2023- Reprints: Technology and Information Systems
אישה נעלה נעלה נעלה: מודלי עיבוד שפה טבעית בעברית, חידושים בניהול, 12, 2023
ענבל יהב ואביחי שריקי
Natural language processing: Developing models for the Hebrew language
I. Yahav and A. Chriqui
(Reprint 405)
עברית שפה קשה. למחשב, כמו לאדם, וקצת יותר. בארבע השנים האחרונות מודלי עיבוד שפה טבעית נמצאים בשיא פריחתם עבור מגוון שפות ומגוון משימות מחשב, כגון תרגום, מענה על שאלות, ניתוח תחושות וכתיבת תקצירים. העברית, לעומת זאת, נותרה קצת מאחור. זה לא מאוד מפתיע מפני שקהל היעד של עברית קטן משמעותית מזה של שפות אחרות, ומבנה השפה מורכב בהרבה. למעשה העברית נחשבת ״שפה עשירה מורפולוגית״ – שפה שבה המידע המורפולוגי מקודד כחלק מהמילה, ולא מופרד ממנה כמו במרבית השפות הלטיניות. ב 2021- פותח על ידי כותבי מאמר זה מודל שפה מבוסס ברט ראשון לשפה העברית, שהיווה יריית פתיחה למחקרים רבים בתחום. במאמר זה נציג את האתגרים בפיתוח מודל השפה העברית, נסקור את המודלים הקיימים והמאמצים המתמשכים לפיתוח כלים ומודלים חדשים, ולאן עוד אפשר וכדאי לשאוף. בנספח למאמר נציג הדרכה קצרה כיצד ניתן, ללא ידע מקדים עשיר, להשתמש במודל השפה בעברית לזיהוי תחושות מתוך שפה כתובה.
Predicting consumer choice from raw eye-movement data using the RETINA deep learning architecture, Data Mining and Knowledge Discovery, 2023
M. Unger, M. Wedel and A. Tuzhilin
(Reprint No. 415)
Research Nos.: 02822100; 02823100
https://doi.org/10.1007/s10618-023-00989-7
Research has revealed the potential of recording people’s eye movements to char[1]acterize and predict their choice decisions. In this paper, we propose the use of a deep learning architecture, called RETINA, to predict multi-alternative, multi[1]attribute consumer choice from eye movement data. Unlike previous research, RETINA directly uses the raw eye-tracking data from both eyes as input. It combines state-of-the art Transformer and Metric Learning methods which capitalize on the key characteristics of the raw eye-tracking data. Using the raw data input eliminates the information loss that may result from first calculating fixations, deriving metrics from the fixations data and analysing those metrics, as has been previously done in eye movement research. While Deep Learning architectures often require very large data sets, using the raw gaze data allows us to apply Deep Learning to eye tracking data sets of the size commonly encountered in academic and applied research. Using a data set with 112 respondents who made choices among four laptops, we show that the proposed architecture outper[1]forms other state-of-the-art machine learning methods (standard BERT, LSTM, autoML, logistic regression) calibrated on raw data or fixation data. The analysis of partial time and partial data segments reveals the ability of RETINA to predict choice outcomes well before a decision has been reached. We provide an assessment of which features of the eye movement data contribute to RETINA’s prediction accuracy. We provide recommendations on how the proposed deep learning architecture can be used as a basis for future academic research.
Reciprocal human machine learning (RHML): Human-AI collaboration based on theories of dyadic learning, AAAI Summer Symposium Series (SuSS-23)
D. G. Schwartz, D. Teeni and I. Yahav
(Reprint No. 416)
Research No.: 05721100
In this position paper we advocate a Reciprocal Human Machine Learning paradigm based on two theories of learning behavior. Drawing from Jorg’s theory of reciprocal learning in dyads and the Jewish tradition of Havruta – pair-based study, we suggest that human-machine collaboration based on these established human-human collaborative forms can achieve a rich and robust human-in-the-learning-loop (HITLL) framework in which both parties experience learning over time.
The design of reciprocal learning between human and artificial intelligence, Proceedings of the ACM on Human-Computer Interaction, 5, No. CSCW2, Article 443, October 2021
A. Zagalsky, D. Te’eni, I. Yahav, D. G. Schwartz, G. Silverman, D. Cohen, Y. Mann and D. Lewinsky
(Reprint No. 417)
Research No.: 05721100
The need for advanced automation and artificial intelligence (AI) in various fields, including text classification, has dramatically increased in the last decade, leaving us critically dependent on their performance and reliability. Yet, as we increasingly rely more on AI applications, their algorithms are becoming more nuanced, more complex, and less understandable precisely at a time we need to understand them better and trust them to perform as expected. Text classification in the medical and cybersecurity domains is a good example of a task where we may wish to keep the human in the loop. Human experts lack the capacity to deal with the high volume and velocity of data that needs to be classified, and ML techniques are often unexplainable and lack the ability to capture the required context needed to make the right decision and take action. We propose a new abstract configuration of Human-Machine Learning (HML) that focuses on reciprocal learning, where the human and the AI are collaborating partners.
Legal HeBERT: A BERT-based NLP model for Hebrew legal, judicial and legislative texts, SSRN Electronic Journal, 2022
A. Chriqui, I. Yahav and I. Bar-Siman-Tov
(Reprint No. 418)
Research No.: 05722100
In this work in progress, we offer a BERT-based Hebrew NLP model for the legal, legislative and judicial domains. To the best of our knowledge, this is the first ever BERT-based Hebrew NLP model developed for legal tasks. We illustrate the superiority of our model when applied to both supervised and unsupervised tasks in these domains. Our model is freely offered for public use.
Smart testing with vaccination: A bandit algorithm for active sampling for managing COVID-19, Information Systems Research, 2023.
Y. Wang, I. Yahav and B. Padmanabhan
(Reprint No. 419)
Research No.: 05723100
This paper presents methods to choose individuals to test for infection during a pandemic such as COVID-19, characterized by high contagion and presence of asymptomatic carriers. The smart-testing ideas presented here are motivated by active learning and multi-armed bandit techniques in machine learning. Our active sampling method works in conjunction with quarantine policies, can handle different objectives, and is dynamic and adaptive in the sense that it continually adapts to changes in real-time data. The bandit algorithm uses contact tracing, location-based sampling and random sampling in order to select specific individuals to test. Using a data-driven agent-based model simulating New York City we show that the algorithm samples individuals to test in a manner that rapidly traces infected individuals. Experiments also suggest that smart-testing can significantly reduce the death rates as compared with current methods, with or without vaccination. While smart testing strategies can help mitigate disease spread, there could be unintended consequences with fairness or bias when deployed in real-world settings. To this end we show how procedural fairness can be incorporated into our method and present results that show that this can be done without hurting the effectiveness of the mitigation that can be achieved.