001). We report the mean, 5th and 95th percentile values (numbers in brackets) from repeated
simulations for each variable in each quintile. N is the number of stocks.

βCIV rank 1-Low 2 3 4 5-High H-L

βCIV -3.14 -1.61 -0.95 -0.32 0.77 3.92
[-3.84, -2.08] [-2.2, -0.56] [-1.55, 0.21] [-0.97, 0.94] [-0.04, 2.35] [3.29, 4.71]

ri,t(EW ) 2.01 0.91 0.77 0.74 1.16 -0.84
[1.72, 2.25] [0.69, 1.14] [0.5, 1.03] [0.45, 1.01] [0.89, 1.44] [-1.18, -0.48]

ri,t(VW ) 0.59 0.36 0.31 0.3 0.33 -0.25
[0.29, 0.82] [0.06, 0.67] [0.03, 0.59] [-0.03, 0.58] [0.01, 0.64] [-0.37, -0.13]

α(EW ) 1.46 0.49 0.37 0.34 0.72 -0.74
[1, 1.93] [0.34, 0.67] [0.27, 0.47] [0.28, 0.43] [0.5, 0.97] [-1.11, -0.38]

α(VW ) 1.04 0.93 0.91 0.92 0.97 -0.07
[0.86, 1.23] [0.7, 1.16] [0.67, 1.15] [0.65, 1.17] [0.7, 1.22] [-0.19, 0.07]

IV OL 0.53 0.42 0.4 0.39 0.43 -0.1
Leverage 0.57 0.48 0.46 0.46 0.48 -0.09
Creditspread 325.69 262.97 249.49 245.54 265.72 -59.96
Size 85.67 127.01 140.23 145.81 132.55 46.88
βCAPM 1.59 1.22 1.16 1.15 1.27 -0.32
N 938 939 939 939 939
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Table 8: Returns on portfolios sorted by IVOL

This table reports the cross-sectional return difference of the portfolios sorted by IVOL. We sort the
stocks by IVOL into quintiles in the current month and hold the portfolios in the next month. We
construct the sample from repeated simulations on the optimal upward refinancing capital structure
model in Goldstein et al. (2001). We report the mean, 5th and 95th percentile values (numbers in
brackets) from repeated simulations for each variable in each quintile. N is the number of stocks.

IV OL rank 1-Low 2 3 4 5-High H-L

IV OL 0.26 0.32 0.36 0.43 0.72 0.46
[0.25, 0.27] [0.3, 0.33] [0.34, 0.38] [0.4, 0.47] [0.61, 0.83] [0.36, 0.56]

ri,t(EW ) 0.21 0.41 0.55 0.73 3.2 2.98
[-0.09, 0.51] [0.07, 0.74] [0.16, 0.92] [0.3, 1.09] [2.84, 3.55] [2.36, 3.47]

ri,t(VW ) 0.03 0.28 0.44 0.62 1.3 1.27
[-0.25, 0.3] [-0.01, 0.56] [0.1, 0.73] [0.2, 0.97] [1.06, 1.51] [1.12, 1.45]

α(EW ) -0.11 0.07 0.18 0.30 2.50 2.60
[-0.13, -0.09] [0.03, 0.1] [0.12, 0.22] [0.24, 0.35] [1.71, 3.3] [1.82, 3.41]

α(VW ) 0.99 0.91 0.83 0.74 1.55 0.56
[0.77, 1.24] [0.67, 1.18] [0.59, 1.09] [0.52, 0.97] [1.27, 1.85] [0.46, 0.66]

βCIV -0.82 -0.87 -0.94 -1.09 -1.49 -0.68
Leverage 0.36 0.39 0.44 0.52 0.68 0.32
Creditspread 190.96 207.25 229.81 274.41 403 212.04
Size 173.39 149.19 123.95 88.13 42.18 -131.2
βCAPM 0.94 0.98 1.05 1.21 2.01 1.07
N 985 986 986 986 985
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Table 9: Longer-term performance of the portfolios sorted by IVOL

This table reports the monthly returns of portfolios sorted by IVOL. We estimate the monthly IVOL
as the residual return volatility from CAPM using daily equity returns. We sort the stocks by IVOL
into quintiles in the formation month t, and hold the portfolios in the following three month t+1 to
t+3. We construct the sample from repeated simulations on the optimal upward refinancing capital
structure model in Goldstein et al. (2001). We report the mean, 5th and 95th percentile values (numbers
in brackets) of the portfolio returns from repeated simulations.

Rank N t t+1 t+2 t+3

1-Low 985.24 0.91 0.21 0.25 0.26
[0.58, 1.25] [-0.09, 0.51] [-0.05, 0.56] [-0.06, 0.57]

2 985.81 0.83 0.41 0.41 0.41
[0.46, 1.2] [0.07, 0.74] [0.07, 0.73] [0.08, 0.74]

3 985.81 0.77 0.55 0.54 0.54
[0.41, 1.14] [0.16, 0.92] [0.16, 0.88] [0.17, 0.9]

4 985.81 0.79 0.73 0.75 0.76
[0.45, 1.11] [0.3, 1.09] [0.37, 1.1] [0.37, 1.1]

5-High 985.43 1.99 3.2 3.06 3.06
[1.58, 2.31] [2.84, 3.55] [2.74, 3.4] [2.74, 3.41]

High-Low 1.08 2.98 2.81 2.81

[0.36, 1.61] [2.36, 3.47] [2.21, 3.24] [2.2, 3.26]
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Table 10: Full panel correlations

For each simulation run, we compute the full panel correlations between the main variable βCIV , size,
IV OL, leverage, creditspread(CS) and rt+1 as a proxy for expected equity returns. This table reports
the mean, 5th and 95th percentile values (numbers in brackets) of the correlations from repeated simu-
lations. We construct the sample from repeated simulations on the optimal upward refinancing capital
structure model in Goldstein et al. (2001).

βCIV Size IV OL Leverage CS βCAPM rt+1

βCIV 1

Size 0.18 1
[0.09, 0.26]

IV OL -0.17 -0.59 1
[-0.24, -0.08] [-0.70, -0.46]

Leverage -0.21 -0.78 0.73 1
[-0.29, -0.11] [-0.87, -0.67] [0.67, 0.77]

CS -0.21 -0.77 0.81 0.98 1
[-0.29, -0.11] [-0.87, -0.67] [0.75, 0.84] [0.97, 0.98]

βCAPM -0.14 -0.46 0.61 0.56 0.62 1
[-0.19, -0.07] [-0.54, -0.36] [0.53, 0.65] [0.50, 0.60] [0.56, 0.66]

rt+1 -0.02 -0.07 0.11 0.07 0.09 0.09 1
[-0.02, -0.01] [-0.07, -0.06] [0.10, 0.12] [0.06, 0.07] [0.08, 0.09] [0.08, 0.10]
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Table 11: Fama-MacBeth regression

This table reports the Fama-MacBeth regression results. The dependent variable is the firm-level equity
return. βCIV is the individual firm’s exposure to the common IVOL factor CIV . IVOL is the monthly
idiosyncratic equity return volatility. We report the mean, 5th and 95th percentile values (numbers in
brackets) for the estimated coefficients from repeated simulation runs. The percentages are the percentage
of simulation runs in which the estimated coefficient is significant at the 5% level. N is the number of
months. We construct the sample from repeated simulations on the optimal upward refinancing capital
structure model in Goldstein et al. (2001).

(1) (2) (3)

βCIV -0.32 0.13 -0.01
[-0.50, -0.17] [0.05, 0.25] [-0.07, 0.05]
99% 93% 14%

IV OL 10.38
[9.54, 11.58]
100%

Leverage 9.89
[9.18, 10.66]
100%

adj.R2 0.01 0.05 0.04
N 540 540 540

Table 12: Correlations between financial leverage and credit spread

In the first row, we calculate the market average financial leverage and the market average credit spread
in each year (or month), and compute the correlations between the two. Similarly, in the second row,
we compute the correlation between the changes in market average financial leverage and the changes
in market average credit spread. This table reports the mean, 5th and 95th percentile values (numbers
in brackets) of the correlations from repeated simulations. We construct the sample from repeated
simulations of the optimal upward refinancing capital structure model in Goldstein et al. (2001).

Annual Monthly

CORR (CS, Leverage) 0.997 0.997
[0.995, 0.998] [0.996, 0.998]

CORR (CS, Leverage) 0.994 0.990
[0.990, 0.997] [0.985, 0.994]
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Table 13: Persistence of IVOL ranking in the high IVOL quintile

We focus on the stocks sorted into the top IVOL quintile in the formation month t, and further divide
the quintile in the subsequent month (t+1) based on whether they remain in the top IVOL quintile, and
repeat the sorting in month t + 2 and t + 3. “H” refers to the stocks that remain in the top IVOL
quintile, “L” refers to stocks that drop out of the top IVOL quintile. For example, groups HHH and
HHL are constructed by splitting the stocks in group HH based on whether or not they remain in the
top IVOL quintile by the end of month t + 2. This table reports the mean, 5th and 95th percentile values
(numbers in brackets) of the number of stocks and the returns for each group from repeated simulations.
N is the number of stocks. We construct the sample from repeated simulations of the optimal upward
refinancing capital structure model in Goldstein et al. (2001).

rank N t t+1 t+2 t+3

HHH 507.9 4.32
[439.29, 539.99] [3.91, 4.76]

HHL 120.57 1.01
[116.93, 127.94] [0.48, 1.45]

HH 627.63 3.88 3.84
[567, 657.28] [3.5, 4.27] [3.48, 4.25]

H 985.43 1.99 3.2 3.06 3.06
[971.98, 995.43] [1.58, 2.31] [2.84, 3.55] [2.74, 3.4] [2.74, 3.41]

HL 359.9 0.87 1.1
[315.35, 426.42] [0.4, 1.27] [0.8, 1.4]

HLH 105.26 1.61
[96.24, 116.19] [1.35, 1.89]

HLL 255.17 0.78
[219.3, 310.82] [0.38, 1.16]
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