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Abstract

This paper puts forth and estimates a dynamic asset pricing model with asymmetric

information to study the relation between the media and the stock market. In the model,

the speed by which information spreads through a population of rational agents determines

both the amount of media coverage and the equilibrium fraction of informed agents. Infor-

mation is more valuable when the intertemporal growth in the precision of the uninformed

about the random payoff is large. The model predicts that faster-spreading positive news

induces higher pre-announcement returns, lower post-announcement returns, and higher

announcement trade volume. I investigate the performance of the model using a panel of

stock returns, volume, and media coverage around FDA drug approvals. Reduced-form

tests reveal that, consistent with the model, drug approvals that receive more media ex-

posure on the approval day and the next exhibit higher turnover on those days and lower

returns the following week. Using structural estimation, I estimate that the amount of non-

informational trading (noise) necessary to keep prices from fully revealing all information

is small. Model-generated effects are quantitatively similar to those in the data. In equilib-

rium, fast-spreading news is purchased at a high rate, whereas slow-spreading news is not

pursued at all.
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1 Introduction

The covariation of media coverage with asset prices has been documented by several recent

empirical studies. This literature documents two pervasive features of the data. The first is

that more extensive media coverage of news pertaining to a publicly traded firm is followed by

less price drift in its stock price (Chan, 2003; Peress, 2008; Fang and Peress, 2009). Second,

more media coverage is associated with more trading activity (Peress, 2008; Barber and Odean,

2008; Engelberg and Parsons, 2010). These facts are hard to reconcile with the canonical asset

pricing model in which prices fully reveal all publicly available information. The empirical

literature thus far has focused on comparative statics of the one-period Merton (1987) model

as the leading explanation of this phenomena. This paper explores the possibility that these

stylized facts can be generated by a dynamic private information model in which the amount

of media coverage relates to the speed by which information spreads through a population of

rational agents.

I model media coverage as increasing in the level of public interest in a story. A simple

observation motivates this approach: more interesting news spread faster. When people meet

and only some of them have information, the probability that information is transmitted, the

transmission rate of information, is higher for more interesting information. Media coverage

of a particular story also decreases in the availability of other newsworthy material. Consider

the problem of a representative daily newspaper editor. The amount of space the editor can

allocate to a given story is limited by many factors, such as the attention span of its readers, the

cost of print and distribution, and journalists’ time. The editor caters to his readers’ interests

by giving the most exposure to the most interesting stories of the day. But these are the

same stories that are likely to spread faster by word-of-mouth, even in the absence of media

coverage. This insight can explain the covariation between stock returns and coverage by the

popular press, even in a financial market where only professional traders matter for asset prices.

Empirical evidence surveyed below shows that money managers do in fact spread and exploit

information over their social networks. Media coverage can therefore mirror public interest in

a story without directly affecting it.

To understand the economic mechanism behind this intriguing empirical phenomena, I con-

struct a fully specified asset pricing model with the aim of generating both comparative statics

and quantitative restrictions on the data. The model is a four-period noisy rational expectations

model with asymmetric information about the payoff of a risky asset. Information gradually

spreads through a large population of risk-averse agents. The transmission rate of information

parametrizes variation in the speed of information diffusion. I derive the optimal demand and

equilibrium prices in closed-form expressions, which eases the analysis of the model and proves

instrumental for structural estimation purposes by reducing the computational demand.

I derive the following reduced-form predictions of the model regarding price reaction to news.

Consider the introduction of positive news into the market. The model predicts that before an

official announcement, for example, by a press release, returns are increasing in the transmis-
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sion rate of information, when at least some agents are informed early, and post-announcement

returns are decreasing in the transmission rate. Interestingly, I show that variation in the

transmission rate has an ambiguous effect on the official announcement-day return. This result

implies that using announcement returns to measure empirically how positive news are, might

be confounded by the strategic behavior of investors who possess foresight and knowledge of the

process by which information spreads. Negative news has symmetric effects. That is, more inter-

esting negative news exhibits lower pre-announcement returns and higher post-announcement

returns.

Studying the value of information, I show that information is more valuable when the in-

tertemporal growth in the precision of the uninformed about the random payoff is large. This

feature results in a hump-shaped demand for information as a function of the transmission

rate of information. The intuition for this result is as follows. Early informed agents choose

to acquire their private information and take into account the future spread of information.

Information that spreads faster promises informed agents a quicker gain from trading on infor-

mation and one that is less subject to price swings. However, as this potential gain increases,

informed agents trade more aggressively, which makes prices more informative and reduces the

value of information. These two contrasting forces determine the value of information and the

equilibrium informed fraction of the population.

In information market equilibrium, uninteresting news that propagates slowly is not pursued

by anyone before the official announcement, because the fixed cost of information is prohibitively

high. Faster-spreading information is purchased at a higher rate, while the fastest spreading

news is somewhat less valuable. This unique feature of the model accentuates the covariation

between transmission rates and the demand for the risky asset by influencing the extensive

margin of information acquisition by the population as a whole. I find that this feature is

essential for generating the large covariation between media coverage and stock returns and

volume.

I investigate the performance of the model using a panel of stock returns, volume, and

media coverage around new drug approvals by the FDA. These events provide a particularly

clean laboratory for examining stock market reaction to news. Importantly, the selection of

relevant articles is straightforward for the approval of drugs that have unique names. I measure

the media exposure given to an approval story as the sum of all articles that report the approval

on the official approval day and the next, weighted by the price of their adjacent advertising

space. A first look at the data reveals that the patterns found by previous literature are borne

out in my sample. Specifically, drug approvals that receive more media exposure on the approval

day and the next exhibit higher turnover on those days, and then lower subsequent returns in

the following week. These effects are statistically strong even after controlling for previously

suggested proxies for information dissemination such as firm size, analyst coverage, analyst

estimates dispersion, and other characteristics of the approval.

I then use the number of pages in the Wall Street Journal as a measure of the availability
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of other newsworthy material on approval day. Using this instrument for media exposure, I

find that the newspaper editor’s decision to grant more media exposure to an approval story

causes a greater price increase at the approval. However, I do not find that this exogenous

variation in media coverage leads to variation in post-approval price drift or in turnover. This

evidence is consistent with my model in which both asset demand and media coverage respond

to an exogenous transmission rate of information. What matters is not necessarily the media

exposure of the story, but rather whether the story captures the imagination of investors and

induces them to propagate it faster.

Using structural estimation, I show that the gradual information spread model quantitatively

matches fairly well many empirical moments around drug approvals. Quantitative assessments

of asymmetric information asset pricing models are for the most part missing in the empirical

literature thus far.1 I attempt to bridge this gap. I apply the Indirect Inference estimation

method of Gourieroux et al. (1993) to the cross section of drug approvals and their short time

series. I estimate that an uninformed agent must pay 50% of his position in the stock to become

informed. I interpret this as the expected cost of trading on private information with a chance

of adverse legal consequences. On average, only one in a million agents is informed about a

drug approval before the official FDA approval. The signal-to-noise ratio for the average drug

approval is about 10%, which means that the reduction in uncertainty regarding the value of

the drug developing firm associated with an approval is small. This finding is consistent with

DiMasi (2001) which studies the drug approval process and estimates that the probability that

a drug will be approved conditional on surviving to the marketing application stage is about

75%. I estimate that non-informational supply shocks have a standard deviation of 1% of the

total supply of the stock. Thus the model requires only a small amount of non-informational

trading to prevent prices from fully revealing the news. Overall, the results from the structural

estimation support the model. The model-generated effects are not substantially different from

those in the data. The empirical success of the model in explaining the stylized facts about

media coverage and stocks suggests that the process by which information spreads can be

important for asset pricing.

One implication of my findings concerns the informational efficiency of capital markets.

Variation in transmission rates of information means that a finer distinction can be made

between the informational content of prices of different projects and firms. Specifically, in the

context of drug approvals, I find that priority-review drugs exhibit a higher price increase upon

approval and a lower post-approval return. The public is particularly interested in these drugs,

which promise a significant benefit over existing treatment. The FDA is likely to prioritize a

new drug for Cancer or HIV. Orphan drugs on the other hand, which treat only a small fraction

of the population, exhibit higher price drift. The informational frictions seem less important

1A quantitative analysis of this type of models is Campbell et al. (1993), which considers time-varying risk
aversion instead of time-varying information sets as I do. The authors report that implausibly large transitory
shifts in risk aversion are required to match data on aggregate daily volume and serial correlation of returns.
Changes in information sets I consider here can potentially resolve that puzzle.
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for an economic activity society as a whole finds interesting. In equilibrium, the allocation of

capital to such activities will be larger. Thus what may seem an arbitrary influence of fads

and fashions on prices, can actually be an efficiency-enhancing mechanism for the allocation of

capital.

A second policy implication for firms that aim to raise capital in financial markets concerns

their expenditure on investor relations. In an economy with informational frictions, whether

the result of limited attention or communication costs, a firm with a new project can benefit

from increasing the transmission rate of information about its prospects to lower its cost of

capital. Previous literature on the role of the media in finance has concluded that investor-

relations firms can raise share prices by publicizing the news in the popular press (Fang and

Peress, 2009) or giving news a positive spin (Solomon, 2009). But if the media is in fact just

a mirror of public interest, the role of investor-relations agencies is more subtle. The goal of a

successful publicity campaign is then to create an appealing narrative around news, one that

captures the imagination of investors and makes positive information propagate faster through

social networks. Viral investor relations, much like viral marketing, can be more successful than

traditional attempts to increase firm visibility.

This paper contributes to several literatures. Recent work that studies the relationship

between media coverage and stocks includes Fang and Peress (2009) which studies how cross-

sectional variation in media coverage relates to variation in expected monthly returns. Chan

(2003) documents differences in monthly returns for firms with and without headline news.

Other studies try to better control for the content of news using earnings announcement surprises

and focus on shorter return horizons.2 These include Peress (2008) which documents lower post-

earnings announcement drift for announcements covered in the Wall Street Journal, as well as,

stronger trading volume upon announcement. Tetlock (2010) documents return predictability

and trading volume patterns following news that are consistent with an asymmetric information

model’s predictions. News versus no-news correspond to comparative statics of his model about

the variance of a private signal. Endogeneity of media coverage is a concern in all these studies.

Engelberg and Parsons (2010) identify a causal effect of media coverage on the trading behavior

of individual investors using local weather as an instrument. They find that investors exposed

to media coverage of an earnings announcement in their local newspaper trade more. Using

reporter connections and geographical links to newspapers, Solomon (2009) finds that IR firms

are causally affecting both media coverage and returns. I provide a new model to study these

results that features the transmission rate of information as the key variable of interest that

drives both media coverage and stock behavior. I also suggest a finer-grained measure of media

exposure using advertising rates, a new instrument for media coverage using the number of

pages in the Wall Street Journal, and FDA drug approvals as a different and in many ways

superior laboratory for studying the spread of information.

2A related but orthogonal strand of literature fixes media exposure and examines how variation in the content
of news relates to stock behavior. Recent such studies include Tetlock (2007), Dougal et al. (2010), and Neuhierl
et al. (2010).
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The process by which information spreads in my model resembles the spread of an infectious

disease. The notion that information spreads in this fashion has both theoretical and empirical

footing. Information, unlike tangible goods, can be transmitted from one individual to the

next without loss to the transmitting party. Since the cost of communication over a social

network is rather low, any positive utility gained from passing along information can result

in free and direct information transmission. Romer (1990) argues that ideas or technological

improvements are inherently nonrival and only partially excludable, allowing their accumula-

tion without bound and for informational spillovers. Dawkins (1989) considers the similarity

between a piece of information and other replicating units, such as genes or living organisms.

Successful biological traits replicate rapidly and spread through a naturally selected population.

Similarly, more appealing ideas are retained and communicated at higher rates and prevail in

social networks. More recently, Stein (2009) provides microfoundations for truthful exchanges

of information between competitors. Empirical work by Shiller and Pound (1989) provides sur-

vey evidence that direct interpersonal communication is important in investment decisions, and

that investor interest in specific stocks spreads like an epidemic. Hong et al. (2005) provide fur-

ther evidence that mutual fund managers spread information directly, through word-of-mouth

communication. Furthermore, Cohen et al. (2008) find that portfolio managers gain an infor-

mational advantage through education networks, and that their returns from this channel are

concentrated around corporate news announcements. Gray (2010) finds that skilled investors

share their profitable ideas with their competition.

My model builds on foundations laid by previous asset pricing theories with sequential

information arrival. Hirshleifer et al. (1994) randomly assigns the informed population into

early and late informed groups. In addition to liquidity traders, meant to keep prices from fully

revealing all information, they introduce a risk-neutral competitive fringe of market-makers.

This feature, which simplifies the solution, implies that prices follow a martingale and are semi-

strong informationally efficient in this setup. In a similar setting, Holden and Subrahmanyam

(2002) allow agents to purchase information in any of two periods of their model and investigate

the serial correlation of stock returns and trade volume. I improve on their numerical work

by characterizing the value of information in an intuitive closed-form expression. I further

consider the problem of uninformed investors that randomly become informed in the future.

Hong and Stein (1999) provides a behavioral model with gradual information diffusion across

a population of differentially and symmetrically informed “newswatchers.” Information in their

model rotates between groups of investors, thus diffusing in a linear manner until the circle

completes and all groups are fully informed. These newswatchers are boundedly rational in

that they do not condition their trades on current or past prices, leading to underreaction to

news. Furthermore, they interact with “momentum traders” who follow univariate strategies,

resulting in overreaction at long horizons. The rational part of their model is closely related to

my model. I extend their work with optimal learning from prices, information acquisition, and

information asymmetry in the sense that different agents have different precision of information.
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Information acquisition is also central in Veldkamp (2006). It studies media frenzies in emerging

markets and uses the aggregate number of articles that reference an emerging market as a

proxy for the cost of information in different environments. By contrast, the focus in my paper

is on specific news announcements and the market reactions they induce. Hong et al. (2011)

study a dynamic model of opinions, prices and volume based on word-of-mouth communication.

They allow for intricate information diffusion dynamics at the cost of a simplified asset pricing

framework in which agents agree to disagree and behave myopically as does much of the above

theoretical work. I avoid this assumption and characterize the resulting hedging demand of

forward-looking agents.

The paper proceeds as follows. Section 2 describes the media coverage and asset pricing

model. Section 3 provides a first look at the data and establishes the main empirical facts to be

explained. Section 4 then proceeds with structural estimation to determine whether the model

can quantitatively match the data. Section 5 concludes.

2 Theory

The role of the media in financial markets as it pertains to the dissemination of information

can be both active and passive. One can think of the media as providing an essential service to

investors by informing them in a timely manner about valuation-relevant news. On the other

hand, the popular press can perform a more passive role by picking up and exposing stories

investors find interesting, but that would propagate through the relevant investor population

even without any media coverage. It is the latter approach which I take here. I begin by

describing a passive model of media coverage. I then construct a simple asset pricing model with

the necessary features for the discussion and empirical analysis, and derive its main predictions.

The link between the two is that both media coverage and asset demands respond to the level

of public interest in the news, which determines the transmission rate of information.

2.1 A Passive Model of Media Coverage

Consider the problem of a representative daily newspaper editor. The editor has limited space

he can allocate to any given story. This real estate is limited by the attention span of readers

and by the cost of print and distribution. Readers often concentrate on the front page of the

paper and skim the rest. The danger for the editor is that his reader will not feel up-to-date

about current events when he encounters his peers and as a result cancel his subscription and

move to a competing news source. Therefore, the editor gives more exposure to more interesting

stories. But these are the same stories that are likely to spread faster through word-of-mouth,

even in the absence of media coverage. Thus media coverage can depend on the level of public

interest in a story without directly affecting it.

A news cycle at a modern newspaper like the Wall Street Journal begins when the production

department allocates a certain number of columns for the editors to fill with news in the next
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day’s edition. This space in the book plan between the ads is called the newshole. The amount

of advertising sold and the availability of news determine its size. Newspapers have a target

average advertising-to-news ratio they aim for on a weekly, or quarterly basis. Within this pre-

specified newshole, the editors must decide what stories are newsworthy enough to be published.

More interesting news features more prominently, say, on the front page, whereas other news

is relegated to inner pages. At times of major news events such as election cycles or natural

disasters, editors request additional space for news. When they do so, they compensate by

reducing the amount of news on other days to maintain their target.3

Furthermore, since the editor cannot publish a marginal article, for example, just a word

or two about the story, some stories will not make it into the news at all. With this additional

constraint, media coverage is actually either positive if the story is interesting enough to pass

the threshold, or is exactly zero. The editor must pick the day’s most interesting stories and

discard or postpone publication of the rest. Thus each story’s chances of being published in

a prominent section of the newspaper depends critically on the availability of other competing

stories.

Consequently, I model the media coverage of a story as an increasing function of how

interesting it is, which determines its transmission rate in the population, and a decreasing

function of the availability of other newsworthy material. Let m∗ denote the media coverage a

story would receive if there was no fixed cost associated with publishing it:

m∗ = xTβm + γz + logit (δ) , (1)

where δ is the transmission rate. It is defined as the probability of information transmission

when asymmetrically informed agents happen to meet. x denotes a vector of story-specific

characteristics and z measures the availability of other newsworthy material. With the fixed

cost, the outcome of the editor’s choice is a media coverage censored at zero:

m =

m
∗ m∗ > 0

0 otherwise.
(2)

I try to measure this variable m in the empirical part below. The logit function provides a one-

to-one mapping from δ ∈ (0, 1) to the entire real line, as is common in probability models. This

functional form assumption means media coverage is more sensitive to variation in transmission

rates around the boundaries of its support.

2.2 Gradual Information Spread Asset Pricing Model

I extend the Grossman and Stiglitz (1980) framework to a three-trading period economy with

a fraction of informed investors that evolves deterministically over time and is known by all

3Special thanks to Jim Pensiero and Robin Haynes of the Wall Street Journal for taking the time to explain
this process.
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market participants. The model has four periods labeled t = 0, 1, 2, 3, where the first three

involve trade, and all uncertainty is revealed in period 3.

2.2.1 Preferences, Endowments and Tradable Assets

Agents can trade an elastically supplied risk-free asset with constant gross return R per period

that is exogenously given. The second asset offers a risky payoff u in period 3 equal to:

u = θ + ε, (3)

where θ ∼ N (µ0,
1
τ0

) and ε ∼ N (0, 1
η ) are independent shocks and the precisions τ0 and η are

positive. Agents enter period 0 with identical preferences and endowments. Agents of type i

maximize their constant absolute risk aversion (CARA) utility over terminal wealth

V i
0 (W i

0) = max
{qit}2t=0

E
[
−e−

1
φ
W i

3 |F i0
]
, (4)

by choosing the amount of shares qt, while satisfying the law of motion of their stochastic wealth

W i
t+1 = RW i

t + qitQt+1 (5)

where Qt+1 ≡ Pt+1−RPt is the return to a zero-investment portfolio long one share of the risky

asset. The initial endowments, W0, are given and F it is the information set of agent i described

next.

2.2.2 Information Structure

At the initial period 0, all agents are identical and choose not to trade at the market-clearing

price. A signal θ is revealed in period 1 to a fraction I1 ∈ [0, 1] of the population, which

choose to pay a fixed cost c for this information. This fraction is determined in equilibrium.

Information spreads deterministically between periods 1 and 2, before the payoff u is revealed

in period 3:

I2 − I1 = Γ(I1; δ)(1− I1). (6)

The incidence probability Γ(I; δ) is the probability that an uninformed agent at time 1 will

become informed at time 2. It potentially depends on the fraction informed to allow for word-

of-mouth transmission of information. ∂Γ
∂δ > 0 so that, all else equal, the uninformed are more

likely to receive more interesting news, for which the transmission rate is higher. All agents

know It and its law of motion.4

4That It is public knowledge is important to preserve the tractability of the model. Since I1 is an equilibrium
outcome, it is reasonable that all agents can infer I2 from their knowledge of the process by which information
spreads. An alternative specification could assume a stochastic version of (6). Such an extension could prove
to be an important source of risk in a small market. However, as the size of the population grows large, the
variance of the change in the fraction of informed tends to zero. Therefore, assuming a deterministic process is
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Figure 1 illustrates the time line of information spread. Agents of type II observe the signal.

They remain informed for the rest of time. Uninformed agents at time 1 become informed next

period with probability Γ(I1; δ). This important addition to the canonical model adds a new,

third type of agent that will affect the dynamics of asset prices and the volume of trade.

These agents of type UI are uninformed agents that become informed via direct information

transmission. The rest, agents of type UU , remain uninformed until time 3. The three return

periods of the model are meant to capture the periods before, on, and after an official release

of news such as a drug approval as illustrated at the top.

All agents know the structure of the world and its parameters, and observe current prices,

as well as their entire history. Thus an informed agent’s information set at time t is FIt ={
P t, It, θ

}
, whereas that of an uninformed agent at time t is FUt =

{
P t, It

}
, where the super-

script t denotes the entire history of the variable.

2.2.3 Noise

To prevent prices from fully revealing all information, I allow for noise in the supply of the

risky asset. This noise traditionally has several interpretations, such as liquidity shocks (Wang,

1994), or allocational price changes (Grossman, 1995).

Let X denote the mean supply of the risky asset, which is augmented in every trading period

by i.i.d noise xt ∼ N (0, 1
ξ ) for t = 1, 2 with strictly positive precision ξ. Thus the risky asset

market-clearing condition is

Itq
I
t + (1− It)qUt = X + xt t = 0, 1, 2, (7)

where x0 = 0, qIt is the risky asset holdings of an informed agent leaving period t and qUt is that

of an uninformed agent. In general, type UI demand would enter separately in (7), but since

wealth does not enter the optimal demand functions with these preferences, agents of type UI

will behave just like the initially informed of type II going forward.

2.2.4 A Noisy Linear Rational Expectations Equilibrium

Definition. A rational expectations equilibrium (REE) is an allocation {qit}3t=0 for each agent

type i and prices {Pt}3t=0 such that:

1. Taking prices as given, agents form correct Bayesian beliefs and maximize expected utility

(4) subject to the budget constraint (5) every period.

2. Market clearing prices satisfy (7).

After the payoff is revealed, should trading open for a claim to the payoff, the price must be

P3 = u. At that time, agents are again identical in the absence of wealth effects and I assume

reasonable as long as the population exhibits sufficient mixing.
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for volume calculation purposes that qi3 = X for all i. The assumed structure allows for a noisy

rational expectations equilibrium with prices that are linear in the state as made formal by the

following proposition:

Proposition 1 (Existence of Equilibrium). There exists a REE with prices that are linear in

the state. Specifically, prices take the form:

Pt = at + bt∆t + ctxt t = 1, 2 (8)

P0 = a0,

where ∆t ≡ θ − µt is the prediction error of the uninformed and the coefficients at, bt, and ct

are measurable with respect to the uninformed information set at time t− 1.

The coefficient at is the uninformed agent’s expectation of the price next period. It is

composed of the discounted present value of the expected payoff minus a risk premium. The

coefficient bt measures the price sensitivity to the uninformed agent’s error at time t. It is non-

negative and grows larger the more informed agents there are and the less uncertainty there is

in the market about the return going into the next period. Finally, ct < 0 is the price sensitivity

to supply shocks. The ratio between bt and ct determines the informativeness of the equilibrium

price.

The proof of Proposition 1 proceeds in several steps and constitutes the remainder of this

section. First, I conjecture that (8) holds and derive agents’ beliefs given this conjecture. I then

solve for agents’ optimal demand functions given their beliefs starting with the final period and

proceeding by backward induction. In each period, I impose market clearing and verify the

price functions satisfy the linear prices conjecture.

2.2.5 Learning from Equilibrium Prices

Uninformed agents are Bayesian and form rational expectations based on all of their available

information, which in this case is restricted to the history of market clearing prices. The

linearity of prices, together with the normality of the noise and the prior on the signal θ, imply

a normal posterior distribution with a mean that is linear in prices and a precision that increases

deterministically over time as summarized by the following:

Lemma 1 (Learning from Prices). Uninformed agent’s beliefs evolve:

EUt+1[θ] ≡ µt+1 = µt + kt+1(Pt+1 − at+1) (9)

ΨU
t+1[θ] ≡ τt+1 = τt + ξβ2

t+1 (10)

for t = 0, 1 with (µ0, τ0) given and where kt+1 ≡ ξbt+1
τtc2t+1

and βt+1 ≡ bt+1
ct+1

.

For notational brevity, Eit [·] denotes the expectation operator conditional on agent i’s infor-

mation set at time t. Similarly, Ψi
t[·] denotes the conditional precision operator, defined as the
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inverse of the corresponding variance V arit[·]. Given their information of the signal, informed

agents can perfectly infer the supply shock. Their expectation of the payoff u is just θ, which

they observe, and its precision conditional on the signal, η, is constant. Note that nothing can

be learned from period 0 prices so no updating occurs.

2.2.6 Optimal Asset Holdings and Prices

Closed-form expressions can be attained for all variables in the model as the appendix details.

Period 2 of this model is identical to the classic Grossman and Stiglitz (1980) problem. Optimal

holdings of the risky asset are:

qi2 = φΨi
2[Q3]Ei2[Q3], (11)

where the optimal asset holdings of type UI are the same as those of type II even though

the changes in their holdings, their demand, in period 2 can be different. This time-varying

heterogeneity is important for volume, but does not matter for prices in the absence of wealth

effects. Agents trade off the expected excess return per share with the variance of the payoff that

is scaled by φ, their risk tolerance. Substituting optimal demands (11) into the market-clearing

condition at time 2 yields a linear price function P2 = P2(∆2, x2;P1). Matching coefficients

yields the three P2 coefficients that appear in the appendix. Importantly, the ratio of the news

coefficient b2 to the supply shocks coefficient c2 has a simple expression:

β2 ≡
b2
c2

= −φI2ΨI
2[Q3]. (12)

The larger the magnitude of β2 in absolute value, the more informative the price about the

private information of the informed. This result shows that P2 is more informative when agents

are more tolerant of risk, which comes from holding the asset well into the future. The level

of risk depends on the residual uncertainty about the payoff. In a multiple-asset model, this

risk would come from the residual uncertainty about the systematic component of the portfolio.

Importantly, when I2 is high and more agents are informed at time 2 prices are more informative.

The choice of risky asset holdings at time 1 is somewhat more interesting yet harder to

solve. Informed agents know they will remain informed in the future and therefore maximize:

V I
1

(
W I

1 ; ∆1, x1
)

= max
qI1

EI1

[
V I

2

(
W I

2 ; ∆2, x2
)]
. (13)

The problem of uninformed agents at time 1 involves additional uncertainty about their infor-

mational type in period 2. Although the informed know they will remain informed next period,

the uninformed at time 1 may get the signal for free at the beginning of time 2. The uninformed
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agent’s problem at time 1 can be summarized by his value function:

V U
1

(
WU

1 ;µ1
)

= max
qU1

EU1

[
Γ (I1; δ)V I

2

(
WU

2 ; ∆2, x2
)

+ [1− Γ (I1; δ)]V U
2

(
WU

2 ;µ2
)]
. (14)

With probability Γ(I1; δ), the uninformed agent will receive the signal by period 2 and will

then use it to make his informed portfolio decision. The gain he expects from this future

informational advantage over less fortunate investors depends on the fraction informed both

directly and indirectly. The direct effect is simply due to the increase in the probability of

observing the signal. The indirect effect is from the reduction in uncertainty the signal provides

by making prices more informative.

The exponential utility assumption allows us to express the expected informational advan-

tage of the informed over the uninformed in period 2 as follows:

EU2

[
V I

2

]
=

√
τ2

η + τ2
V U

2 . (15)

Due to the choice of a negative utility function, a larger proportionality term means a smaller

informational advantage. Intuitively, when the informed have more trading periods to use their

informational advantage, then its expected gain in utility is larger. The proportionality result in

(15), together with the law of iterated expectations, allow us to rewrite the uninformed agent’s

problem in (14) as follows:

V U
1

(
WU

1 ;µ1
)

= max
qU1

[
Γ (I1; δ)

√
τ2
τ2+η

+ (1− Γ (I1; δ))
]
EU1

[
V U

2

(
WU

2 ;µ2
)]
. (16)

Although this formulation greatly simplifies the problem, this special feature of the CARA-

normal framework also eliminates Γ(I1; δ) from the agent’s first-order condition for qU1 . There-

fore, the change in I only enters the uninformed portfolio problem indirectly, through its equi-

librium effects on means and variances.

An important feature of demand depends on the relationship between the period 2 excess

return and the period 2 expected excess return in period 3. This relationship takes the following

linear form:

Ei2[Q3] = Ei1[Q3] + ρi1

(
Q2 − Ei1[Q2]

)
, (17)

where the coefficients ρi1 for both types of agents are negative. Therefore Q2 is perfectly

negatively correlated with Ei2[Q3]. The intuition is easy to see for the informed agent whose

expected payoff at the final period does not change over time. From his perspective, any

unexpected return in time 2 is due to the transitory supply shocks and he therefore expects

it to reverse in the future. The same force operates on the uninformed agent’s expectation,

but his learning from prices attenuates this effect. The reason is that the uninformed agent

cannot fully distinguish between the transitory supply shocks and the permanent news shocks
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that affect prices. Nonetheless, I show in the appendix that ρU1 is negative as well.

Faced with this opportunity set and full knowledge of the evolution of I over time, agents

in period 1 choose their optimal holdings of the risky asset. Optimal holdings of the risky asset

by an agent of type i going into period 2 are

qi1 = φ

R

(
Ωi

1Ψi
1[Q2]Ei1[Q2]− ρi1Ψi

2[Q3]Ei1[Q3]
)
, (18)

where Ωi
1 ≡ 1 + Ψi2[Q3](ρi1)2

Ψi1[Q2] . The first term in parentheses can be interpreted as a myopic

demand component. Since Ωi
1 is larger than one, agents demand more of the asset than if no

further uncertainty remained in period 2. Specifically, demand increases with the growth in

precision, or equivalently, when agents expect a sharper decrease in uncertainty from period

1 to period 2. Agents also consider their continuation utility, which gives rise to the hedging

demand component. Since ρi1 is negative, a higher expected return in period 3 induces a higher

demand for the asset in period 1. Holding the asset to maturity provides a natural hedge since

unexpectedly low returns today are expected to be offset in the future. Substituting (18) into

the market-clearing condition at time 1 yields a linear price function P1 = P1(∆1, x1), which is

explicitly derived in the appendix.

Before examining the informativeness of prices, focusing on the expected return of an in-

formed agent in excess of the risk premium demanded by the uninformed (their alpha) is useful.

In the CARA-Normal framework, this conditional expected return can be expressed as a con-

stant multiplying the news:

EI1 [Q2]− EU1 [Q2] = G12∆1,

where the sensitivity of their informational expected return to news is G12 = b2
τ1
τ2

. The greater

it is, the greater the return following positive fundamental value shocks and conversely for

negative news.

The ratio of the news coefficient b1 to the supply shocks coefficient c1, which takes a more

elaborate form than before, determines the informativeness of P1. Specifically,

β1 ≡ b1
c1

= −φI1

(
ΨI

2[Q3] + 1
R

ΨI
1[Q2]G12

)
. (19)

The first term in parenthesis is just as before but with the current fraction informed I1. As in β2,

the greater the risk tolerance or the greater the fraction informed at time 1, the more informative

P1 is about θ. Uncertainty about the payoff at time 3 again diminishes the informativeness of

the price. Additionally, the second component, which depends on the intermediate period 2,

increases the informativeness of P1. Prices are more informative when the opportunity cost of

trading on information, R, is small or when the informed are more certain about the intermediate

return Q2. Finally, the more sensitive the informed expected return EI1 [Q2] is to the news, the

more informative the price P1.

In fact, as opposed to the first component of β1, the second is recursively stated since both
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ΨI
1[Q2] and G12 depend on both β1 and β2. In the appendix, I show that β1 is the root of

a cubic polynomial. As such, it admits a single real solution as long as its discriminant is

negative. At least one real solution must exist by the intermediate value theorem, establishing

the existence of equilibrium. The condition on the discriminant implies the following condition

for uniqueness of the equilibrium in the linear class:

Proposition 2 (Uniqueness of Equilibrium). Suppose

4
(
γ3 + ξ2ζ4ω

)
> ξζ2

(
γ2 + 18γω − 27ω2

)
,

where ζ = φI1
(
η + η2I2ξφ

2), γ = η2I2ξφ
2 + η + τ0 and ω = η2I2

2ξφ
2 + η + τ0.

Then (19) admits a single real solution and therefore the equilibrium is unique in the linear

class.

Having characterized the existence and uniqueness of equilibrium when the information

structure is given, I next turn to analysis of the market for information and endogenize this

structure.

2.2.7 The Value of Information

Agents at time 1 must choose whether to purchase the signal θ at the exogenously given cost

c. The value of information v is the amount of wealth an uninformed agent is willing to pay to

become informed, such that he is indifferent between purchasing the signal or not. Therefore,

v is such that

EU1

[
V U

1 (W1;µ1)
]

= EU1

[
V I

1 (W1 − v; ∆1, x1)
]

(20)

holds. Solving this equation for the value of information as a function of the informed fraction

yields the following result:

Proposition 3 (Value of Information). The value of information v given the initial fraction

informed I1 is

v (I1; δ) = φ

R2

{
1
2 log Ωv + 1

2 log ΩI
1

ΩU
1

+ log
[
Γ (I1; δ)

√
τ2
τ2+η

+ (1− Γ (I1; δ))
]}

, (21)

where Ωv = τ2+η
τ1

and Ωi
1 = 1 + Ψi2[Q3](ρi1)2

Ψi1[Q2] for i ∈ {U, I}.

The first component of the value of information is positive and increasing in the intertempo-

ral growth rate of uninformed agents’ precision about returns. The steeper this increase is, the

more valuable the information. The intuition is that informational gains that are realized ear-

lier are better than those that will only be realized in the future and are subject to additional

shocks. However, as this potential gain increases, informed agents trade more aggressively,
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which makes P1 more informative. Such an increase in τ1 reduces the intertemporal precision

growth and lowers the value of information.

The second component is positive as well and has to do with the intertemporal increase in

precision of the informed relative to this increase by the uninformed. The third component is

negative and represents the extent of information spillover to uninformed agents who do not

pay for the signal. Intuitively, an increase in the probability that an uninformed agent becomes

informed next period, Γ (I1; δ), decreases the value of information to those who purchase the

signal because of the spillover effect. Although this effect works in the same direction as

strategic information substitutability, a range of I1 close to zero exists such that strategic

complementarity arises. That is, an increase in the cost of information will result in increased

demand for information. The relative contribution of each of these components depends on

the parameters of the model, but mainly on the precisions ξ, τ0 and η. For example, the third

component will be more negative when η is high relative to τ2. This means informational

spillovers are more important when the variance of the signal θ is large compared with the

variance of ε. In Section 4, I estimate these parameters and the relative magnitudes of the three

components.

In equilibrium, the fraction of informed agents, I∗1 , is such that agents are indifferent between

purchasing the signal or not. Equivalently, the equilibrium value of information v(I∗1 ; δ) equals

the cost of information c.

2.2.8 Ex-ante Prices

Ex-ante, at time 0, all agents are identical and symmetrically uninformed. Furthermore, there

is no noisy supply at time 0. The Pareto optimal allocation is one without trade, in which

prices are such that agents are happy holding on to their endowments. Assuming a competitive

equilibrium in the market for information, an agent at time 0 is indifferent between being

informed or uninformed in period 1. Therefore, he maximizes the expected value of V U
1 (W1;µ1),

which depends on future expected returns. As before, it can be shown that the following linear

relationship holds between Q1 and time 1 expectations of future returns:

EU1 [Q2] = E0[Q2] + ρ0 (Q1 − E0[Q1]) (22)

EU1 [Q3] = E0[Q3],

where the loading on the innovation ρ0 is negative. Thus the period 1 return is perfectly

negatively correlated with the uninformed agent’s expected return from time 1 to time 2. Fur-

thermore, the expected return of the uninformed at time 1 about period 3 returns is independent

of the period 1 return. In both periods 0 and 1, the uninformed expect the same final period

return.
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Ex-ante optimal holdings of the risky asset are

q0 = φ

R2

{
Ω0Ψ0[Q1]E0[Q1]− ρ0ΩU

1 ΨU
1 [Q2]E0[Q2] + ρ0ρ

U
1 ΨU

2 [Q3]E0[Q3]
}
, (23)

where Ω0 = 1 + ρ2
0ΩU1 ΨU1 [Q2]

Ψ0[Q1] . The myopic demand appears first, followed by hedging demand

induced by future expected returns. Since the coefficients ρ0 and ρU1 are both negative, all

hedging demand components are positive. The expectations only depend on P0, and q0(P0)
is linear in P0. As a result, the equilibrium price P0 is just a constant given the parameters

of the model. The ex-ante price P0 turns out to not depend on I1 or the process assumed

for information spread. Since the intermediate process by which information spreads changes

nothing about the expected payoff from holding the asset to maturity at time 3, the equilibrium

price is the same as the no-information economy price:

P0 = µ0
R3 −

X

R3φΨ0[u] . (24)

This result implies that if we were to examine low-frequency returns and the spread of infor-

mation were to complete within a period of observation, then variation in transmission rates

would not be observed.

This result concludes the proof of Proposition 1 establishing the existence of a noisy linear

REE in this model. With the asymmetric information asset pricing framework in place, we can

examine how information spread dynamics affect how market prices respond to news.

2.3 Price and Volume Reaction to News

The events I study below pertain to positive news. I next investigate how returns and trade

volume are expected to respond to positive news (∆0 > 0), while noting that symmetric effects

arise for negative news. Because I study idiosyncratic news that pertains to individual firms, I

concentrate on expected returns in excess of the unconditional risk premium. Excess expected

returns conditional on news ∆0 can be expressed as a constant multiplying the news:

E0 [Qt|∆0]− E0 [Qt] = Gt∆0,

where Gt is the sensitivity of expected returns to cash flow news. When news is introduced

to the market, some of it will manifest immediately and the rest gradually until it is fully

incorporated into prices or, in the case of the model, no later than period 3. In fact, it can be

shown that the following relationship must hold between the sensitivities:

R2G1 +RG2 +G3 = 1. (25)

If we consider a short amount of time so that R ≈ 1 then the Gs must sum up to one. Therefore

any change in the process by which information spreads that increases one period’s return must
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be offset by a change at a different period. The following proposition establishes the direction

of a marginal change in δ:

Proposition 4 (Price Reaction to News). Holding the fraction informed at time 1 and the

precision τ1 constant and positive, a marginal increase in the transmission rate δ:

1. Increases the period 1 expected return conditional on positive news.

2. Has an ambiguous effect on period 2 returns.

3. Decreases the period 3 expected return conditional on positive news;

i.e., ∂G1
∂δ > 0 , ∂G2

∂δ S 0 and ∂G3
∂δ < 0.

The intuition for this result is straightforward given (25). The channel through which an

increase in δ operates is through an increase in I2. The first-period return depends on P1,

whose sensitivity to payoff news shown in (19) is increasing in the fraction informed at time 2.

The intuition is that informed agents trade more aggressively when they expect the information

gap between informed and uninformed agents to close faster. When they do so, prices convey

more information about the signal θ and less about the supply shocks. Period 3 expected

returns conditional on positive news depend on the expected payoff and decrease with P2.

More informed agents at time 2 implies a more informative P2, as can be clearly seen in (12).

This brings prices closer to their frictionless benchmark and results in a lower expected Q3. The

intermediate-period expected return can increase or decrease because it is wedged between the

two. An increase in P1 informativeness lowers G2, whereas an increase in P2 informativeness

increases it. Figure 2 plots excess returns for each of the three periods and confirms that while

the dependency of G1 and G3 on transmission rates is monotone, the relationship for G2 is not.

Let Tt denote turnover in period t defined as the number of shares traded over shares

outstanding. The relationship between turnover and the transmission rate is neither linear nor

monotone, as can be seen in Figure 2. It is the case however that announcement turnover is

first increasing in the transmission rate and then remains around the same level. We can gain

some intuition for this relationship by examining the expression for turnover in the intermediate

period when I1 ↓ 0:

T2 = 1
2
{

Γ (I1, δ)
∣∣∣qI2 −X∣∣∣+ (1− Γ (I1, δ))

∣∣∣qU2 −X∣∣∣+ |x2|
}
. (26)

The first term in absolute value is the demand of uninformed agents that become informed

late in period 2. For positive news, we would expect it to be positive. The second term in

absolute value is demand by agents who remain uninformed, we would expect it to be negative.

The last term is the supply shocks which contribute
√

π
2ξ to the level of turnover (ignoring

covariances). When the incidence probability Γ (I1, δ) is small, demand by the small number

of informed agents dominates since they are able to hide their information. As a result, an

increase in transmission rates results in higher turnover. However, for large Γ (I1, δ), prices are

highly revealing so both demands are similar in magnitude. Therefore, we would expect period

2 turnover to be higher for fast-spreading (δ = 1) news than for uninteresting or slow-spreading
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(δ = 0) news. The intuition is that a higher transmission rate means that a larger part of the

previously uninformed population becomes informed in period 2 and increases its holdings of

the risky asset. This intuition can break down when so many agents become informed that

prices are close to fully revealing, in which case turnover is insensitive to δ.

The predictions of Proposition 4 and the numerical analysis giving rise to the turnover

prediction are about changes to the transmission rate holding all else equal. However, when

agents acquire information strategically, they take into account how quickly this information

will spread. Therefore, the reduced-form analysis in the next section tests these predictions

in a ceteris-paribus experiment. By contrast, the structural estimation exercise in Section 4

fully accounts for strategic information choice and its influence on observable outcomes such as

returns and trade volume.

3 A First Look at the Data

The model described above yields predictions about observables such as returns and trade

volume, and then ties them to media coverage and to the process by which information spreads.

What remains is finding a suitable empirical environment to bring these predictions to data.

I study a cross section of new drug approvals by the U.S. Food and Drug Administration.

I examine a short time series of prices, volume, and media coverage around each approval.

Times 0, 1, and 2 in the model correspond to the beginning of the pre-approval, approval,

and post-approval event windows, respectively. Thus the informed fraction at time 1 trades on

information that has not yet been publicly disclosed. The informed at time 2 include investors

that receive the news directly from centralized news outlets or alternatively by word-of-mouth

from the informed at time 1. In any case, public interest in the drug approval story determines

both the transmission rate of information and the amount of media coverage the story receives

upon the approval. I therefore use media coverage as a proxy for the transmission rate of

information.

Drug approvals provide a particularly clean laboratory for examining stock market reaction

to news that varies in its prominence for several reasons. First, information on approved drugs

is readily available from the FDA. Second, the event’s timing is exogenous to the firm developing

the drug (its sponsor). This exogeneity is important since firms could otherwise time this event

to maximize their share value, for example, by releasing the information on a certain day of the

week (DellaVigna and Pollet, 2009). Third, many public pharmaceutical companies apply for

drug marketing approvals, which allows for large sample studies. Fourth, a marketing approval is

always a positive shock to the sponsor’s future cash flow since it basically provides the sponsor

with a real option on the drug’s production. Thus the direction of the effect is predictable,

and, to some extent, the impact on future cash flow can be estimated ex-ante. Finally and

importantly, the unique drug names and active ingredients allow for a free-text article search

that is likely to produce only articles that discuss the approval story. This is not the case for
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other well-studied events, such as earnings announcements, whose covering articles are harder

to classify. In addition, earnings announcements often include soft information pertaining to

future profitability that can be confused with earnings surprise.

3.1 Measuring Media Exposure

Previous literature on the effects of media coverage has focused on the extensive margin alone

and compares news covered by the popular press with news not covered at all.5 I suggest a new

measure of media exposure that takes into account both the extensive and the intensive margin

of media coverage using the price of advertising adjacent to a newspaper article.

3.1.1 Advertising Rates

To measure media coverage, I need a way to compare the prominence of an article published

on the front page of the Wall Street Journal to an article placed on an inner page of a small-

town newspaper. I approximate the relative emphasis a particular news item receives from the

media, its media exposure, by weighting each news item by the price of its adjacent advertising

space. This method allows me to construct a uniform dollar-value measure of media coverage

and aggregate it over a period of time and across different types of publications. Although this

paper focuses on daily newspapers and magazines, once could construct a similar measure for

other mediums, such as television and radio.

I assume the market for advertising space is competitive and that an advertiser maximizes

the media coverage of the good it is promoting. Thus, the price of ad space should reflect

its marginal value to the advertiser. Determinants of this value include the ad’s prominence,

the medium’s readership, and, to some extent, its editorial reputation. The size of the ad is

obviously important as it serves to capture the reader’s attention. Advertisers pay a premium for

color ads as well as for special-position ads placed on the first few pages of a newspaper section.

Circulation is a major determinant of ad rates, and the purchasing power of the paper’s audience

is important as well. Ferguson (1983) shows that daily newspaper ad rates are increasing not

only in circulation but also in the local income per city household. Advertising space in higher-

longevity publications such as magazines is more expensive than in daily newspapers, which

have a high turnover. Finally, the publication’s reputation for editorial scrutiny can play a role.

For example, an advertiser must pay a premium for the scrutiny of the New York Times, which

is important for the credibility of its content. Therefore, my measure of media exposure also

captures the publication’s credibility. In terms of media exposure, the space an ad occupies

is a resource that is practically identical to the space a news item occupies. Therefore, I use

advertising rates to quantify the news item’s media exposure.

5See, for example, Chan (2003); Eisensee and Stromberg (2007); Peress (2008); Fang and Peress (2009)
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3.1.2 Methodology

To determine the price of ad space, I use the open (non-contract) display advertising rate per

column-inch quoted for an ad on the same page as the article. I focus on print publications

that have a fairly standardized market for advertising. Rate cards are published yearly by each

publication and collected by several agencies. My sample includes a 1998 world wide cross

section of 726 newspapers, weeklies, and monthly magazines covered by the news database. All

publications have an open column-inch rate and circulation. Daily newspapers usually have a

different rate for Sunday, in which case they also specify Sunday circulation. Magazines quote a

rate for a full black-and-white page, which I convert to a column-inch rate using the magazine’s

layout specification. Circulation and rates are hand collected from Editor and Publisher (1998),

Gale Research (1998), Oxbridge Communications (1998), Hollis Directories (1998) and Stamm

(1998). U.S. daily newspapers provide most of the media coverage of drug approvals in my

sample. Figure 3 plots a regression of their advertising rates on circulation. We can see that

circulation can explain much of the variation (R2 = 80%). The rest of the variation is likely

due to the purchasing power of the readers and to some extent the prestige of the publication.6

For each article of interest I can match to an ad rate, I calculate a media exposure grade

equal to the regular weekday price per column-inch. If the article was published on Sunday

and the publication has a special Sunday rate then I use that rate instead. Sunday rates are

20% higher on average and circulation is 38% higher on average than on weekdays. Newspapers

also charge a special premium for guaranteed positions. If the article was featured on the front

page of the paper then I multiply its grade by 5. Pages 2 and 3 get a 30% premium and

pages 4 and 5 a 20% premium. Front-page advertising is a relatively recent phenomena many

journalists consider taboo (Shaw, 2007). Thus, although the premia I assign for pages 2-5 are

based on a small sample survey of newspapers’ actual premiums, front-page advertising rates

are practically impossible to get and the premium is based on media experts’ estimates and

a few small newspapers that quote such a rate. In unreported tests, I multiply each article’s

grade by its word count to proxy for the size of the article, which can be important for grabbing

the attention of readers. This modification adds no further explanatory power.

I am interested in an effect on markets that are usually closed when newspapers are printed

late at night. Therefore, I match daily price and volume data of traded securities from CRSP to

an aggregated measure of daily media exposure by summing the grades of all articles published

between the previous day’s market close and the return day market close. This way, each closing

price and daily volume is matched with the new media exposure they should reflect. The news

database contains duplicate articles, mainly when it subscribes to an agency that provides it

with full-content articles as well as a second agency that provides abstracted articles listed

under a different source code. Therefore, I omit duplicate articles from the same source if they

are published on the same day and their headlines’ first three words are the same as those of a

6For a detailed discussion of newspaper advertising rate structure and terminology, see Ferguson (1963) and
Ferguson (1983).
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previously aggregated article.7

3.2 New Drug Approvals Sample

I obtain from the Drugs@FDA database all Original New Drug Approvals from January 1990

to June 2007. The FDA does not disclose information about applications it does not approve

or that were withdrawn. Many marketing approvals refer to the same drug or active ingredient

but for different dosage forms. Since my identification strategy relies on the accuracy of the

article search results, I only keep drugs based on an active ingredient that has never before been

marketed in the United States in any form. The FDA marks these as Chemical Type 1 or New

Molecular Entity applications. In addition, if the same drug is administered in more than one

form, I keep only the first approval.

I match each drug approval with its original sponsor’s daily share information from CRSP.

Of the 320 approvals I can match to a publicly traded security, 65 are American Depository

Receipts (ADRs) for which the CRSP record of outstanding shares has a different meaning.

I attain market value for ADRs used in the firm size controls from Datastream. Since the

FDA’s working calendar coincides with that of the U.S. financial market, event day zero is also

a trading day, although the FDA can issue the approval letter after market close. The FDA’s

policy as described in U.S. Food and Drug Administration (1998) is to convey this information

to the applicant within one business day, at which point at least some market participants know

with certainty the drug is approved. Even though the sponsoring firm is not obliged to make

this news public, the vast majority issue press releases so that newswires and the popular press

report the story within a day. In any case, FDA policy is to make the approval letter publicly

available on its web-site and through a fax-on-demand system as soon as possible and no more

than three working days past approval. Nonetheless, the choice of event window involves a

tradeoff between, on the one hand, clear identification of articles that discuss only news of the

approval as opposed to media coverage of the stock market’s reaction and, on the other hand,

capturing all of the media exposure of the drug approval. As Figure 4 shows, although many

news articles are written on the second day, newswires begin to report on day zero and the

largest price change is on day 1. Therefore, I calculate CAR for days 0 to 1 to capture the

immediate market reaction and days 2 to 6 to capture the delayed response. I use the pre-

approval window on days -5 to -1 to allow for abnormal market reaction prior to the official

approval that better-informed traders possibly induce.

I systemize the collection of event-relevant articles with a predetermined template for a text

search specification using the drug’s name, active ingredient, and approval date. For example,

the drug Lamisil, based on the active ingredient Terbinafine Hydrochloride and approved on

7When I run the same tests but use only daily newspaper data (no weeklies or monthly magazines), the
regression coefficients on media exposure become slightly more statistically significant. This can be because
weeklies and monthly magazines relate to prices in different ways, because my advertising rates data on them are
flawed or due to chance. Future work can probably use daily newspaper rates alone to measure media exposure,
making the data-collection process less demanding.
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March 9, 1999, has the following search specification:

Free text ((LAMISIL) or (TERBINAFINE HYDROCHLORIDE))

and ((”food and drug administration”)

or (FDA) or (F.D.A))

Date range 03/09/1999 to 06/07/1999

Search in Full text articles

This procedure yields 46,338 unique articles about the approvals beginning one year before

each approval and ending three months later. Of these, I can match 14,203 to advertising rates.

I calculate Media Exposure for each approval event as the sum of all news articles that report

the approval on the official approval day and the next, weighted by the price of their adjacent

advertising space. Preceding Media Exposure and Subsequent Media Exposure are similarly

calculated over the pre-approval and post-approval time frames.

Table 1 provides summary statistics for the 320 drug approvals. Sixty-five percent of the

approvals in the sample received no immediate measurable media exposure. The average media

exposure is $1,500, which is approximately equivalent to three regular Washington Post articles.

The print media further covered most approvals over the subsequent business week. Firm size

can play an important role in explaining abnormal returns since the impact of a new drug

approval on a firm’s earnings is closely related to its pre-approval market value. For a giant like

Pfizer, an additional drug probably makes less of a difference than it would to a drug-developing

start-up whose entire value stems from the prospects of a single drug. The sampled firms

exhibit a wide variation in size measured as market capitalization one year before the approval

in 1990 dollars. With an average firm value of $28 billion, the findings of this study cannot be

dismissed as a small or illiquid stocks phenomena. Analyst coverage is also a potential source

of information dissemination to a wide audience. On average, 19 analysts cover the sampled

securities.

A variety of drugs were approved in the sampled period. 45% received priority-drug-review

classification to speed up the process. Orphan drugs for rare diseases constitute 19% of the

sample. Cancer and HIV/AIDS drugs comprise 16% and 6% respectively, of the drugs for which

I have indication data. The average approval granted its sponsor with 16 years remaining of

intellectual property rights from patents and 5 years of exclusivity rights by the FDA, resulting

in a real option for non-trivial monopoly rents.

Using the sample averages in Table 2, we can discern several interesting features of drug

approvals. The average drug approval generated a 1.33% abnormal return in the pre-approval

period of trading days -5 to -1. Upon approval, it returned an additional 1.35% and then declined

0.53% over the subsequent five trading days. Since the standard errors of the pre-approval and

approval means are small, we can reject that they are zero at usual significance levels. About

half of the price appreciation occurs before the drug is officially approved which is indicative

of superiorly informed agents participating in the market. The post-approval abnormal return

of the average drug is statistically no different from zero. When we do not condition on any
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information other than the approval itself, the market’s reaction is consistent with semi-strong

market efficiency.

However, if we condition on a certain level of media exposure, the picture is different. In

Figure 5, I split the sample into high, low, and zero media exposure sub-samples. Recall that

media exposure is measured on the approval day and the next. The top panel plots the average

cumulative abnormal return for each sub-sample. All three sub-samples feature a price increase

in the days before the approval. The pre-approval return seems higher for drugs that would later

appear in the news. This suggests insider-trading activity is increasing in future media exposure.

At approval time, drugs covered by the media exhibit a higher price increase than the rest. Post-

approval, the stock price of drug sponsors that received no initial media exposure continue to

appreciate while low-media-exposure firms maintain their valuation. Interestingly, high-media-

exposure approvals exhibit a negative drift following the approval, which continues even at a

longer horizon than the one I test below. The bottom panel plots abnormal turnover for each of

the same sub-samples. Turnover on the approval day is higher for better exposed approvals. In

fact, high-media-exposure approvals exhibit higher turnover throughout the examined 90-day

period surrounding the approval.

Although these results suggest variation in media exposure is related to the path of price

adjustment to news, the small number of observations in each sub-sample and the lack of obvious

controls, such as firm size and calendar effects, yield large confidence intervals around the means

that make the three lines statistically indistinguishable. Also note that the no-media-exposure

sub-sample is larger than the two others, which considerably reduces the volatility of its mean

estimates. I next turn to linear regressions that allow me to control for observed heterogeneity

along these dimensions.

3.3 A Linear Model of Media Coverage

Before moving on to a fully specified model, first considering a simple linear regression specifica-

tion of media coverage and stock returns may be instructive. Denote mj as the media exposure

of drug approval j over days 0 and 1. Denote Rjt, t = 1, 2, 3 as the Pre-Approval, Approval,

and Post-Approval cumulative abnormal returns of j. We can think of the joint behavior of

media coverage and returns in a reduced form of the model as follow:

mj = xT
j βm + γzj + δj + εmj (27)

Rtj = xT
j βt + πtδj + εtj t = 1, 2, 3,

where δj is the transmission rate of information specific to this approval, xj is a vector of

controls, and zj measures the availability of other newsworthy material.

The availability of other newsworthy material should crowd out the exposure an approval

gets. To capture the editor’s outside option, I use WSJ News Pressure defined as the 40-day

moving average of the number of pages in section A of the Wall Street Journal published on day
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1 when drug-approval newspaper coverage usually appears.8 A plot of WSJ News Pressure over

the sample period appears in Figure 6. We can discern both a cyclical time trend and a seasonal

component. The time trend seems to peak around the end of the 20th century, when the print

newspaper industry begins its decline in favor of online alternatives. The seasonal component

peaks around May and November and bottoms out in February and August. I include month

and year fixed effects in all regressions to control for these effects that are likely due to changes

in the demand for advertising.

Since transmission rates are not directly observable, they would appear in the error term of

the regressions in (27). Therefore, I employ a two-stage estimation procedure by first estimating

a latent δ̂j ≡ δj + εmj = mj − m̂j from the first regression. I test the sign of the coefficients πt

from

mj = xT
j βm + γzj + δ̂j (28)

Rtj = xT
j βt + πtδ̂j + εtj t = 1, 2, 3

under the assumption that E[εmjεtj ] = 0. To account for estimation error in δ̂j , I estimate this

four-equation system simultaneously using GMM and cluster standard errors by the approval

day.

The first prediction of the model from Proposition 4 is that pre-approval returns are in-

creasing in δ, so we would expect π1 > 0. The second prediction is that post-approval returns

are decreasing in δ, so we would expect π3 < 0. Furthermore, time 2 returns are non-monotonic

in δ and therefore, without better knowledge of the parameters of the model, the model does

not predict a sign for π2.

The results in Table 3 support the predictions of the model. Column (1) reports the first-

stage regression estimates. We can see that media exposure of drug approvals is lower when WSJ

News Pressure is high. The availability of other newsworthy material in the business press seems

to crowd out media coverage of drug approvals. Column (2) shows that pre-approval returns

are increasing with transmission rates, though the effect is not statistically significant. One

potential explanation for the large confidence interval around the effect is perhaps that the

pre-approval window I use, days -5 to -1, is misspecified. Although the official announcement

is relatively straight-forward to map to the model, knowing when private information about

the approval begins to spread in the market is difficult.9 Column (3) shows that approval

8This measure of news pressure is related to the television news pressure instrument constructed in Eisensee
and Stromberg (2007) that proxies for the availability of newsworthy material using a 40-day moving average of
daily TV news pressure defined as the median (across broadcasts in a day) number of minutes a news broadcast
devotes to the top three news segments in a day. In addition, the authors use Olympic games incidence as a
second source of variation. In unreported results, I find that TV news pressure does not crowd out drug approval
news, perhaps because major TV networks cater to a different clientele than that of the business press I try to
capture with my instrument. Olympic games do crowd out drug-approval news, but only coincide with 8 drug
approvals in my sample.

9See Ellison and Mullin (2007) for a discussion of this issue and an estimation procedure for the day information
begins to leak.
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returns are uncorrelated with transmission rates. Column (4) shows that post-approval returns

are decreasing in δ. This effect is statistically and economically significant. A one standard

deviation increase in δ̂ implies a 0.6 percentage points higher pre-approval return and a 0.9%
lower post-approval return. For the average drug developing firm in this sample, this effect

means a $161 million higher pre-approval market value and a $265 million lower value post-

approval.

3.3.1 Does the Media Affect Asset Prices?

Huberman and Regev (2001) describe in detail a thrilling case study in which extreme media

exposure that contained no news in the traditional sense coincided with a spike in a stock price.

The authors conclude with a provocative hypothetical question, asking what the stock price of

the studied firm would have been if the editor of the New York Times had chosen to kill the

story. In an attempt to answer this question, the last three specifications in Table 3 entertain

the possibility that the media are the ultimate drivers of stock returns around approvals. WSJ

News Pressure is plausibly exogenous to variation in media coverage of drug approvals, which

are usually not front-page news and appear in the business section if at all. I employ a two-stage

least squares instrumental variable regression to identify such an effect.

The first stage regression is the same as the one reported in column (1). The statistically

significant negative coefficient on the instrument supports its validity. The F-test statistic for γ

is 6.5 with p-value 0.01. The second-stage IV regressions in columns (5) to (7) regress returns

on the predicted value m̂ and the controls. Neither the pre-approval nor the post-approval

returns seem to be sensitive to this exogenous variation in media coverage. Their loadings on

m̂ are statistically no different from zero and even go the opposite way. On the other hand,

the estimates in column (6) show the approval return is higher for drugs with more media

exposure. The coefficient on m̂ is statistically different from zero at the 10% significance level.

This evidence suggests that an exogenous increase in the media exposure of a drug approval

results in a higher stock price of the developing firm. However, this price increase does not

seem to revert in the business week following the approval as would be predicted by a model of

overreaction to prominent news (e.g., Hong and Stein, 1999; DeMarzo et al., 2003).

3.3.2 Identification Concerns and Alternative Proxies for Transmission Rates

As mentioned above, the sample includes only approved drugs. This selection should be kept

in mind when interpreting the results, and the question of whether they extend empirically to

negative news remains unanswered here. Theoretically, the same forces that operate for positive

shocks would operate on negative ones in a symmetric way. If anything, real-world frictions,

such as short-sale constraints, might make underreaction to negative news more pronounced,

suggesting the estimates above bound these effects from below. In the structural estimation

below, I address this issue directly by modeling the selection.
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A second concern is that one of the identifying assumptions in the linear system (27),

specifically E[εmjε1j ] = 0, might be violated because media coverage may be higher due to

abnormally high pre-approval returns drawing the attention of reporters. In case that this

covariation is positive, the regression coefficient might be upwards biased. The usual error-in-

variables that biases the coefficient toward zero would offset this bias. Thus, a priori, the bias

can go either way.10

To try to alleviate concerns about the endogeneity of media coverage, I exploit other features

of the institutional setting that can proxy for a drug approval’s transmission rate. When the

FDA admits a drug for review, the drug is designated a review status. Priority review status is

granted to drugs that promise a significant advance over existing treatments. Innovative cancer

or HIV/AIDS treatments will often be granted priority review. The public’s interest in these

drugs is exactly why the regulator speeds up their review; therefore, news of their approval

will likely propagate faster than others. Orphan drug status is granted if the treatment is for

a disease affecting fewer than 200,000 Americans. The FDA grants an exclusivity period to

the drug’s sponsor to encourage its development. The general public is likely less interested in

approval of orphan drugs, which is precisely why pharmaceutical companies require additional

incentives to invest in their development. According to the model, high δ priority drug approvals

should exhibit lower post-approval returns than regular drugs. On the other hand, low δ orphan

drug approvals should exhibit higher post-approval returns than regular drugs.

The results in Table 4 agree with the model’s prediction about covariation between the

transmission rate of information and post-approval returns. Priority drug approvals exhibit

1.9% lower post-announcement returns than regular review drugs. Orphan drug approvals ex-

hibit 3.1% higher post-approval returns. Both effects are statistically significant. The inclusion

of media exposure in the regressions slightly shrinks these estimates toward zero but all coef-

ficients remain statistically significant. This change should be expected if they all proxy for

the same transmission rate. Priority drug and orphan drug dummies are respectively 0.24 and

0.08 correlated with media exposure. Examining the approval returns in columns (3) and (4),

we can see that priority drugs exhibit a larger price increase than regular review drugs, though

this effect is statistically weak. Finally, the coefficient estimates for pre-approval returns are all

statistically no different from zero. Thus, the results of this experiment with alternative proxies

for δ are quite similar to the results in Table 3 that use media exposure.

3.3.3 Turnover Effects

A model with time-varying heterogeneity generates trade volume by varying the optimal hold-

ings of various agents in the economy. In the gradual information spread model, an increase

in the transmission rate of information results in the transition of a larger fraction of initially

10To see this, note that plim(π̂1) = π1 − π1
V ar[εmj ]

V ar[δj ]+V ar[εmj ]
+ E[ε1jεmj ]

V ar[δj ]+V ar[εmj ]
. The second term on the right

is the error-in-variables which biases π1 toward zero. The last term is an upward bias in the regression from
correlation in the errors across equations.
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uninformed agents to the informed group. All else equal, faster information spread would result

in larger trade volume in period 2, when information spills over according to the transmission

rate δ.

Table 5 reports results from an experiment similar to the one in (28), but replacing returns

with cumulative abnormal turnover over the same three periods around drug approvals. The

sample size is reduced because I have no turnover data for ADRs. The first three columns

show regression results on δ̂. Standard errors are again calculated using GMM. In all three

return periods, the approval of more interesting drugs exhibits significantly higher turnover.

The largest effect is at approval time as reported in column (2). A one standard deviation

increase in δ̂ implies a 0.9 percentage points higher approval turnover. This effect is about

half of the average approval turnover. Columns (4) through (6) are second stage IV regressions

that use WSJ News Pressure as an instrument for media exposure. The first-stage regression

is the same as that reported in Table 3. None of the coefficients on the instrumented m̂ are

statistically different from zero. These results suggest the media is not the cause of variation

in turnover in this setting.

Overall, the results on turnover provide additional support for the gradual information

spread model. The IV regression results suggest that thinking about the media more as a

passive reporter of interesting news and less as an active shaper of public knowledge seems to

conform better with the data.

4 Structural Estimation

Having established that the model can explain the negative correlation between media coverage

and post-announcement returns and the positive correlation with trade volume, the question

remains whether the effects of the gradual spread of information on returns and volume the

model implies are quantitatively important and in line with those in the data. In this section, I

apply the Indirect Inference estimation method as described in Gourieroux et al. (1993) to the

cross-section of drug approvals and their short time series around approvals. Indirect Inference

is a generalization of the Simulated Method of Moments of Duffie and Singleton (1993) that

allows for exogenous observables in the data-generating-process. Although the predictions from

Proposition 4 are about partial derivatives, the numerical analysis of this section allows me to

consider the total effects of variation in transmission rates, which changes the equilibrium in

the information market. The goal of this exercise is to find a set of model parameters that

generate moments close to those in the data. By defining a clear loss function that can be used

to judge the fit of the model to the data, this exercise can guide future improvement of the

theory (Hansen and Heckman, 1996).

I begin by parameterizing the incidence probability as follows:

Γ(I; δ) = δIn, (29)
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where δ ∈ [0, 1] is the transmission rate of the information specific to each drug approval. It

parametrizes public interest in the news. The elasticity of Γ(I) with respect to I is parametrized

by n ≥ 0. It has an intuitive interpretation as the number of informed agents required for

effective information transmission to a randomly matched uninformed agent. One can think

of more complicated news as requiring more than a one-on-one meeting for transmission. The

information percolation literature studies the aggregation of information in a random matching

environment and shows that agents’ posterior beliefs evolve according to a similar process (Duffie

and Manso, 2007).

4.1 Maximum Likelihood Estimation of Media Coverage Model

My identification strategy relies on observable variation in transmission rates as proxied by the

media exposure of various drug approvals. I estimate the parameters of the model (2) using the

drug approvals sample. The model of observed media exposure for drug j as constructed in (2)

can be summarized as follows:

mj = max
{

0,xTj βm + γzj + logit (δj)
}
, (30)

where δj ∼ Beta(αδ, βδ) is the transmission rate of the news story with positive shape and scale

parameters αδ and βδ. This distributional assumption for the transmission rate is necessary in

order to restrict it to the range (0, 1). The censoring of media exposure, mj , at zero is apparent

in Table 1. It can be the result of a fixed cost in publishing a story or of measurement. The

exogenous variation provided by the availability of other newsworthy material as measured by

WSJ News Pressure (zj) allows me to identify the parameters of the δ distribution by crowding

out media exposure for some observations below the censoring threshold.

Maximum likelihood estimation is a straightforward exercise given this model. As before, I

include in the control vector xj a constant, firm size, and year and month fixed-effects. Table 6

reports MLE estimated parameters and their standard errors. As expected, WSJ News Pressure

is negatively correlated with media exposure. The point estimate (γ = −0.71) is larger in

absolute value than the one estimated using the linear media coverage model in section 3, which

makes sense because, unlike the linear model, the censored model does not restrict observations

where the crowding-out effect is large to have zero media exposure. The left panel of Figure 7

shows the actual mapping from latent residuals (ε̂j = mj −xTj β̂m− γ̂zj) to latent transmission

rates via the logistic function as estimated by maximum likelihood. The logit functional form

assumption is that media coverage is more sensitive to variation in transmission rates around

the boundaries of its support. The resulting distribution of latent δ̂ is shown in the right panel.

Ideally, I would proceed by including conditional distributions of returns and volume given

the parameters of the model and maximize the likelihood that the process that generated the

sample of drug approvals is the gradual information spread model. Several issues prevent me

from proceeding this way. First, expressions for returns and volume are in closed form up to
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the determination of the price coefficients ratio β1 in (19), which can potentially depend on

different real roots for each parameter set. Second, turnover is not normally distributed, which

makes numerical simulation necessary to calculate its conditional means. Finally, MLE requires

distributional assumptions about residuals on which I have no strong prior. For these reasons,

I proceed by using the cross section of latent transmission rates δ̂ from MLE estimation of (1)

as input to the indirect inference procedure. Observations where media exposure is positive

use the residual after controlling for other sources of variation. Censored observations use the

expected value of δ, which is a non-linear function of x and z. Specifically,

δ̂j =

logistic
(
mj − xTj βm − γzj

)
mj > 0

E [δ|xj , zj ,mj ≤ 0] mj = 0,

where E [δ|x, z,m ≤ 0] = Beta[logistic(−xTβm−γz),αδ+1,βδ]
Beta[logistic(−xTβm−γz),αδ,βδ]

.

4.2 Indirect Inference

Moments I choose to match include the mean cumulative abnormal returns as well as the mean

cumulative abnormal turnover of the first two periods. The model counterpart to abnormal

return is the realized return less the expected risk premium Ret ≡ Qt − E0 [Qt] . In addition, I

include the mean product of returns with δ̂, to capture the dependence of these outcomes on

the transmission rate of information. Turnover moments are especially informative about the

supply shocks variance. The levels of abnormal returns change considerably when the precision

of the signal τ0 changes. Covariance of returns with transmission rates is informative about the

fraction that is early informed and by the competitive information market assumption on the

cost of information acquisition.

The sample of drug approvals is selected because no denied approval requests are in my

sample. To account for this selection, I use only the right tail of the signal distribution. Specif-

ically,

θj = µ0 + τ
− 1

2
0 υj , (31)

where υj is a truncated Gaussian restricted to be positive. Thus all the news simulated is

positive news, just as in the sample. Risk tolerance (φ) is difficult to identify in this model

together with the cost of information (c). To see why, note that in equation (21), multiplying

both v and φ by a constant leaves the relationship intact. Therefore, I estimate the model for

five different values of risk tolerance. I fix the mean supply of the risky asset to 1 and the risk-

free rate to 8.7 basis points, which is the average weekly risk free rate over the sampled period.

One unfortunate feature of the CARA-Normal framework is that the definition of returns its

agents care about is the per-share excess return (Qt). Following Campbell et al. (1993), I

constrain the ex-ante mean dividend (µ0) so that, on average, P0 = 1. Under this constraint,

share returns closely approximate dollar returns, as are the sampled cumulative daily returns in
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excess of the market return. Furthermore, the specific values of η and τ0 are not as important

as their ratio, which determines the signal-to-noise ratio. Therefore, I normalize the standard

deviation of ε to 0.1.

Denote Retj the excess return of observation j = 1..N in period t = 1, 2, 3 whose sam-

ple counterpart is the cumulative return in excess of the market return. Let Ttj denote the

corresponding turnover whose sample counterpart is cumulative turnover in excess of market

turnover. The four-period gradual information spread model in section 2, for each observation j,

maps the exogenous observable δj , unobservable shocks uj = [θj , x1j , x2j , εj ], and model param-

eters α = [ξ, τ0, v, n] into a vector of endogenous observables yj = [Re1j , Re2j , Re3j , T1j , T2j , T3j ] =
r(δj , uj , α). The shocks are just a linear function uj = ϕ(υj , α) of a vector of i.i.d Gaussian

noise υj .

Let kj = k(yj , δj) denote the multidimensional function of the data with associated empirical

moments k̄N = 1
N

∑N
j=1 k(yj , δj). Specifically, my choice of moments is

k̄N = 1
N

N∑
j=1

[
Re1j , Re2j , Re3j , T1j , T2j , Re1jδj , Re2jδj , Re3jδj

]T
.

Simulated moments are similarly calculated conditional on the same sample δs, but with ỹhj (α) =
r
(
δj , ũ

h
j (α), α

)
, where h = 1 . . . H indexes simulations. That is, ỹhj depends on the random

draw of υhj and on the parameters α. Thus the numerical optimization procedure attempts

to match 8 moments with 4 free parameters. The additional moments provide overidentifying

restrictions. The indirect estimator α̃HN is obtained by minimizing

min
α

k̄N − 1
NH

N∑
j=1

H∑
h=1

k
(
ỹhj (α), δj

)T k̄N − 1
NH

N∑
j=1

H∑
h=1

k
(
ỹhj (α), δj

) .
For each δj , I simulate H = 300 different random draws of shocks. Since I have no reason to

favor one moment over another, I use the identity matrix as a weighting matrix.

4.3 Results

Table 7 presents indirect estimation results for five different values of risk tolerance. The mean

payoff µ0 is constrained by the other parameters so the ex-ante price P0 = 1. More risk-averse

agents require a higher expected payoff to value the risky asset at the same price. Both the

precision of the supply shocks (ξ ) and that of the signal (τ0) are decreasing in risk aversion.

By examining the values of the minimized objective, we can see the model with risk aversion

φ−1 = 5 performs better than the rest, and I therefore focus on these results for the remainder

of the analysis.

With a constant absolute risk aversion of 5, the cost of inside information is about 52% of

an uninformed agent’s position in the risky asset at time 1. This cost can be interpreted as the

expected cost of trading on private information with a chance of adverse legal consequences.
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On average, agents informed about a drug approval before the official announcement control

only a tiny fraction of invested wealth; it is on the order of 10−6. The signal-to-noise ratio for

the average drug approval V ar[θ]
V ar[θ]+V ar[ε] is about 10%, which means the reduction in uncertainty

about the value of the drug developing firm that is associated with an approval is small relative

to the remaining uncertainty. This ratio is consistent with DiMasi (2001), which studies the

drug approval process and estimates the probability that a drug will be approved conditional

on surviving to the marketing application stage is about 75%. The elasticity n is estimated at

0.014.

Non-informational supply shocks have a standard deviation of 1% of the total supply of the

stock. Compared with the 6.5% standard deviation of approval turnover in the sample, this

number is small. Thus the model requires only a small amount of non-informational trading to

prevent prices from fully revealing the news. Since there are no borrowing constraints in the

model, informed agents can hold a highly levered position at time 1 to exploit their informational

advantage. The more these agents can borrow, the more informative are prices. Extending

the model to incorporate borrowing constraints will decrease the required amount of noise.

Therefore, in a sense, this estimate of the standard deviation of the supply shocks is an upper

bound.

Table 8 provides a comparison between sample moments and their simulated counterparts

using the estimated parameters. The goal of the numerical procedure is to minimize the dis-

crepancy between the two, which I report in the last column. The covariances are those implied

by the 8 matched moments and the average δ of 0.54. The pre-approval average return, as well

as its covariance with the transmission rate, match well. The approval return and turnover do

not match as well, but are still reasonable. Turnover moments implied by the model actually

match the data fairly well. The turnover level is fairly easy to match with this model using

the parameter ξ, which controls the precision of the supply shocks. The negative post-approval

return in the sample cannot be generated by this model which features only rational agents.

Behavioral extensions can help there, but the standard deviation around the mean cannot sta-

tistically reject that it is zero and worth explaining. Pre-approval returns are increasing in δ

in both the sample and the model. The approval return generates the opposite sign on the

covariation, but again, the point estimate is quite noisy. The main stylized fact, namely, the

negative covariation between post-approval returns and δ is present in both the sample and the

model.

4.4 Simulated Regression Analysis

The structural estimates provide us with a relevant set of parameters that can be used to answer

the question: what should we expect from a linear regression when the data generating process

is that modeled in this paper? To answer this question, I simulate a large cross-section 10 times

as large as the sample, using the estimated parameters. I draw the random shocks as before,

and in addition, draw δ from a Beta distribution with parameters estimated using MLE in
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section 4.1. These draws approximate the theoretical distribution implied by the data without

conditioning on δ.

First, I consider the dependence of price drift as measured by the post-approval return on

the transmission rate, previous returns, and concurrent turnover. Matching these moments

was not the objective of the optimization procedure above, which makes it less likely that they

match those in the data. Thus they provide an additional source of validation for the model.

Table 9 compares the regression results.

The results show that the model can certainly generate the negative covariation between

transmission rates and post-approval returns. If anything, the effect predicted is too large.

Regression coefficients of post-approval returns on their lagged values match fairly well. Little

covariation seems to exist between post-approval turnover with returns in the sample or in the

simulated data. Finally, note that the level of Re3 is somewhat higher in the model than it is

in the data. The reason is that the reduction in uncertainty in the model is absolute, whereas

a considerable amount of uncertainty remains in the real world. An extension of the model to

more periods can fix this issue.

Table 10 reports regression results from a similar exercise, but with post-approval turnover

as the dependent variable and its lagged values as well as δ as explanatory variables. The level

matches well. Covariance with the transmission rate is statistically insignificant in the sample

but strongly significant in the simulated data. The model-predicted effect, however, is quite

small. One standard deviation in δ (0.39) results in a 0.03 percentage points lower turnover.

The regression coefficient on approval turnover is positive, significant, and well matched. The

coefficient on pre-approval turnover, which is statistically significant in both, is positive in the

sample but negative in the model. Finally, so much of the variation in turnover is persistent

that the R-squared in the sample is 0.59. Model-generated data produce an R2 of 0.86, which

is high as well.

4.5 The Implied Market for Information

Proposition 3 decomposes the value of information into three components. We can use the

parameter estimates to get a sense of their relative magnitude. Consider an average transmis-

sion rate and an average informed fraction as calculated in the simulated sample. The first

component is 0.62, whereas the second and third components are on the order of 10−5. Thus at

least in the neighborhood of the estimated parameters, the value of information stems entirely

from the intertemporal growth rate of uninformed agents’ precision Ωv. This growth is not

exogenous but rather an equilibrium outcome. Because it is the dominant component of the

value of information, given the constant cost of information c, either there are no informed in

equilibrium, or

Ωv = τ2 + η

τ1
≈ e

2
φ
R2c

, (32)

which implies the ratio τ2
τ1

is kept constant across the various transmission rates.
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This nature of investor demand for information together with the fixed cost of acquiring

it produce an interesting equilibrium outcome in the market for information plotted in Figure

8. The plots show that no information is acquired in equilibrium when δ is low, that is, for

uninteresting news. Around δ = 0.25, the fraction informed rises sharply and then slowly

declines. Thus faster-spreading information is purchased at a high rate, while the fastest-

spreading news is less valuable.

The parametrization of the incidence probability in (29) has a discontinuity at n = 0. When

n is zero, a meeting with an informed agent is not necessary for information transmission. A

high δ results in a high I2 even if I1 is close to zero. However, when n approaches zero from

the right, a small I1 implies a small I2 regardless of δ. Unreported attempts to generate

the covariance pattern in the data with n = 0 have been unsuccessful, because to match

the magnitudes of covariation between media exposure and stock returns, the fixed cost of

acquiring as well as the dependency of Γ(I1; δ) on I1 are essential. The fixed cost affects

the extensive margin and creates two effective types of news, one with positive equilibrium

information acquisition in which pre-approval returns are high and post-approval returns are

low, and another type with no information being pursued until the post-approval period. Thus

endogenous information acquisition accentuates the covariation between the transmission rate

of information and returns.

The policy implications of this exercise are interesting. Consider the increase in the trans-

mission rate of information that has resulted from the technological progress in communication

technology. Holding fixed the cost of trading on inside information, we would expect more

investment in the acquisition of private information to occur in the Internet age than before,

because the present value of informational rents is larger and is subject to less noise. Policies

like the one followed by government agencies such as the FDA to publicize drug approvals as

soon as possible aims to reduce the asymmetry of information in the market. But this policy

also results in the perhaps undesirable increased incentive to acquire private information before

the announcement.

5 Conclusion

The suggested asset pricing model is useful for the study of the relation between the media

and the stock market. I show that thinking about the media as responding to interesting

news as opposed to shaping stock market reaction to news can explain the covariation between

media coverage and the stock market within a rational framework with a plausible informational

friction. Using the WSJ News Pressure instrument for media coverage, I find no evidence of the

media causing the observed variation in post-approval returns. Reduced-form tests reveal that,

consistent with the model, drug approvals that receive more media exposure on the approval day

and the next, exhibit higher turnover on those days, and lower returns in the subsequent week.

A third prediction of the model, that pre-approval returns are increasing in the transmission
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rate of information cannot be rejected by the data.

The structural estimation exercise reveals that effects the model generates are quantitatively

similar to those in the data and that the parameter estimates are reasonable. Importantly, I find

that the amount of non-informational trading (noise) required to keep prices from fully revealing

all information is small. Analyzing the model around the estimated parameters, I find that the

main source of value from becoming informed is the intertemporal growth in the precision

of the uninformed about the random payoff. This feature results in a hump-shaped demand

for information as a function of the transmission rate of information. In information market

equilibrium, no one pursues uninteresting, slowly propagating news before a drug approval,

because the fixed cost of information is prohibitively high. Faster-spreading information is

purchased at a higher rate, whereas the fastest-spreading news is somewhat less valuable. This

unique feature of the model accentuates the covariation between transmission rates and the

demand for the risky asset, by influencing the extensive margin of information acquisition by

the population as a whole. I find this feature is essential for generating the large covariation

between media exposure and stock returns and volume.

The empirical success of the model in explaining the stylized facts about media coverage and

stocks suggests that the process by which information spreads can be important for asset pricing.

I show that the introduction of such a process to a simple yet relevant asset pricing model

generates rich testable predictions about returns and volume around news releases. Although

this study is silent about the importance of such informational frictions in other settings, I focus

here on drug approvals because they allow for cleaner identification of the effects in question

compared with other events previously documented in the literature. Nonetheless, the intuitive

thought process of an investor who receives news and considers not only who else is informed

today, but also how many others will be informed tomorrow, seems robust once we deviate

from a fully revealing prices setup. That investors in asset markets expand considerable effort

and resources for the attainment of information, even a mere split second before their peers, is

difficult to explain within the canonical model, but is quite reasonable once informational gains

are allowed.

One implication of my findings concerns the informational efficiency of capital markets.

Variation in transmission rates of information means that a finer distinction can be made be-

tween the informational content of prices of different projects and firms. The informational

frictions seem less important for an economic activity society as a whole finds interesting. Thus

what may seem to be an arbitrary influence of fads and fashions on prices can actually be

an efficiency-enhancing mechanism. A second practical implication for firms that aim to raise

capital in financial markets concerns their expenditure on investor relations. If the media are

in fact just a mirror of what investors find interesting, the goal of a successful publicity cam-

paign is then to create an appealing narrative around news, one that captures the imagination

of investors and makes positive information propagate faster through social networks. Viral

investor relations, much like viral marketing, can therefore be more successful than traditional
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attempts at increasing firm visibility.

Finally, two empirical measures I constructed above have much broader applicability than

the context of this study and can be used in future research. Advertising rates can be used for

the measurement of media exposure and its relationship with the economy. For example, testing

whether post-earnings announcement drift is affected by media exposure would be interesting.

Identification of situations in which media coverage is responsible for the variation in the data

as opposed to passively responding to the public’s interest in the news will plague most such

studies. For this reason, the proxy for business news pressure I construct using daily data on

the number of pages in the Wall Street Journal can be used in such circumstances as a plausibly

exogenous source of variation.
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A Solution Details

A.1 Proof of Proposition 1 (Existence of REE)

The solution method for the rational expectations equilibrium follows the guess-and-verify approach as usual.

I first conjecture that prices are linear in the state, and solve for agents’ optimal behavior given these prices

in each period starting with the last one and working backward through time. Finally, I impose state-by-state

market clearing and verify that equilibrium prices satisfy the conjectured form (8).

A.1.1 Proof of Lemma 1 (Learning from Prices)

The inference problem of the uninformed is to form a posterior belief about the fundamental value θ conditional

on the current-period price. The prior belief of uninformed at time t is that θ|Pt ∼ N (µt, τ−1
t ). The distribution

of Pt+1 conditional on θ can be attained by rearranging the price conjecture: xt+1 = Pt+1−at+1−bt+1∆t+1
ct+1

∼
N (0, ξ−1). Substituting these into Bayes’ rule for the posterior distribution of θ and solving for µt+1, which

appears also in ∆t+1, yields the solution in (9).

A.1.2 Period 2 Optimal Behavior

The indirect utility of an agent of type i ∈ {U, I} in period 2 is

V i2 (W i
2) = max

qi2

−e− 1
φ

(
RW i

2+qi2E
i
2[Q3]− 1

2φ (qi2)2Ψi2[Q3]−1
)
,

where Q3 = u−RP2 is normally distributed. The expectation can be evaluated and the first-order condition on

qi2 provides the result in (11). Using the optimal demands the value function is

V i2 (W i
2) = −e− 1

φ
RW i

2− 1
2 Ψi2[Q3]Ei2[Q3]2

. (33)
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A.1.3 Period 2 Market-Clearing Prices

By substituting the optimal holdings from (11) into the market-clearing condition, I verify the equilibrium

P2 indeed has the desirable form. Define Ut ≡ 1 − It as the fraction uninformed at time t. Noting that

EI2 [Q3] = EU2 [Q3] + ∆2, we get

P2 = µ1 − k2a2

(R− k2) + I2ΨI
2[Q3]

(R− k2) (I2ΨI
2[Q3] + U2ΨU

2 [Q3])
∆2 −

X + x2

φ(R− k2) (I2ΨI
2[Q3] + U2ΨU

2 [Q3])
.

The first object that can be easily determined is the ratio: β2 = b2
c2

= −φI2ΨI
2[Q3] = −φI2η. This result reveals

that the relative signal strength in prices is always non-positive (β2 ≤ 0) and decreasing in I2 ( ∂β2
∂I2
≤ 0). Next

we can determine the Kalman gain:

k2 = R

[
ξφ2I2η

(
I2ΨI

2[Q3] + U2ΨU
2 [Q3]

)
τ1 + ξφ2I2η (I2ΨI

2[Q3] + U2ΨU
2 [Q3])

]
< R, (34)

where the result (34) will turn out useful. The price coefficients are

a2 = µ1

R
− X

φR (I2ΨI
2[Q3] + U2ΨU

2 [Q3])
= µ1

R
− E0[Q3]

R

b2 = c2β2 = I2ΨI
2[Q3]

R (I2ΨI
2[Q3] + U2ΨU

2 [Q3])
+ ξβ2

2
Rτ1

(35)

c2 = − 1
φ(R− k2) (I2ΨI

2[Q3] + U2ΨU
2 [Q3])

= − 1
φR (I2ΨI

2[Q3] + U2ΨU
2 [Q3])

+ ξβ2

Rτ1

Finally, note that the precisions of each agent about final period returns are ΨI
2[Q3] = η and ΨU

2 [Q3] =[
η−1 + τ−1

2
]−1

. We have solved for the equilibrium price P2 taking µ1 and τ1 as given. Beliefs of both agents

can be derived by substituting these coefficients into the precisions.

A.1.4 Period 2 Expected Returns

The expected returns of each agent at time 2 about time 3 returns can be expressed as a linear function of the

unexpected return at time 2. Define the innovation to time 2 return for agent of type i Q̃i2 ≡ Q2−Ei1[Q2] and note

that for an uninformed agent, Q̃U2 = b2∆2 +c2x2, and for an informed agent, Q̃I2 = b2
(
∆2 − EI1 [∆2]

)
+c2x2. The

difference between their innovations is that whereas the uninformed expect their error in period 2 to be zero, the

informed have superior information about how the uninformeds’ beliefs will evolve. Specifically, EI1 [∆2] = τ1
τ2

∆1

so that the informed expect the error to decrease in the next period by the ratio of the current precision to the

future precision. Agents’ future expected returns can be expressed as in (17), where EU1 [Q3] = µ1 − Ra2 and

the loading on the innovation ρU1 = k2 − R. From (34), we can see that ρU1 < 0. For informed agents’ expected

returns, EI1 [Q3] = θ − R
(
a2 + b2E

I
1 [∆2]

)
and ρI1 = −R, which is negative. Thus the expected returns of both

agents in period 2 are perfectly negatively correlated with time 2 returns.

A.1.5 Period 1 Informed Agents Behavior

Period 1 informed agents know they will remain informed next period and therefore have the following indirect

utility:

V I1 (W1) = max
qI1

−e− 1
φ
R2W1EI1

[
ed+bQ̃

I
2+A(Q̃I2)2

]
, (36)

where d = − 1
φ
RqI1E

I
1 [Q2]− 1

2 ΨI
2[Q3]EI1 [Q3]2, b = −ΨI

2[Q3]EI1 [Q3]ρI1 − 1
φ
RqI1 and A = − 1

2 ΨI
2[Q3](ρI1)2. Thus the

expectation is of an exponential of a quadratic in Q̃I2 ∼ N (0,ΨI
1[Q2]−1). Using the moment generating function

of the Wishart distribution, it can be shown that for a multivariate normal random vector z ∼ N (0,Σ), the
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following result holds (see Brunnermeier, 2001):

E
[
ez
TAz+bT z+d

]
= |Id− 2ΣA|−

1
2 e

1
2 b
T (Id−2ΣA)−1Σb+d, (37)

which means the value function for the informed investor is

V I1 (W1) = max
qI1

−e− 1
φ
R2W1

(
ΩI1
)− 1

2 e
1
2 ΨI2[Q3]2EI1 [Q3]2(ρI1)2ΛI1+ 1

φ
RqI1ΛI1ΨI2[Q3]EI1 [Q3]ρI1+ 1

2
R2
φ2 (qI1)2ΛI1− 1

φ
RqI1E

I
1 [Q2]− 1

2 ΨI2[Q3]EI1 [Q3]2
,

where ΩI1 ≡ 1 + ΨI2[Q3](ρI1)2

ΨI1[Q2] and ΛI1 ≡
(
ΩI1
)−1 ΨI

1[Q2]−1. The first-order optimality condition for the informed

agents at time 1 gives the optimal holding for informed agents entering period 2 (18). Evaluating the right-hand

side of the value function at the optimum investment choice we get

V I1 (W1) = −
(
ΩI1
)− 1

2 e
− 1
φ
R2W1− 1

2E
I
1 [Q2]2ΨI1[Q2]− 1

2 ΨI2[Q3](EI1 [Q3]−ρI1E
I
1 [Q2])2

.

The variance informed agents is ΨI
1[Q2]−1 = b22V ar

I
1 [∆2] + c22V ar

I
1 [x2] + 2b2c2CovI1 [∆2x2] . The covariance

arises because supply shocks are partially confused by the uninformed as payoff shocks: CovI1 [∆2x2] =
−k2c2 1

ξ

1+k2b2
=

−β2
τ2

and the variance of ∆2 is V arI1 [∆2] = k2
2c

2
2V ar

I
1 [x2]+2k2

2b2c2Cov
I
1 [∆2x2]

1−k2
2b

2
2

. Therefore, we can express the variance

of Q2 simply as ΨI
1[Q2]−1 = c22τ

2
1

ξτ2
2
.

A.1.6 Period 1 Uninformed Agents’ Behavior

Period 1 uninformed agents face a more complicated problem. With probability Γ(I1), they become informed

next period, otherwise they remain uninformed but learn more about the payoff through market price. Their

problem is:

V U1 (W1) = max
qU1

EU1
[
Γ(I1)EU2

[
V I2 (W2)

]
+ (1− Γ(I1))V U2 (W2)

]
,

where I have used the law of iterated expectations. Next notice the only source of randomness in EU2
[
V I2 (W2)

]
is ∆2 ∼ N

(
0, V arU2 [∆2]

)
, so

EU2
[
V I2 (W2)

]
= −e− 1

φ
RW2− 1

2 ΨI2[Q3]EU2 [Q3]2
EU2

[
e−ΨI2[Q3]EU2 [Q3]∆2− 1

2 ΨI2[Q3]∆2
2

]
,

where once again, we use the result in (37) with A = − 1
2 ΨI

2[Q3], b = −ΨI
2[Q3]EU2 [Q3] and d = 0 to get

EU2

[
e−ΨI2[Q3]EU2 [Q3]∆2− 1

2 ΨI2[Q3]∆2
2

]
=

√
τ2
τ2+η

e
1
2 ΨI2[Q3]2EU2 [Q3]2 τ2

τ2+η
τ−1
2

so that

EU2
[
V I2 (W2)

]
= −

√
τ2
τ2+η

e
− 1
φ
RW2− 1

2 ΨU2 [Q3]EU2 [Q3]2 =
√

τ2
τ2+η

V U2 (W2).

The value function of the uninformed at time 2 is proportional to the expected value function of the informed in

time 2. This proportionality simplifies the uninformed’s problem at time 1 to:

V U1 (W1) = max
qU1

[
Γ(I1)

√
τ2
τ2+η

+ (1− Γ(I1))
]
EU1
[
V U2 (W2)

]
,

where the constant term multiplying the expectation does not depend on the investment choice. Since V U2 (W2)
and the expectations of the uninformed take the same form as those of the informed agent, their first-order
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condition takes the same form. The uninformeds’ value function at the optimum is

V U1 (W1) = −
[

Γ(I1)
√

τ2
τ2+η

+ (1− Γ(I1))
] (

ΩU1
)− 1

2 e
− 1
φ
R2W1− 1

2E
U
1 [Q2]2ΨU1 [Q2]− 1

2 ΨU2 [Q3](EU1 [Q3]−ρU1 E
U
1 [Q2])2

.

A.1.7 Period 1 Market-Clearing Prices

By substituting the optimal holdings into the market-clearing condition, I verify that equilibrium P1 indeed has
the desirable form. Noting that EI1 [Q2] = EU1 [Q2] + b2

τ1
τ2

∆1 and that EI1 [Q3] = EU1 [Q3] +
(
1−Rb2 τ1τ2

)
∆1, the

market clearing condition at time 2 gives

P1 =
µ1

R2
−

X

φR2
(
I2ΨI2[Q3] + U2ΨU2 [Q3]

) −
R
φ
X +
(
I1ρ

I
1ΨI2[Q3] + U1ρ

U
1 ΨU2 [Q3]

)
EU1 [Q3]

R
(
I1ΩI1ΨI1[Q2] + U1ΩU1 ΨU1 [Q2]

)
+

I1
(

ΩI1ΨI1[Q2]b2
τ1
τ2

− ρI1ΨI2[Q3]
(

1 − Rb2
τ1
τ2

))
R
(
I1ΩI1ΨI1[Q2] + U1ΩU1 ΨU1 [Q2]

) ∆1 −
x1

φ
(
I1ΩI1ΨI1[Q2] + U1ΩU1 ΨU1 [Q2]

) .
Determining the coefficients, beginning with β1 ≡ b1

c1
= −φI1

(
ΨI

2[Q3] + 1
R
b2
τ1
τ2

ΨI
1[Q2]

)
= −φI1

(
k2
R
τ2 + η

)
. We

can see that ∂β1
∂I1

< 0, which confirms the intuition that the more informed agents there are in period 1, the more

informative prices are about this hidden signal. Furthermore, both ∂k2
∂I2

> 0 and ∂τ2
∂I2

> 0, which implies ∂β1
∂I2

< 0
as well. That is, ceteris paribus, the informativeness of prices at time 1 is increasing not only with the fraction

informed at time 1, but also with the fraction informed at time 2. Next, we can determine the Kalman gain:

k1 = ξb1
τ0c21

= R2

[
ξφ2I1

(
k2τ2
R

+ η
) (
I1ΩI1ΨI

1[Q2] + U1ΩU1 ΨU
1 [Q2]

)
R2τ0 + ξφ2I1

(
k2τ2
R

+ η
)

(I1ΩI1ΨI
1[Q2] + U1ΩU1 ΨU

1 [Q2])

]
. (38)

Notice that since k2 > 0, the term in brackets is between zero and one so 0 < k1 < R2 and therefore
(
1− k1

R2

)
> 0.

The price coefficients are

a1 = µ0

R2 −
E0[Q3]
R2 − E0[Q2]

R

b1 = c1β1 = − β1

φ (I1ΩI1ΨI
1[Q2] + U1ΩU1 ΨU

1 [Q2])
+ ξβ2

1
R2τ0

(39)

c1 = − 1
φ (I1ΩI1ΨI

1[Q2] + U1ΩU1 ΨU
1 [Q2])

+ ξβ1

R2τ0
.

A.1.8 Period 1 Expected Returns

The expected returns of each agent at time 1 about times 2 and 3 returns can be expressed as a linear function

of the unexpected return at time 1. Define the innovation to time 1 return for agent of type i Q̃i1 ≡ Q1 −
Ei0[Q1]. Since all agents are ex-ante identical and uninformed, we can discard the type superscripts and note

that for both agents, Q̃1 = b1∆1 + c1x1. Future expected returns can be expressed as in (22), where E0[Q2] =
R
φ
X+(I1ρI1ΨI2[Q3]+U1ρ

U
1 ΨU2 [Q3])E0[Q3]

I1ΩI1ΨI1[Q2]+U1ΩU1 ΨU1 [Q2] and the loading on the innovation ρ0 = k1
R
−R. From (38) we can see ρ0 < 0.

Thus the period 1 return is perfectly negatively correlated with the uninformed agent’s expected return from time

1 to time 2. Furthermore, the expected return of the uninformed at time 1 about period 3 returns is independent

of the period 1 return. In both periods 0 and 1, the uninformed expect E0[Q3] = X

φ(I2ΨI2[Q3]+U2ΨU2 [Q3]) .

A.1.9 Period 0 Optimal Behavior

Ex-ante, all agents are identical and uninformed about θ. There is no noise, and nothing can be learned from
equilibrium prices. The assumption about information market equilibrium that makes uninformed agents just as
well off as informed agents once the latter pay for their information simplifies the problem of the agent at time
0. All he has to do is maximize the expected value of either V I1 (W1) or V U1 (W1). For simplicity, we maximize
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the uninformed expected utility. Thus the problem of the agent is to maximize:

V0(W0) = max
q0

−
[

Γ(I1)
√

τ2

τ2+η
+ (1 − Γ(I1))

](
ΩU1
)− 1

2 e
− 1
φ
R3W0− 1

φ
R2q0E0[Q1]− 1

2 ΨU2 [Q3]E0[Q3]2+E0[Q2]ΨU2 [Q3]E0[Q3]ρU1 − 1
2E0[Q2]2ΩU1 ΨU1 [Q2]

× E0

[
e

[
− 1
φ
R2q0−E0[Q2]ρ0ΩU1 ΨU1 [Q2]+ρ0ΨU2 [Q3]E0[Q3]ρU1

]
Q̃1− 1

2 ρ
2
0ΩU1 ΨU1 [Q2]Q̃2

1

]
.

Evaluating the expectation using the result in (37) with A = − 1
2ρ

2
0ΩU1 ΨU

1 [Q2] and b = ρ0ΨU
2 [Q3]E0[Q3]ρU1 −

1
φ
R2q0 − E0[Q2]ρ0ΩU1 ΨU

1 [Q2] and the expectation is of an exponential quadratic form in Q̃1 ∼ N (0,Ψ0[Q1]−1):

E
[
eAQ̃

2
1+bQ̃1

]
= Ω− 1

2
0 e

1
2 Λ0
(
ρ0ΨU2 [Q3]E0[Q3]ρU1 − 1

φ
R2q0−E0[Q2]ρ0ΩU1 ΨU1 [Q2]

)2

,

where Ω0 ≡ 1 + ρ2
0ΩU1 ΨU1 [Q2]

Ψ0[Q1] and Λ0 ≡ Ω−1
0 Ψ0[Q1]−1. The f.o.c for q0 give the optimal demand (23). Equating

q0 = X and simplifying yields the equilibrium price P0 = µ0
R3 − X

R3φΨ0[u] .

A.2 Proof of Proposition 2 (Uniqueness of Equilibrium)

By substituting the endogenous expressions for ΨI
2[Q3], ΨI

1[Q2] and G12 into (19), we get the following condition

for the equilibrium β1 as a function of the primitives of the model:

β1 = −
I1φ
(
η + η2I2ξφ

2) (η + τ0 + (β1)2ξ + η2I2
2ξφ

2)
η + τ0 + (β1)2ξ + η2I2ξφ2 . (40)

Therefore, β1 is the root of a cubic polynomial:

0 = ξ(β1)3 + ξζ(β1)2 + γβ1 + ωζ,

where ζ = φI1
(
η + η2I2ξφ

2), γ = η2I2ξφ
2 +η+τ0 and ω = η2I2

2ξφ
2 +η+τ0. At least one real solution must exist

by the Intermediate Value Theorem. The condition for uniqueness is that the discriminant is strictly negative,

which implies

4
(
γ3 + ξ2ζ4ω

)
> ξζ2 (γ2 + 18γω − 27ω2) .

See Birkhoff and Mac Lane (1997) for an efficient method for finding real roots of cubic polynomials.

A.3 Proof of Proposition 3 (Value of Information)

The indifference condition (20) implicitly determines I1 as a function of the parameters of the model. By

plugging in the value functions of both types of agents, recalling that EI1 [Q2] = EU1 [Q2] + b2
τ1
τ2

∆1 and that

EI1 [Q3] = EU1 [Q3] +
(
1−Rb2 τ1τ2

)
∆1, we get

V U1 (W1) = −
(
ΩI1
)− 1

2 e
− 1
φ
R2(W1−v)

e− 1
2E

U
1 [Q2]2ΨI1[Q2]− 1

2 ΨI2[Q3][EU1 [Q2]ρI1−EU1 [Q3]]2EU1
[
eb∆1+A∆2

1

]
,

where b = ΨI
2[Q3]

[
EU1 [Q2]ρI1 − EU1 [Q3]

]
− EU1 [Q2]b2 τ1τ2 ΨI

1[Q2] and A = − 1
2

(
b22
τ2
1
τ2
2

ΨI
1[Q2] + ΨI

2[Q3]
)

and ∆1 ∼

N
(
0, τ−1

1
)
. Evaluating the expectation using the result in (37) we get

EU1

[
eb∆1+A∆2

1

]
= Ω− 1

2
v e

1
2

(
ΨI2[Q3][EU1 [Q2]ρI1−EU1 [Q3]]−EU1 [Q2]b2

τ1
τ2

ΨI1[Q2]
)2

Ω−1
v τ−1

1 ,

where Ωv = τ2+η
τ1

. Plugging in the value functions and rearranging we get

e
1
φ
R2v = Ω

1
2
v

[
Γ(I1)

√
τ2
τ2+η

+ (1− Γ(I1))
](

ΩU1
ΩI1

)− 1
2

e− 1
2E

U
1 [Q2]2B1+EU1 [Q3]EU1 [Q2]B2− 1

2E
U
1 [Q3]2B3 , (41)
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where B1, B2, and B3 are all zero. Therefore, the exponential term on the r.h.s of (41) vanishes. Taking logs

and rearranging we get the desired result (21).

A.4 Proof of Proposition 4 (Price Reaction to News)

Expected returns conditional on news ∆0 can be expressed as a constant multiplying the news:

E0 [Qt|∆0]− E0 [Qt] = Gt∆0,

where G1 = b1
τ0
τ1

, G2 =
[
b1ρ0 + b2

τ1
τ2

]
τ0
τ1

and G3 =
[
1−Rb2 τ1τ2

]
τ0
τ1

. Suppose we hold I1 and τ1 fixed and consider

a marginal change in δ. From the GIS process, ∂I2
∂δ

= ∂Γ(I1)
∂δ

U1; therefore, assuming that the incidence probability

Γ is increasing in the transmission rate we get ∂I2
∂δ

> 0. The following results will be establishes in terms of
marginal changes in I2, but it should be kept in mind that these directly sign the derivatives with respect to δ.
The price coefficient on ∆1 is b1. Differentiating (39) w.r.t I2 and recalling that ∂β1

∂I2
≤ 0 and β1 ≤ 0 gives

∂b1
∂I2

= ∂b1
∂β1

∂β1

∂I2
= −

∂β1
∂I2

φ (I1ΩI1ΨI
1[Q2] + U1ΩU1 ΨU

1 [Q2])
+

2ξβ1
∂β1
∂I2

R2τ0
≥ 0,

where the inequality is strict when I1 > 0. A similar argument applies for b2. Differentiating (35) w.r.t I2 and
recalling that ∂β2

∂I2
≤ 0 and β2 ≤ 0 gives

∂b2
∂I2

= ∂b2
∂β2

∂β2

∂I2
= 1
R

[
ΨU

2 [Q3]ΨI
2[Q3]

(I2ΨI
2[Q3] + U2ΨU

2 [Q3])2

]
+

2ξβ2
∂β2
∂I2

Rτ1
> 0.

With these results in mind, consider the cash-flow news sensitivities:

∂G1

∂I2
= ∂

∂I2

[
b1
τ0
τ1

]
= τ0
τ1

∂b1
∂I2
≥ 0

∂G2

∂I2
= ∂

∂I2

[(
b1ρ0 + b2

τ1
τ2

)
τ0
τ1

]
= τ0
τ1

(
∂b1
∂I2

ρ0 + ∂b2
∂I2

τ1
τ2

)
Q 0

∂G3

∂I2
= ∂

∂I2

[(
1−Rb2

τ1
τ2

)
τ0
τ1

]
= −τ0

τ1
R
∂b2
∂I2

τ1
τ2
≤ 0.

Since in information market equilibrium, τ1
τ2

is a constant that depends on the parameters of the model and in
particular on the cost of information c, G2 can either increase or decrease from a marginal change in I2. The
reason is that the positive derivatives ∂b1

∂I2
and ∂b2

∂I2
enter with opposite signs since ρ0 < 0.

B Figures and Tables
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Figure 1: Informational Types over Time
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Figure 2: Returns and Turnover Around Positive News

0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.5

1.0

1.5

2.0

2.5

E@R1
e ÈD0>0D

0.0 0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.5

1.0

1.5

2.0

2.5

E@R2
e ÈD0>0D

0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.5

1.0

1.5

2.0

2.5

E@R3
e ÈD0>0D

0.0 0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.2

0.4

0.6

0.8

1.0

E@T1ÈD0>0D

0.0 0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.2

0.4

0.6

0.8

1.0

1.2

E@T2ÈD0>0D

0.0 0.2 0.4 0.6 0.8 1.0
GHI1,∆L

0.1

0.2

0.3

0.4

0.5

0.6

E@T3ÈD0>0D

Plotted are percent expected returns in excess of the unconditional risk premium Ret and turnover Tt as

a function of the incidence probability Γ (I1, δ) at times 1, 2 and 3 of the model corresponding to the pre-

announcement, announcement and post-announcement periods. Parameter values are those estimated

in section 4. Expected values are calculated using 10,000 simulated draws of the shocks. θ shocks are

drawn from a truncated normal distribution as in (31) to condition on positive news.
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Figure 3: 1998 U.S. Daily Newspaper Advertising Rates
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Plotted is a regression of the 1998 dollar price per column-inch of advertising on circulation measured

in thousands of readers for U.S. daily newspapers. Labeled are the Philadelphia Inquirer, Boston Globe,

Chicago Sun-Times, San Francisco Chronicle, Houston Chronicle, Washington Post, New York Times,

USA Today, and Wall Street Journal .

Figure 4: Average Cumulative Abnormal Returns and Media Exposure for New Drug Approvals
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The stacked bars are the average number of articles covering a new drug approval by the FDA. The dark

bars are for articles for which advertising rates are available. Light bars for other publications mostly

consist of news services such as newswires and newsletters. The solid line represents CAR over days

[0,t]. The dotted lines are the 90% confidence interval.
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Figure 5: Media Exposure Sub-Samples
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High media exposure sub-sample is the top half of drug approvals with positive media exposure on

days 0 and 1 containing 56 observations. Low contains the bottom 57 observations with positive media

exposure. No media exposure contains the remaining 207 observations. The plotted average cumulative

abnormal returns are normalized to zero one day before the approval. Abnormal returns and turnover

are in excess of those of the value-weighted market portfolio.
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Figure 6: WSJ News Pressure 1990-2007
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WSJ News Pressure is the backward-looking 40-day moving average of the number of pages in section

A of the Wall Street Journal .

Figure 7: Estimated Transmission Rates
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The plot on the left shows the logistic mapping from latent residuals to transmission rates of the censored

media coverage model as specified in (30). The histogram on the right describes the distribution of latent

transmission rates. In both plots, dark colors represent uncensored (mj > 0), and light colors represent

censored (mj = 0) observations.
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Figure 8: The Market for Information
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The plot on the left shows demand for information v(I1; δ) as a function of the percent of population

informed I1 for three different values of δ. The horizontal line indicates the constant supply price.

The plot on the right shows the equilibrium informed percent of population. The parameters are those

estimated in section 4.
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Table 1: New Drug Approvals Sample Summary Statistics

Mean Std Min 25th % Median 75th % Max N

Media Exposure 1.50 4.31 0 0 0 0.78 31.96 320
Media Exposure (Count) 3.58 9.22 0 0 0 2.00 70.00 320
Subsequent Media Exposure 2.17 3.39 0 0 1 2.63 20.92 320
Preceding Media Exposure 0.14 0.58 0 0 0 0 5.18 320
WSJ News Pressure 18.57 3.44 13.25 16.29 17.60 20.38 29.20 320
Market Cap (Millions $) 28064 34622 18 1774 16401 39211 194823 320
Number of Analysts 19.62 13.86 0.00 7.00 19.50 31.00 48.00 320
Analysts Estimates Dispersion 0.08 0.20 0.00 0.01 0.02 0.06 2.41 297
Priority Drug 0.45 0.50 0 0 0 1 1 320
Orphan Drug 0.19 0.39 0 0 0 0 1 320
Cancer Drug 0.16 0.37 0 0 0 0 1 170
HIV/AIDS Drug 0.06 0.24 0 0 0 0 1 170
Friday Approval 0.32 0.47 0 0 0 1 1 320
Idiosyncratic Risk 2.15 1.33 0.70 1.31 1.69 2.51 9.32 309
Patent Months Remaining 192.21 47.90 34.3 166.6 187.4 223.8 343.3 235
Exclusivity Months Remaining 57.45 56.97 0.0 0.0 60.0 90.0 213.4 235

The sample includes 320 Original New Drug Approvals over the years 1990-2007 marked by the FDA

as New Molecular Entity applications. Media Exposure is the sum of all articles on the approval

day and the following day, weighted by an adjacent advertising rate and presented in thousands of

dollars. Subsequent Media Exposure is calculated similarly for days 2 to 6, as is Preceding Media

Exposure for days -5 to -1. Media Exposure (Count) is the number of articles. WSJ News

Pressure is the 40-day moving average of the number of pages in section A of the Wall Street Journal

one day after the approval. Market Cap is the sponsoring firm’s market capitalization in millions of

1990 dollars one year before the event. If data are not available for that time then the first day with data

within that year is used instead. CAR [a,b] is cumulative abnormal percent return over event trading

days a to b, where abnormal return is return in excess of the value-weighted market portfolio. CATO

[a,b] is cumulative abnormal percent turnover, where abnormal turnover is turnover in excess of market

portfolio turnover. Pre-Approval window is [-5,-1]. Approval window is [0,1]. Post-Approval

window is [2,6]. Historical Turnover is the security’s past year average daily percent turnover up to

day t-12. Number of Analysts and Analyst Estimates Dispersion are from I/B/E/S unadjusted

summary file for one year earnings estimates valid one month before the approval. Dispersion, defined as

standard deviation over absolute value of the mean, is undefined when the mean is zero or when only one

analyst is covering the firm. Priority Drug and Orphan Drug are dummy variables set according to

the drug’s review classification (both can be true). Idiosyncratic Risk is the standard deviation of the

residuals from a market model regression of past year daily stock returns on the value-weighted market

portfolio. Patent and Exclusivity Months Remaining are calculated as the difference between their

expiry date as it appears in the FDA’s Electronic Orange Book files and the approval date.
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Table 2: Returns and Volume around Approvals

Mean t-statistic Std Min Median Max Per-day N

Pre-Approval CAR (R1) 1.33 3.75 6.34 -18.07 0.63 39.13 0.27 320
Approval CAR (R2) 1.35 4.32 5.59 -18.61 0.60 47.08 0.68 320
Post-Approval CAR (R3) -0.53 -1.62 5.86 -30.00 -0.14 22.72 -0.11 320

Historical Turnover 0.52 14.12 0.58 0.04 0.31 5.43 0.52 248
Pre-Approval CATO (T1) 0.56 2.36 3.79 -3.79 -0.56 28.28 0.11 255
Approval CATO (T2) 2.02 4.92 6.55 -1.41 -0.13 54.82 0.40 255
Post-Approval CATO (T3) 1.29 3.53 5.84 -3.91 -0.48 52.27 0.26 255

CAR [a,b] is cumulative abnormal percent return over event trading days a to b, where abnormal return

is return in excess of the value-weighted market portfolio. CATO [a,b] is cumulative abnormal percent

turnover, where abnormal turnover is turnover in excess of market portfolio turnover. Turnover data is

not available for ADRs. Pre-Approval window is [-5,-1]. Approval window is [0,1]. Post-Approval

window is [2,6]. Historical Turnover is the security’s past year average daily percent turnover up to

day -12. Per-day is the mean divided by the number of cumulation days.

Table 3: Effects of Transmission Rates on Returns
(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: m R1 R2 R3 R1 R2 R3

Transmission Rate δ̂ 0.14 -0.03 -0.23***
[0.12] [0.13] [0.06]

Media Exposure m̂ -0.02 0.88* 0.20
[0.63] [0.48] [0.71]

WSJ News Pressure -0.54**
[0.21]

Firm Size 0.09 -0.73*** -0.51** 0.44** -0.73*** -0.59*** 0.42*
[0.11] [0.23] [0.20] [0.20] [0.24] [0.23] [0.23]

R-squared 0.10 0.14 0.10 0.13 0.14 0.11 0.10

N 320

Media Exposure m is the sum of all articles on the approval day and the following day, weighted by

an adjacent advertising rate and presented in thousands of dollars. Cumulative abnormal returns R1,

R2 and R3 are measured over the pre-approval [-5,-1], approval [0,1], and post-approval [2,6] windows

respectively. WSJ News Pressure is the 40-day moving average of the number of pages in section A

of the Wall Street Journal one day after the approval. Firm Size is the sponsoring firm’s log market

capitalization in millions of 1990 dollars one year before the event. The predicted value of Media Exposure

m̂ and the Transmission Rate δ̂ are estimated from regression (1). All regressions include an intercept

and year and month fixed-effects. Standard errors clustered by approval day and adjusted using GMM

for estimation error in δ̂ are in brackets. *, **, and *** indicate significance at 10, 5, and 1 percent

respectively.
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Table 4: Alternative Proxies for Transmission Rates
(1) (2) (3) (4) (5) (6)

Dependent Variable: R1 R2 R3

Priority Drug -0.32 -0.70 0.97 1.11* -1.90*** -1.41**
[0.77] [0.82] [0.62] [0.64] [0.70] [0.67]

Orphan Drug -0.31 -0.35 0.93 0.95 3.05*** 3.11***
[0.98] [0.97] [1.05] [1.05] [1.14] [1.13]

Media Exposure 0.16 -0.06 -0.21***
[0.13] [0.14] [0.06]

R-squared 0.14 0.15 0.11 0.11 0.14 0.16

N 320

Cumulative abnormal returns R1, R2 and R3 are measured over the pre-approval [-5,-1], approval [0,1],

and post-approval [2,6] windows respectively. The FDA grants Priority Drug review status to drugs that

promise a significant advance over existing treatments, and Orphan Drug status if the treatment is for

a disease affecting fewer than 200,000 Americans. Both indicators can be 1. Media Exposure is the sum

of all articles on the approval day and the following day, weighted by an adjacent advertising rate and

presented in thousands of dollars. Firm Size is the sponsoring firm’s log market capitalization in millions

of 1990 dollars one year before the event. All regressions include an intercept, firm size, and year and

month fixed-effects. Standard errors clustered by approval day are in brackets. *, **, and *** indicate

significance at 10, 5, and 1 percent respectively.

Table 5: Effects of Transmission Rates on Turnover
(1) (2) (3) (4) (5) (6)

Dependent Variable: T1 T2 T3 T1 T2 T3

Transmission Rate δ̂ 0.12*** 0.23*** 0.19**
[0.04] [0.06] [0.08]

Media Exposure m̂ -0.41 -0.22 -0.46
[0.33] [0.41] [0.55]

Firm Size -0.70*** -1.08*** -0.96*** -0.67*** -1.07*** -0.93***
[0.12] [0.17] [0.16] [0.12] [0.17] [0.16]

R-squared 0.33 0.42 0.31 0.32 0.40 0.29

N 255

Cumulative abnormal turnover T1, T2 and T3 is measured over the pre-approval [-5,-1], approval [0,1],

and post-approval [2,6] windows respectively. WSJ News Pressure is the 40-day moving average of the

number of pages in section A of the Wall Street Journal one day after the approval. Firm Size is the

sponsoring firm’s log market capitalization in millions of 1990 dollars one year before the event. The

predicted value of Media Exposure m̂ and the Transmission Rate δ̂ are estimated from regression (1)

in Table (3). All regressions include an intercept and year and month fixed-effects. Standard errors

clustered by approval day and adjusted using GMM for estimation error in δ̂ are in brackets. *, **, and

*** indicate significance at 10, 5, and 1 percent respectively.
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Table 6: Censored Media Coverage Model ML Estimates

mj = max
{

0,xT
j βm + γzj + logit (δj)

}
δ ∼ Beta(αδ, βδ)

γ αδ βδ N

-0.71** 0.30 0.25*** 320
[0.36] [0.24] [0.02]

Reported are maximum likelihood estimates from the censored media coverage model. Controls in xj
include a constant, firm size, and year and month fixed-effects. zj is the WSJ News Pressure one day
after the approval, which proxies for the availability of other newsworthy material. Standard errors are
in brackets.

Table 7: Indirect Estimation Results

φ−1 E[θ] σ[xt] σ[θ] c n Objective

0.5 1.008 0.019 0.028 4.080 0.163 4.129
[0.001] [0.000] [1.188] [0.055]

1.0 1.013 0.013 0.021 0.566 0.099 4.165
[0.023] [0.001] [23.220] [3.494]

2.5 1.028 0.014 0.019 0.201 0.109 4.269
[0.010] [0.000] [3.850] [2.133]

5.0 1.058 0.010 0.034 0.522 0.014 2.892
[0.001] [0.008] [0.118] [0.007]

10.0 1.122 0.015 0.044 0.150 0.057 3.451
[0.001] [0.008] [0.010] [0.024]

Reported are indirect inference parameter estimates each using five different values of absolute risk

tolerance φ. Each optimization uses the 255 observations times 300 simulated shock draws. The mean

payoff E[θ] = µ0 is constrained given the other parameters so that P0 = 1. The standard deviation

of the the unobservable component is normalized to σ [ε] = 0.1. σ [xt] is the standard deviation of the

supply shocks. σ [θ] is the standard deviation of the signal θ at time 0. c is the fixed cost of information.

n is the elasticity of the incidence probability Γ(I1; δ) w.r.t to the fraction informed at time 1. Objective

is the value of the minimized quadratic objective. Standard errors are in brackets.
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Table 8: Moments Comparison (φ−1 = 5.0)

Sample Model Error

E[Re1] 1.669 1.641 0.028
[0.424] [0.127] [0.442]

E[Re2] 1.469 0.766 0.702
[0.383] [0.094] [0.394]

E[Re3] -0.635 0.227 -0.861
[0.395] [0.640] [0.752]

E[T1] 0.556 0.922 -0.366
[0.237] [0.034] [0.240]

E[T2] 2.017 1.219 0.798
[0.410] [0.038] [0.412]

E[Re1δ] 0.989 1.108 -0.119
[0.283] [0.084] [0.295]

E[Re2δ] 1.042 0.294 0.748
[0.306] [0.041] [0.309]

E[Re3δ] -0.550 0.008 -0.557
[0.269] [0.392] [0.475]

Cov[Re1,δ] 0.091 0.225 -0.134
Cov[Re2,δ] 0.253 -0.118 0.371
Cov[Re3,δ] -0.208 -0.114 -0.094

Reported are sample moments and their simulated counterparts from the model. The numerical proce-

dure’s goal is to minimize the discrepancy between the two, which I report in the last column. The three

covariances are calculated based on the matched moments in the top part of the table. Standard errors

are in brackets.

Table 9: Regressions of Post-Approval Returns

Re3 = β0 + β1R
e
1 + β2R

e
2 + β3T3 + π3δ + υ

Sample Model

1 0.630 2.200
[0.791] [0.433]

Re1 -0.129 0.118
[0.058] [0.119]

Re2 0.021 -0.277
[0.065] [0.205]

T3 -0.101 0.994
[0.068] [0.688]

δ -1.766 -3.373
[1.307] [0.599]

R2 0.042 0.016
Obs 255 2550

The dependent variable is post-approval cumulative abnormal percent return over days 2 to 6 for the

sample regression. In the regressions simulated using the model, it corresponds to the per-share excess

percent return. Tt in the model corresponds to cumulative abnormal turnover over the same window in

the sample. δ in the model is drawn randomly from Beta(α̂MLE
δ , β̂MLE

δ ), whereas in the sample, it is δ̂

estimated from (30) using MLE . Standard errors are in brackets.
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Table 10: Regressions of Post-Approval Turnover

T3 = β0 + β1T1 + β2T2 + π3δ + υ

Sample Model

1 0.070 0.098
[0.480] [0.005]

T1 0.437 -0.199
[0.090] [0.004]

T2 0.478 0.460
[0.053] [0.004]

δ 0.023 -0.089
[0.802] [0.005]

R2 0.586 0.861
Obs 255 2550

The dependent variable is post-approval cumulative abnormal percent turnover over days 2 to 6 for the

sample regression. In the regressions simulated using the model it corresponds to percent trade volume

T3. δ in the model is drawn randomly from Beta(α̂MLE
δ , β̂MLE

δ ), whereas in the sample, it is δ̂ estimated

from (30) using MLE . Standard errors are in brackets.
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